CN105386076A - An improved method for producing carbon nanotube system by high-temperature electrolysis of CO2 - Google Patents
An improved method for producing carbon nanotube system by high-temperature electrolysis of CO2 Download PDFInfo
- Publication number
- CN105386076A CN105386076A CN201510891230.6A CN201510891230A CN105386076A CN 105386076 A CN105386076 A CN 105386076A CN 201510891230 A CN201510891230 A CN 201510891230A CN 105386076 A CN105386076 A CN 105386076A
- Authority
- CN
- China
- Prior art keywords
- electrolysis
- temperature
- electrolyte
- unit
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 70
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 62
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 39
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 35
- 239000003792 electrolyte Substances 0.000 claims abstract description 26
- 239000000203 mixture Substances 0.000 claims abstract description 21
- 238000005485 electric heating Methods 0.000 claims abstract description 16
- 239000011261 inert gas Substances 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 14
- 238000005260 corrosion Methods 0.000 claims abstract description 13
- 230000007797 corrosion Effects 0.000 claims abstract description 13
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 30
- 229910052799 carbon Inorganic materials 0.000 claims description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical group [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 14
- 229910052742 iron Inorganic materials 0.000 claims description 14
- 229910052593 corundum Inorganic materials 0.000 claims description 11
- 239000010431 corundum Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 4
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- 229910052734 helium Inorganic materials 0.000 claims description 4
- 229910052741 iridium Inorganic materials 0.000 claims description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 claims description 4
- 229910052754 neon Inorganic materials 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 239000001307 helium Substances 0.000 claims description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 3
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 2
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 2
- 239000010405 anode material Substances 0.000 claims description 2
- 229910052792 caesium Inorganic materials 0.000 claims description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 2
- 239000010406 cathode material Substances 0.000 claims description 2
- 229910052730 francium Inorganic materials 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000007784 solid electrolyte Substances 0.000 claims description 2
- 230000009467 reduction Effects 0.000 abstract description 5
- 239000006227 byproduct Substances 0.000 abstract description 3
- 230000003749 cleanliness Effects 0.000 abstract 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 26
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 14
- 229910002092 carbon dioxide Inorganic materials 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000004570 mortar (masonry) Substances 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- HEWZVZIVELJPQZ-UHFFFAOYSA-N 2,2-dimethoxypropane Chemical compound COC(C)(C)OC HEWZVZIVELJPQZ-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000011356 non-aqueous organic solvent Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明涉及一种高温电解CO2制碳纳米管系统的改进方法,该系统包括电解单元、电加热单元和惰性气体保护单元,电加热单元对电解单元进行加热,电解单元由直流电源、阴极、阳极、电解池和电解质组成,电解质为熔融碳酸盐与熔融氧化物的混合物,电解温度在610~690℃之间,混合物中,氧化物与碳酸盐的摩尔比在(0,0.2]区间内可采用恒电流电解或者恒电压电解,采用恒电流电解时,直流电源的电流密度控制在20~500mA/cm2之间,采用恒电压电解时,直流电源的电压控制在2.2V~3.2V之间;电解中,在阴极得到碳纳米管及CO,阳极得到O2,电解质吸收补给的CO2,与CO2反应得以再生。该系统一步生成碳纳米管,反应简单,副产物少,选择性好,通过将惰性气体通入反应体系内,延缓电极和电解池的腐蚀速度,从而提高整个系统的耐腐蚀性,从而使该系统具有清洁、节能、高效、安全和可持续的特点,为节能减排和CO2资源化利用提供了新的途径。
The present invention relates to an improved method for the carbon nanotube system produced by high-temperature electrolysis of CO2 . The system includes an electrolysis unit, an electric heating unit and an inert gas protection unit. The electric heating unit heats the electrolysis unit. The electrolysis unit consists of a DC power supply, a cathode, Composed of anode, electrolytic cell and electrolyte. The electrolyte is a mixture of molten carbonate and molten oxide. The electrolysis temperature is between 610 and 690°C. In the mixture, the molar ratio of oxide to carbonate is in the interval (0,0.2] Constant current electrolysis or constant voltage electrolysis can be used inside. When using constant current electrolysis, the current density of the DC power supply is controlled between 20 ~ 500mA/cm 2 . When using constant voltage electrolysis, the voltage of the DC power supply is controlled at 2.2V ~ 3.2V During electrolysis, carbon nanotubes and CO are obtained at the cathode, O 2 is obtained at the anode, and the electrolyte absorbs the replenished CO 2 and reacts with CO 2 to regenerate. This system generates carbon nanotubes in one step, with simple reactions and few by-products. Good performance, by introducing inert gas into the reaction system, delaying the corrosion rate of electrodes and electrolytic cells, thereby improving the corrosion resistance of the entire system, so that the system has the characteristics of cleanliness, energy saving, high efficiency, safety and sustainability Energy saving and emission reduction and CO2 resource utilization provide new ways.
Description
技术领域technical field
本发明涉及一种高温电解CO2制碳纳米管系统的改进方法,属于节能减排和CO2资源化利用领域。The invention relates to an improved method for producing a carbon nanotube system by high-temperature electrolysis of CO 2 , and belongs to the fields of energy saving and emission reduction and resource utilization of CO 2 .
背景技术Background technique
自工业革命以来,化石燃料(煤、石油、天然气等)的过度开发使大气中CO2的浓度由上世纪初的0.27‰增加到现在已经超过0.4‰。据统计,全球每年因化石燃料燃烧产生的CO2高达6Gt,截止2013年,化石能源提供了世界能源总需求量的90%,这意味着今后CO2的排放量还将不断增加。然而,作为含碳类物质燃烧过程的最终产物,CO2也是自然界中含量最丰富的C1资源,因此,探索CO2的化学转化与利用技术无论是对环境保护还是资源有效利用都具有重要意义。Since the industrial revolution, the overexploitation of fossil fuels (coal, oil, natural gas, etc.) has increased the concentration of CO 2 in the atmosphere from 0.27‰ at the beginning of the last century to more than 0.4‰ now. According to statistics, the CO 2 produced by fossil fuel combustion is as high as 6Gt in the world every year. As of 2013, fossil energy provided 90% of the world's total energy demand, which means that CO 2 emissions will continue to increase in the future. However, as the final product of the combustion process of carbonaceous substances, CO 2 is also the most abundant C1 resource in nature. Therefore, exploring the chemical conversion and utilization technology of CO 2 is of great significance for both environmental protection and effective resource utilization.
目前,CO2化学转化技术主要集中于催化活化合成有机燃料或化工原料,如CH4、CO+H2、尿素、甲醇等。丛昱等采用超细Cu-ZnO-ZrO2催化剂将二氧化碳转化为甲醇且收率高达73.4g(k·h)-1,高于工业CH3OH催化剂Cu-ZnO-Al2O3;Tomishige等将适量的2,2-二甲氧基丙烷掺入了CeO2-ZrO2催化剂体系中,采用该催化体系促进二氧化碳与甲醇生成碳酸二甲酯;Choudhary等利用NiO-CaO催化剂使CO2到CH4的转化率达到99%,且CO和H2的选择性均达到100%。以上反应均需要在较为苛刻的条件下进行,例如高温、高压、催化剂等,因此需要配备专门的反应器,价格昂贵,使用寿命较低。在其反应过程中,由于催化剂性能较低,高温下容易失活,且生产过程中也容易发生危险,因此采用高压催化氢化法来实现二氧化碳的资源化利用仍存在许多挑战与困难。At present, CO 2 chemical conversion technology mainly focuses on catalytic activation to synthesize organic fuels or chemical raw materials, such as CH 4 , CO+H 2 , urea, methanol, etc. Cong Yu et al. used ultrafine Cu-ZnO-ZrO 2 catalyst to convert carbon dioxide into methanol with a yield as high as 73.4g(k h) -1 , higher than the industrial CH 3 OH catalyst Cu-ZnO-Al 2 O 3 ; Tomishige et al. An appropriate amount of 2,2-dimethoxypropane was mixed into the CeO 2 -ZrO 2 catalyst system, and the catalyst system was used to promote the formation of dimethyl carbonate from carbon dioxide and methanol; Choudhary et al. used NiO-CaO catalysts to convert CO 2 to CH The conversion of 4 reached 99%, and the selectivities of both CO and H2 reached 100%. The above reactions all need to be carried out under relatively harsh conditions, such as high temperature, high pressure, catalyst, etc., so special reactors need to be equipped, which are expensive and have a short service life. In the reaction process, due to the low performance of the catalyst, it is easy to deactivate at high temperature, and it is also prone to danger in the production process. Therefore, there are still many challenges and difficulties in the use of high-pressure catalytic hydrogenation to realize the resource utilization of carbon dioxide.
相对于以上十分苛刻的转化方法,近年来,安全、清洁且易于操作的电化学捕捉转化CO2技术已成为CO2资源化利用领域研究的热点之一。当前,对CO2电化学还原的研究主要集中于在水溶剂或者非水有机溶剂中对CO2进行电解,此外,CO2作为一种高度稳定的不燃物分子,它的热力学稳定性十分优越,因此,直接对其进行电解还原十分困难,需要较高能耗(高电解电压),同时电解反应非常复杂,效率和选择性较差。基于此,开发一种低成本、装置简单、高效的CO2资源化利用的方法及装置,以获得更好的经济、社会和环境效益是十分必要的。Compared with the above very harsh conversion methods, in recent years, the safe, clean and easy-to-operate electrochemical capture conversion CO 2 technology has become one of the research hotspots in the field of CO 2 resource utilization. At present, the research on the electrochemical reduction of CO2 mainly focuses on the electrolysis of CO2 in aqueous solvents or non-aqueous organic solvents. In addition, as a highly stable non-combustible molecule, CO2 has excellent thermodynamic stability. Therefore, it is very difficult to directly perform electrolytic reduction on it, requiring high energy consumption (high electrolysis voltage), and at the same time, the electrolytic reaction is very complicated, and the efficiency and selectivity are poor. Based on this, it is necessary to develop a low-cost, simple and efficient method and device for resource utilization of CO 2 to obtain better economic, social and environmental benefits.
发明内容Contents of the invention
本发明提供了一种系统简单、节能、低成本、高效、耐腐蚀的CO2资源化利用方法,高温电解CO2制碳纳米管系统的改进方法,该系统能在低电解电压和相对低温条件下,实现CO2的资源化利用,制得在纳米技术、电子、光学和材料科学和技术的其他领域都很宝贵的碳纳米管,并且电解反应相对简单,可一步生成碳纳米管,反应选择性好,副产物少,另外,该系统通过惰性气体(He、Ar、Ne)对体系进行保护,提高其耐腐蚀性。The present invention provides a CO2 resource utilization method with simple system, energy saving, low cost, high efficiency and corrosion resistance, and an improved method of high-temperature electrolysis of CO2 to produce carbon nanotubes. The system can operate at low electrolysis voltage and relatively low temperature Under this circumstance, the resource utilization of CO2 can be realized, and carbon nanotubes, which are very valuable in nanotechnology, electronics, optics and other fields of material science and technology, can be produced, and the electrolysis reaction is relatively simple, and carbon nanotubes can be generated in one step. Good corrosion resistance and few by-products. In addition, the system is protected by inert gas (He, Ar, Ne) to improve its corrosion resistance.
本发明的目的是通过如下技术方案实现的:The purpose of the present invention is achieved through the following technical solutions:
一种高温电解CO2制碳纳米管系统的改进系统,该系统包括电解单元和电加热单元,电加热单元对电解单元进行加热,电解单元由直流电源、阴极、阳极、电解池和电解质组成,其特征在于:所述电解质为熔融碳酸盐与熔融氧化物的混合物,混合物中,氧化物与碳酸盐的摩尔比在(0,0.2]区间内,电解温度在610~690℃之间,采用恒电流电解或者恒电压电解,采用恒电流电解时,直流电源的电流密度控制在20~500mA/cm2之间,采用恒电压电解时,直流电源的电压控制在2.2V~3.2V之间;电解中,在阴极得到碳纳米管及CO,阳极得到O2,电解质与CO2反应得以再生;所述系统还包括惰性气体保护单元,用以向电解反应体系内通入惰性气体,延缓电极和电解池的腐蚀速度,从而提高整个系统的耐腐蚀性,所述的惰性气体保护单元可采用钢瓶封装的氦气、氩气或氖气。An improved system for producing carbon nanotubes by high-temperature electrolysis of CO 2 , the system includes an electrolysis unit and an electric heating unit, the electric heating unit heats the electrolysis unit, and the electrolysis unit is composed of a DC power supply, a cathode, an anode, an electrolytic cell and an electrolyte, It is characterized in that: the electrolyte is a mixture of molten carbonate and molten oxide, in the mixture, the molar ratio of oxide to carbonate is in the interval (0,0.2], the electrolysis temperature is between 610-690°C, Use constant current electrolysis or constant voltage electrolysis, when using constant current electrolysis, the current density of the DC power supply is controlled between 20 ~ 500mA/ cm2 , when using constant voltage electrolysis, the voltage of the DC power supply is controlled between 2.2V ~ 3.2V ; In electrolysis, carbon nanotubes and CO are obtained at the cathode, O 2 is obtained at the anode, and the electrolyte and CO 2 react to be regenerated; the system also includes an inert gas protection unit, which is used to feed inert gas into the electrolysis reaction system to delay electrode and the corrosion rate of the electrolytic cell, thereby improving the corrosion resistance of the entire system, the inert gas protection unit can adopt helium, argon or neon gas sealed in steel cylinders.
其电解反应机理为:The electrolytic reaction mechanism is:
阳极反应:2O2--4e-=O2 Anode reaction: 2O 2- -4e - =O 2
阴极反应:CO3 2-+4e-=C+3O2- Cathode reaction: CO 3 2- +4e - =C+3O 2-
CO3 2-+2e-=CO+2O2- CO 3 2- +2e - =CO+2O 2-
CO3 2-+3e-=1/2CO+1/2C+5/2O2- CO 3 2- +3e - =1/2CO+1/2C+5/2O 2-
其中在阴极产生的单质碳中富集碳纳米管。Wherein the carbon nanotubes are enriched in the elemental carbon produced at the cathode.
进一步地,所述直流电源电流密度为20~500mA/cm2,电解池温度为610~690℃;所述直流电源电流密度优选为100~400mA/cm2,电解池温度优选为627~677℃。Further, the current density of the DC power supply is 20-500mA/cm 2 , the temperature of the electrolytic cell is 610-690°C; the current density of the DC power supply is preferably 100-400mA/cm 2 , and the temperature of the electrolytic cell is preferably 627-677°C .
进一步地,碳酸盐为Li2CO3、Na2CO3、K2CO3、Rb2CO3、Cs2CO3、Fr2CO3、MgCO3、CaCO3、SrCO3、BaCO3、ZnCO3中的一种或两种以上的混合物;氧化物为Li2O、Na2O、K2O、Rb2O、Cs2O、Fr2O、MgO、CaO、SrO、BaO、ZnO、SiO2、Al2O3、Fe2O3中的一种或两种以上的混合物。Further, the carbonate is Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 , Cs 2 CO 3 , Fr 2 CO 3 , MgCO 3 , CaCO 3 , SrCO 3 , BaCO 3 , ZnCO One or a mixture of two or more of 3 ; the oxides are Li 2 O, Na 2 O, K 2 O, Rb 2 O, Cs 2 O, Fr 2 O, MgO, CaO, SrO, BaO, ZnO, SiO 2. One or a mixture of Al 2 O 3 , Fe 2 O 3 .
进一步地,电解质为固态时,由所述电加热单元提供电解质达到完全熔融状态所需要的热能。Further, when the electrolyte is in a solid state, the electric heating unit provides heat energy required for the electrolyte to reach a completely molten state.
进一步地,所述电加热单元采用陶瓷或其他高温型电加热套,通过调节变压器负载来调控加热温度。Further, the electric heating unit adopts ceramic or other high-temperature electric heating jackets, and the heating temperature is regulated by adjusting the transformer load.
进一步地,所述的惰性气体保护单元采用钢瓶封装的氦气、氩气或氖气。Further, the inert gas protection unit adopts helium, argon or neon sealed in steel cylinders.
进一步地,所述电解单元的阴极材料为镍、铂、钛、钌、铱、钯、铁、钨、铬、铜、金、石墨或不锈钢,或上述材料中的几种形成的合金;所述电解单元的阳极材料为镍、铂、钛、钌、铱、钯、铁、钨、铬、铜、金、石墨或不锈钢,或上述材料中的几种形成的合金。Further, the cathode material of the electrolysis unit is nickel, platinum, titanium, ruthenium, iridium, palladium, iron, tungsten, chromium, copper, gold, graphite or stainless steel, or an alloy formed of several of the above materials; The anode material of the electrolysis unit is nickel, platinum, titanium, ruthenium, iridium, palladium, iron, tungsten, chromium, copper, gold, graphite or stainless steel, or an alloy formed of several of the above materials.
进一步地,所述电解池采用高纯刚玉体坩埚、高纯镍或其他高温耐腐蚀型反应器。Further, the electrolytic cell adopts high-purity corundum crucible, high-purity nickel or other high-temperature corrosion-resistant reactors.
基于上述的高温电解CO2制碳纳米管系统的改进方法,包括如下步骤:Based on above-mentioned high-temperature electrolysis CO The improved method of carbon nanotube system, comprises the following steps:
(1)构建由直流电源、阴极、阳极、电解池、电解质和惰性气体保护单元组成的电解单元;(1) Construct an electrolytic unit composed of a DC power supply, cathode, anode, electrolytic cell, electrolyte and an inert gas protection unit;
(2)通过电加热单元加热固态电解质以形成熔融态电解质;(2) heating the solid electrolyte by an electric heating unit to form a molten electrolyte;
(3)控制电解池温度恒定在610~690℃;(3) Control the temperature of the electrolytic cell to be constant at 610-690°C;
(4)通过导气管向电解池中通入CO2,采用恒电流电解时,控制直流电源的电流密度在20~500mA/cm2之间,采用恒电压电解时,控制直流电源的电压在2.2V~3.2V之间,反应一定时间,主反应一步生成主要产物单质碳,单质碳中富集碳纳米管,总反应为:(4) Introduce CO 2 into the electrolytic cell through the air duct. When using constant current electrolysis, control the current density of the DC power supply between 20 and 500mA/cm 2 . When using constant voltage electrolysis, control the voltage of the DC power supply at 2.2 Between V and 3.2V, react for a certain period of time, the main product is simple carbon in one step in the main reaction, and carbon nanotubes are enriched in the simple carbon. The total reaction is:
CO2=C+O2; CO 2 =C+O 2 ;
CO2=1/2O2+CO;CO 2 =1/2O 2 +CO;
CO2=3/4O2+1/2CO+1/2C;CO 2 =3/4O 2 +1/2CO+1/2C;
其电解反应机理为:The electrolytic reaction mechanism is:
阳极反应:2O2--4e-=O2 Anode reaction: 2O 2- -4e - =O 2
阴极反应:CO3 2-+4e-=C+3O2- Cathode reaction: CO 3 2- +4e - =C+3O 2-
CO3 2-+2e-=CO+2O2- CO 3 2- +2e - =CO+2O 2-
CO3 2-+3e-=1/2CO+1/2C+5/2O2-。CO 3 2- +3e - = 1/2CO+1/2C+5/2O 2- .
本发明的有益技术效果如下:Beneficial technical effects of the present invention are as follows:
1、电解反应过程,通过电加热单元将电能转化为热能,加热电解质,根据电解质的不同调控加热温度;同时使用直流电源提供电能,根据电解质的种类及加热温度,调控所需的电解电压或电流,通过电解CO2,阴极得到碳纳米管及CO,阳极得到O2,实现了电能到化学能的转化和储存,电解过程中电解质溶液吸收补给的CO2,与CO2反应使电解质得以再生,从而实现了将CO2循环利用与资源化利用。。1. During the electrolysis reaction process, the electric heating unit converts electric energy into heat energy, heats the electrolyte, and adjusts the heating temperature according to the different electrolytes; at the same time, it uses a DC power supply to provide electric energy, and adjusts the required electrolysis voltage or current according to the type of electrolyte and the heating temperature , through electrolysis of CO 2 , carbon nanotubes and CO are obtained from the cathode, and O 2 is obtained from the anode, which realizes the conversion and storage of electrical energy to chemical energy. During the electrolysis process, the electrolyte solution absorbs the replenished CO 2 and reacts with CO 2 to regenerate the electrolyte. Thereby realizing the recycling and resource utilization of CO2 . .
2、本发明CO2高温电解制碳纳米管的电解机理为:2. The electrolytic mechanism of CO high - temperature electrolysis of carbon nanotubes of the present invention is:
阳极反应:Anode reaction:
[1]2O2--4e-=O2 [1]2O 2- -4e- =O 2
阴极反应:Cathode reaction:
[2]碳的形成:CO3 2-+4e-=C+3O2- [2] Carbon formation: CO 3 2- +4e - =C+3O 2-
[3]一氧化碳的形成:CO3 2-+2e-=CO+2O2- [3] Formation of carbon monoxide: CO 3 2- +2e - =CO+2O 2-
[4]一氧化碳及碳的形成:CO3 2-+3e-=1/2CO+1/2C+5/2O2- [4] Formation of carbon monoxide and carbon: CO 3 2- +3e - =1/2CO+1/2C+5/2O 2-
加合阴、阳极反应,可得电解反应:The addition of the negative and positive reactions results in the electrolytic reaction:
[5]M2CO3=C(s)+O2+M2O;[5] M 2 CO 3 =C(s)+O 2 +M 2 O;
[6]M2CO3=CO+M2O+1/2O2;[6] M 2 CO 3 =CO+M 2 O+1/2O 2 ;
[7]M2CO3=1/2CO+1/2C+M2O+3/4O2;[7] M 2 CO 3 =1/2CO+1/2C+M 2 O+3/4O 2 ;
[8]CO2的吸收反应:M2O+CO2=M2CO3 [8] Absorption reaction of CO 2 : M 2 O+CO 2 =M 2 CO 3
将电解反应[5]、[6]、[7]与CO2的吸收反应[8]进行加和,可得电解单元总反应:Adding the electrolysis reactions [5], [6], [7] and the CO2 absorption reaction [8], the total reaction of the electrolysis unit can be obtained:
[9]CO2=C+O2; [9] CO2 =C+O2 ;
[10]CO2=1/2O2+CO;[10]CO 2 =1/2O 2 +CO;
[11]CO2=3/4O2+1/2CO+1/2C[11]CO 2 =3/4O 2 +1/2CO+1/2C
熔融碳酸盐电解质中的碳酸根离子通过电解转化为固态碳单质与CO(如方程[2]和方程[3]所示),同时生成O2-。释放出的氧负离子一方面可以与气氛中的CO2反应而再生碳酸根(方程[8]),从而实现可持续的CO2捕集与电化学转化,也可迁移至阳极发生氧化而生成氧气(方程[1]),形成了CO2-CO3 2--C+CO+O2循环系统,其中在阴极产生的单质碳中富含碳纳米管。The carbonate ions in the molten carbonate electrolyte are electrolyzed into solid carbon and CO (as shown in Equation [2] and Equation [3]), and simultaneously generate O 2- . On the one hand, the released oxygen negative ions can react with CO 2 in the atmosphere to regenerate carbonate (equation [8]), thereby realizing sustainable CO 2 capture and electrochemical conversion, and can also migrate to the anode for oxidation to generate oxygen (equation [1]), forming a CO 2 -CO 3 2- -C+CO+O 2 cycle system in which carbon nanotubes are rich in the elemental carbon generated at the cathode.
3、该系统通过控制电流密度和电解温度来合成碳纳米管,电解温度为610~690℃,采用恒电流电解或者恒电压电解,采用恒电流电解时,直流电源的电流密度控制在20~500mA/cm2之间,采用恒电压电解时,直流电源的电压控制在2.2V~3.2V之间,电解一定时间,阴极生成的单质碳中含有大量碳纳米管。3. The system synthesizes carbon nanotubes by controlling the current density and electrolysis temperature. The electrolysis temperature is 610-690°C. Constant current electrolysis or constant voltage electrolysis is used. When constant current electrolysis is used, the current density of the DC power supply is controlled at 20-500mA /cm 2 , when constant voltage electrolysis is used, the voltage of the DC power supply is controlled between 2.2V and 3.2V. After a certain period of electrolysis, the elemental carbon generated by the cathode contains a large amount of carbon nanotubes.
4、与现有技术相比,该系统具有以下突出的特点:第一,电流密度大大降低,电流密度仅为20~500mA/cm2,电解电压仅为2.2V~3.2V;第二:采用多种碳酸盐与金属氧化物混合物作为电解质,在降低了体系熔点的同时,增加了电解质对二氧化碳的捕捉能力,使电解质的更新速度大大提高;第三:电极材料可选用廉价的铁丝和镍铬合金丝,有效地降低了生产成本。4. Compared with the existing technology, the system has the following outstanding features: first, the current density is greatly reduced, the current density is only 20-500mA/cm 2 , and the electrolysis voltage is only 2.2V-3.2V; second: the use of A variety of carbonates and metal oxide mixtures are used as electrolytes, which not only lowers the melting point of the system, but also increases the ability of the electrolyte to capture carbon dioxide, greatly increasing the renewal speed of the electrolyte; third: the electrode material can be selected from cheap iron wire and nickel Chrome alloy wire, effectively reducing production costs.
5、该具体具有惰性气体保护单元,通过将惰性气体通入反应体系内,延缓电极和电解池的腐蚀速度,从而提高整个系统的耐腐蚀性。5. The concrete has an inert gas protection unit, which slows down the corrosion rate of electrodes and electrolytic cells by passing inert gas into the reaction system, thereby improving the corrosion resistance of the entire system.
6、本发明一步生成碳纳米管,反应简单,副产物少,选择性好,耐腐蚀性好。同时利用电能以及电化学效应,构建耐腐蚀的CO2转化制碳纳米管系统,构成了完美的能量转化和储存系统,具有清洁、高效、安全和可持续的特点,为节能减排和CO2资源化利用提供了新的途径。6. The present invention generates carbon nanotubes in one step, with simple reaction, few by-products, good selectivity and good corrosion resistance. At the same time, electric energy and electrochemical effects are used to construct a corrosion-resistant CO 2 conversion carbon nanotube system, which constitutes a perfect energy conversion and storage system, which is clean, efficient, safe and sustainable, and contributes to energy saving and emission reduction and CO 2 Resource utilization provides a new way.
附图说明Description of drawings
图1本发明系统示意图Fig. 1 system schematic diagram of the present invention
图中:1阳极;2电加热套;3电解质;4电解池;5阴极;6导气管;7直流电源;8导线;9阳极产物O2;10反应原料CO2;11阴极副产物CO;12惰性气瓶In the figure: 1 anode; 2 electric heating mantle; 3 electrolyte; 4 electrolytic cell; 5 cathode; 12 inert gas cylinders
具体实施方式detailed description
对比例:系统中未采用惰性气体保护单元Comparative example: no inert gas protection unit is used in the system
分别将22gLi2CO3、61gNa2CO3和17gK2CO3于研钵中研磨粉碎混合均匀,将其转移入刚玉坩埚内;分别将表面积为50cm2的镍铬合金丝和铁丝作为阳极和阴极;使温度恒定为610(±2)℃,电流密度恒定为20mA/cm2。反应1小时后,阴极产生的单质碳中含有大量碳纳米管。阳极镍铬合金丝腐蚀严重,仅剩余3.5cm2左右。Grind and mix 22gLi 2 CO 3 , 61gNa 2 CO 3 and 17gK 2 CO 3 in a mortar, and transfer them into a corundum crucible; respectively use nickel-chromium alloy wire and iron wire with a surface area of 50cm 2 as anode and cathode ; Make the temperature constant at 610(±2)°C, and the current density constant at 20mA/cm 2 . After 1 hour of reaction, the elemental carbon produced by the cathode contained a large number of carbon nanotubes. The anode nickel-chromium alloy wire is severely corroded, and only about 3.5cm 2 remains.
实施例1Example 1
分别将61gLi2CO3、22gNa2CO3和17gK2CO3于研钵中研磨粉碎混合均匀,将其转移入刚玉坩埚内;分别将表面积为10cm2的镍铬合金丝和铁丝作为阳极和阴极;使温度恒定为620(±2)℃,电流密度恒定为150mA/cm2。反应1小时后,阴极产生的单质碳中含有大量碳纳米管,阳极镍铬合金丝几乎无变化,形貌完整。Grind, pulverize and mix 61gLi 2 CO 3 , 22gNa 2 CO 3 and 17gK 2 CO 3 in a mortar, transfer them into a corundum crucible; use nickel-chromium alloy wire and iron wire with a surface area of 10cm 2 as anode and cathode respectively ; Make the temperature constant at 620(±2)°C, and the current density constant at 150mA/cm 2 . After reacting for 1 hour, the elemental carbon produced by the cathode contained a large amount of carbon nanotubes, and the nickel-chromium alloy wire of the anode was almost unchanged, and its shape was complete.
实施例2Example 2
分别将61gLi2CO3、22gNa2CO3、17gK2CO3及2.15gNa2O于研钵中研磨粉碎混合均匀,将其转移入刚玉坩埚内;分别将表面积为5cm2的镍铬合金丝和铁丝作为阳极和阴极;使温度恒定为630(±2)℃,电流密度恒定为350mA/cm2。反应0.8小时后,阴极产生的单质碳中含有大量碳纳米管,阳极镍铬合金丝几乎无变化,形貌完整。Grind and mix 61gLi 2 CO 3 , 22gNa 2 CO 3 , 17gK 2 CO 3 and 2.15gNa 2 O in a mortar, and transfer them into a corundum crucible ; The iron wire is used as anode and cathode; the temperature is kept constant at 630(±2)°C, and the current density is kept constant at 350mA/cm 2 . After reacting for 0.8 hours, the elemental carbon produced by the cathode contained a large number of carbon nanotubes, and the nickel-chromium alloy wire of the anode was almost unchanged, and its shape was complete.
实施例3Example 3
分别将20gMgCO3、42gSrCO3、30gBaCO3及3.17gK2O于研钵中研磨粉碎混合均匀,将其转移入刚玉坩埚内;分别将表面积为5cm2的镍铬合金丝和铁丝作为阳极和阴极;使温度恒定为640(±2)℃,电流密度恒定为450mA/cm2。反应0.8小时后,阴极产生的单质碳中含有大量碳纳米管,阳极镍铬合金丝几乎无变化,形貌完整。Grind, pulverize and mix 20gMgCO 3 , 42gSrCO 3 , 30gBaCO 3 and 3.17gK 2 O in a mortar, transfer them into a corundum crucible ; use nickel-chromium alloy wire and iron wire with a surface area of 5cm2 as anode and cathode respectively; The temperature was kept constant at 640(±2)°C, and the current density was kept constant at 450mA/cm 2 . After reacting for 0.8 hours, the elemental carbon produced by the cathode contained a large number of carbon nanotubes, and the nickel-chromium alloy wire of the anode was almost unchanged, and its shape was complete.
实施例4Example 4
分别将61gLi2CO3、22gNa2CO3、17gK2CO3及2.7gLi2O于研钵中研磨粉碎混合均匀,将其转移入刚玉坩埚内;分别将表面积为5cm2的镍铬合金丝和铁丝作为阳极和阴极;使温度恒定为650(±2)℃,电流恒定为500mA/cm2。反应0.8小时后,阴极产生的单质碳中含有大量碳纳米管,阳极镍铬合金丝几乎无变化,形貌完整。Grind and mix 61gLi 2 CO 3 , 22gNa 2 CO 3 , 17gK 2 CO 3 and 2.7gLi 2 O in a mortar, and transfer them into a corundum crucible ; The iron wire is used as anode and cathode; the temperature is kept constant at 650(±2)°C, and the current is kept constant at 500mA/cm 2 . After reacting for 0.8 hours, the elemental carbon produced by the cathode contained a large number of carbon nanotubes, and the nickel-chromium alloy wire of the anode was almost unchanged, and its shape was complete.
实施例5Example 5
分别将46.5gLi2CO3、16.5gNa2CO3、12.75gK2CO3及8.15gNa2O于研钵中研磨粉碎混合均匀,将其转移入刚玉坩埚内;分别将表面积为5cm2的镍铬合金丝和铁丝作为阳极和阴极;使温度恒定为660(±2)℃,电压恒定为2.2~2.5V。反应0.5小时后,阴极产生的单质碳中含有大量碳纳米管,阳极镍铬合金丝几乎无变化,形貌完整。Grind and mix 46.5gLi 2 CO 3 , 16.5gNa 2 CO 3 , 12.75gK 2 CO 3 and 8.15gNa 2 O in a mortar, transfer them into a corundum crucible ; Alloy wire and iron wire are used as anode and cathode; the temperature is kept constant at 660 (±2)°C, and the voltage is kept constant at 2.2-2.5V. After reacting for 0.5 hours, the elemental carbon produced by the cathode contained a large amount of carbon nanotubes, and the nickel-chromium alloy wire of the anode had almost no change, and its shape was complete.
实施例6Example 6
分别将20gMgCO3、42gSrCO3、30gBaCO3及1.1gLi2O于研钵中研磨粉碎混合均匀,将其转移入刚玉坩埚内;分别将表面积为5cm2的镍铬合金丝和铁丝作为阳极和阴极;使温度恒定为670(±2)℃,电压恒定为2.5~3.2V。反应0.5小时后,阴极产生的单质碳中含有大量碳纳米管,阳极镍铬合金丝几乎无变化,形貌完整。Grind, pulverize and mix 20gMgCO 3 , 42gSrCO 3 , 30gBaCO 3 and 1.1gLi 2 O in a mortar, transfer them into a corundum crucible ; use nickel-chromium alloy wire and iron wire with a surface area of 5cm2 as anode and cathode respectively; Keep the temperature constant at 670 (±2)°C, and the voltage constant at 2.5-3.2V. After reacting for 0.5 hours, the elemental carbon produced by the cathode contained a large amount of carbon nanotubes, and the nickel-chromium alloy wire of the anode had almost no change, and its shape was complete.
实施例7Example 7
分别将20gMgCO3、42gSrCO3、30gBaCO3及2gLi2O于研钵中研磨粉碎混合均匀,将其转移入刚玉坩埚内;分别将表面积为5cm2的镍铬合金丝和铁丝作为阳极和阴极;使温度恒定为680(±2)℃,电压恒定为2.2~3.2V。反应0.5小时后,阴极产生的单质碳中含有大量碳纳米管,阳极镍铬合金丝几乎无变化,形貌完整。Grind and mix 20gMgCO 3 , 42gSrCO 3 , 30gBaCO 3 and 2gLi 2 O in a mortar, and transfer them into a corundum crucible ; use nickel-chromium alloy wire and iron wire with a surface area of 5cm2 as anode and cathode respectively; The temperature is constant at 680 (±2)°C, and the voltage is constant at 2.2-3.2V. After reacting for 0.5 hours, the elemental carbon produced by the cathode contained a large amount of carbon nanotubes, and the nickel-chromium alloy wire of the anode had almost no change, and its shape was complete.
实施例8Example 8
分别将31gLi2CO3、11gNa2CO3、8.5gK2CO3及3.5gLi2O于研钵中研磨粉碎混合均匀,将其转移入刚玉坩埚内;分别将表面积为5cm2的镍铬合金丝和铁丝作为阳极和阴极;使温度恒定为690(±2)℃,电压恒定为2.5~3.2V。反应0.5小时后,阴极产生的单质碳中含有大量碳纳米管,阳极镍铬合金丝几乎无变化,形貌完整。Grind, pulverize and mix 31gLi 2 CO 3 , 11gNa 2 CO 3 , 8.5gK 2 CO 3 and 3.5gLi 2 O in a mortar, and transfer them into a corundum crucible ; And iron wire as anode and cathode; keep the temperature constant at 690 (±2)°C, and the voltage constant at 2.5-3.2V. After reacting for 0.5 hours, the elemental carbon produced by the cathode contained a large amount of carbon nanotubes, and the nickel-chromium alloy wire of the anode had almost no change, and its shape was complete.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510891230.6A CN105386076A (en) | 2015-12-07 | 2015-12-07 | An improved method for producing carbon nanotube system by high-temperature electrolysis of CO2 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510891230.6A CN105386076A (en) | 2015-12-07 | 2015-12-07 | An improved method for producing carbon nanotube system by high-temperature electrolysis of CO2 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105386076A true CN105386076A (en) | 2016-03-09 |
Family
ID=55418832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510891230.6A Pending CN105386076A (en) | 2015-12-07 | 2015-12-07 | An improved method for producing carbon nanotube system by high-temperature electrolysis of CO2 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105386076A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109735862A (en) * | 2019-01-29 | 2019-05-10 | 东北大学 | A method for treating metallurgical waste gas by using lithium-free calcium-based molten salt method and utilizing it as a resource |
CN114401591A (en) * | 2022-01-10 | 2022-04-26 | 奥特斯科技(重庆)有限公司 | Regenerator for metal-containing fluids for use in component carrier manufacturing, systems and methods |
CN114630926A (en) * | 2019-10-29 | 2022-06-14 | C2Cnt有限责任公司 | System and method for fabricating carbon nanostructures |
CN114921798A (en) * | 2016-11-16 | 2022-08-19 | C2Cnt有限责任公司 | Method and system for producing long carbon nanofibers |
US11939682B2 (en) | 2021-11-24 | 2024-03-26 | C2Cnt Llc | Electrolysis methods that utilize carbon dioxide and a non-iron additive for making desired nanocarbon allotropes |
EP4392595A2 (en) * | 2021-09-30 | 2024-07-03 | C2Cnt Llc | Method and apparatus for making carbon nanomaterials and methods using lithium-free electrolytes |
CN118434678A (en) * | 2021-11-24 | 2024-08-02 | C2Cnt有限责任公司 | Electrolytic method for preparing macroscopic assembly of nano carbon by using carbon dioxide |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007046713A1 (en) * | 2005-10-21 | 2007-04-26 | Norsk Hydro Asa | Method for production of carbon materials |
CN102168280A (en) * | 2011-03-10 | 2011-08-31 | 东北大学 | A method for electrochemically synthesizing TiC in low-temperature molten salt |
US20120241327A1 (en) * | 2011-03-26 | 2012-09-27 | The University Of Connecticut | Materials and design for an electrocatalytic device and method which produces carbon nanotubes and hydrocarbon transportation fuels |
CN102895847A (en) * | 2011-07-26 | 2013-01-30 | 武汉大学 | A CO2 capture and resource recovery method |
CN103922309A (en) * | 2014-04-09 | 2014-07-16 | 江苏天泽纳米科技有限公司 | Method for preparing carbon nanotube |
CN104321909A (en) * | 2012-03-26 | 2015-01-28 | 剑桥企业有限公司 | Powder comprising carbon nanostructures and its method of production |
CN104593804A (en) * | 2015-01-15 | 2015-05-06 | 东北石油大学 | A high-temperature electrolysis CO2/H2O synthesis gas production system and its application |
-
2015
- 2015-12-07 CN CN201510891230.6A patent/CN105386076A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007046713A1 (en) * | 2005-10-21 | 2007-04-26 | Norsk Hydro Asa | Method for production of carbon materials |
CN102168280A (en) * | 2011-03-10 | 2011-08-31 | 东北大学 | A method for electrochemically synthesizing TiC in low-temperature molten salt |
US20120241327A1 (en) * | 2011-03-26 | 2012-09-27 | The University Of Connecticut | Materials and design for an electrocatalytic device and method which produces carbon nanotubes and hydrocarbon transportation fuels |
CN102895847A (en) * | 2011-07-26 | 2013-01-30 | 武汉大学 | A CO2 capture and resource recovery method |
CN104321909A (en) * | 2012-03-26 | 2015-01-28 | 剑桥企业有限公司 | Powder comprising carbon nanostructures and its method of production |
CN103922309A (en) * | 2014-04-09 | 2014-07-16 | 江苏天泽纳米科技有限公司 | Method for preparing carbon nanotube |
CN104593804A (en) * | 2015-01-15 | 2015-05-06 | 东北石油大学 | A high-temperature electrolysis CO2/H2O synthesis gas production system and its application |
Non-Patent Citations (2)
Title |
---|
ALEKSANDAR T. DIMITROV等: ""A feasibility study of scaling-up the electrolytic production of carbon nanotubes in molten salts"", 《ELECTROCHIMICA ACTA》 * |
王宝辉等: ""太阳能驱动高温熔融碳酸盐电解电势的理论分析"", 《大庆石油学院学报》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114921798B (en) * | 2016-11-16 | 2024-05-10 | C2Cnt有限责任公司 | Method and system for making long carbon nanofibers |
CN114921798A (en) * | 2016-11-16 | 2022-08-19 | C2Cnt有限责任公司 | Method and system for producing long carbon nanofibers |
CN109735862A (en) * | 2019-01-29 | 2019-05-10 | 东北大学 | A method for treating metallurgical waste gas by using lithium-free calcium-based molten salt method and utilizing it as a resource |
CN114630926A (en) * | 2019-10-29 | 2022-06-14 | C2Cnt有限责任公司 | System and method for fabricating carbon nanostructures |
EP4392595A2 (en) * | 2021-09-30 | 2024-07-03 | C2Cnt Llc | Method and apparatus for making carbon nanomaterials and methods using lithium-free electrolytes |
US12000054B2 (en) | 2021-11-24 | 2024-06-04 | C2Cnt Llc | Electrolysis methods that utilize carbon dioxide for making a macro-assembly of nanocarbon |
US11939682B2 (en) | 2021-11-24 | 2024-03-26 | C2Cnt Llc | Electrolysis methods that utilize carbon dioxide and a non-iron additive for making desired nanocarbon allotropes |
US12031218B2 (en) * | 2021-11-24 | 2024-07-09 | C2Cnt Llc | Electrolysis methods that utilize carbon dioxide and a high nickel-content anode for making desired nanocarbon allotropes |
CN118434678A (en) * | 2021-11-24 | 2024-08-02 | C2Cnt有限责任公司 | Electrolytic method for preparing macroscopic assembly of nano carbon by using carbon dioxide |
US12291786B2 (en) | 2021-11-24 | 2025-05-06 | C2Cnt Llc | Electrolysis methods that utilize carbon dioxide and a high nickel-content anode for making desired nanocarbon allotropes |
US12320016B2 (en) | 2021-11-24 | 2025-06-03 | C2Cnt Llc | Electrolysis methods that utilize carbon dioxide and a non-iron additive for making desired nanocarbon allotropes |
US12320017B2 (en) | 2021-11-24 | 2025-06-03 | C2Cnt Llc | Electrolysis methods that utilize carbon dioxide and a non-iron additive for making desired nanocarbon allotropes |
CN114401591A (en) * | 2022-01-10 | 2022-04-26 | 奥特斯科技(重庆)有限公司 | Regenerator for metal-containing fluids for use in component carrier manufacturing, systems and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105506665B (en) | A kind of method of high-temperature electrolysis CO2 CNTs | |
CN105386076A (en) | An improved method for producing carbon nanotube system by high-temperature electrolysis of CO2 | |
CN104593804B (en) | A kind of high-temperature electrolysis CO 2/ H 2o prepares synthetic gas system and application thereof | |
JP5910539B2 (en) | Method for electrolysis of carbon dioxide gas | |
Graves et al. | Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy | |
CN104593803B (en) | A kind of Driven by Solar Energy high-temperature electrolysis CO 2/ H 2o preparing synthetic gas system and application thereof | |
KR102251314B1 (en) | System for producing carbon monoxide and hydrogen from carbon dioxide and steam through a redox process and the method thereof | |
US20150080483A1 (en) | Power station-based methanation system | |
CN106242946A (en) | A kind of equipment and process for solar hydrogen production and methanol synthesis | |
CN103756741A (en) | Method for preparing natural gas by using solid oxide electrolytic tank adopting renewable power | |
CN104562073B (en) | A kind of high-temperature electrolysis CO 2/ H 2o prepares hydrocarbon system and application thereof | |
CN107868962B (en) | A kind of synthesis gas preparation system and its method | |
CN106268876A (en) | The preparation of selenizing stainless steel foam electrolysis water catalysis material and application | |
US20130122381A1 (en) | High temperature rechargeable battery for greenhouse gas decomposition and oxygen generation | |
CN117587432A (en) | Methane reforming and high-temperature electrolyzed water compound hydrogen production device and hydrogen production method and application thereof | |
CN107180985A (en) | Low concentration coal-bed gas assisted electrolysis CO2/H2O prepares synthetic gas method and device | |
CN104562075A (en) | A solar-driven high-temperature electrolysis CO2/H2O hydrocarbon production system and its application | |
CN101275233A (en) | A method for producing hydrogen using alcohols as raw material | |
CN204529990U (en) | A kind of based on the electrolysis CO2 of fused carbonate electrolyzer and the system of H2O producing synthesis gas | |
CN104630812A (en) | A method for producing synthesis gas by electrolyzing CO2 and H2O based on a molten carbonate electrolytic cell | |
CN106868529A (en) | The system and method for ammonia synthesis gas and liquid fuel synthesis gas is prepared simultaneously | |
CN101157443A (en) | A method for synchronously producing synthesis gas and metallic zinc | |
Ma et al. | Electrocatalytic coupling of anodic nitrogen oxidation and cathodic nitrate reduction for ammonia synthesis from air and water | |
CN108793190B (en) | CO-free 2 Preparation device and preparation method of discharged ammonia gas | |
CN110364755B (en) | Chemical chain partial oxidation reforming conversion direct coupling fuel cell power generation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Li Cuiqin Inventor after: Wu Hongjun Inventor after: Liu Yue Inventor after: Mao Qianjun Inventor after: Wang Baohui Inventor after: Li Lili Inventor after: Lin Hongyan Inventor before: Wu Hongjun Inventor before: Liu Yue Inventor before: Mao Qianjun Inventor before: Wang Baohui Inventor before: Li Lili Inventor before: Lin Hongyan |
|
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160309 |