CN105375801B - Voltage-sharing control method for modular multilevel converter - Google Patents

Voltage-sharing control method for modular multilevel converter Download PDF

Info

Publication number
CN105375801B
CN105375801B CN201510736687.XA CN201510736687A CN105375801B CN 105375801 B CN105375801 B CN 105375801B CN 201510736687 A CN201510736687 A CN 201510736687A CN 105375801 B CN105375801 B CN 105375801B
Authority
CN
China
Prior art keywords
voltage
sub
mrow
capacitor
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510736687.XA
Other languages
Chinese (zh)
Other versions
CN105375801A (en
Inventor
郭琦
王嘉钰
林雪华
李岩
刘崇茹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China South Power Grid International Co ltd
North China Electric Power University
Original Assignee
China South Power Grid International Co ltd
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China South Power Grid International Co ltd, North China Electric Power University filed Critical China South Power Grid International Co ltd
Priority to CN201510736687.XA priority Critical patent/CN105375801B/en
Publication of CN105375801A publication Critical patent/CN105375801A/en
Application granted granted Critical
Publication of CN105375801B publication Critical patent/CN105375801B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

The invention discloses a voltage-sharing control method of a modular multilevel converter, belonging to the technical field of capacitor voltage control. Initializing the capacitor voltage values of all sub-modules in the voltage-sharing controller; collecting bridge arm current of each phase of the modular multilevel converter, differentiating by using the voltage-current relation of capacitors to obtain the capacitance voltage change value of each control period of all sub-modules, and correcting the capacitance voltage of all sub-modules in the voltage-sharing controller; and acquiring errors between the capacitor voltage storage value in the voltage-sharing controller and the capacitor voltage acquisition value by acquiring a small amount of capacitor voltage, and correcting the capacitor voltage of all sub-modules in the voltage-sharing controller again. The voltage-sharing control of the modular multilevel converter is realized by collecting bridge arm current and a small amount of capacitor voltage, real-time collection of a large amount of sub-module capacitor voltage can be avoided, the voltage-sharing control effect is ensured, and a feasible solution is provided for reducing data communication traffic in actual voltage-sharing control and improving engineering efficiency.

Description

一种模块化多电平换流器均压控制方法A Modular Multilevel Converter Voltage Equalization Control Method

技术领域technical field

本发明属于电容电压控制技术领域,特别涉及一种模块化多电平换流器均压控制方法。The invention belongs to the technical field of capacitor voltage control, and in particular relates to a voltage equalization control method for a modularized multilevel converter.

背景技术Background technique

随着电压源型换流器(voltage source converter,VSC)和脉宽调制技术的发展,高压直流输电技术受到越来越多的关注,能够广泛应用于小功率输电、可再生能源并网和向无源网络供电。但是VSC通常采用2电平或3电平的拓扑结构,其存在动态均压困难、高开关频率等缺点。模块化多电平换流器(modular multilevel converter,MMC)作为一种新型的电压源型换流器,在国内外的研究中受到越来越多的关注。MMC每个桥臂由多个模块化的子模块和桥臂电感串联而成,通过控制子模块内部IGBT的触发状态,来实现多电平的叠加输出。With the development of voltage source converter (VSC) and pulse width modulation technology, HVDC transmission technology has received more and more attention, and it can be widely used in low-power transmission, renewable energy grid connection and Passive network powered. However, VSC usually adopts a 2-level or 3-level topology, which has disadvantages such as difficult dynamic voltage equalization and high switching frequency. Modular multilevel converter (MMC), as a new type of voltage source converter, has received more and more attention in research at home and abroad. Each bridge arm of the MMC is composed of multiple modular sub-modules and bridge arm inductors in series, and multi-level superposition output is realized by controlling the trigger state of the IGBT inside the sub-module.

随着传输功率的提升和电平数的增加,给MMC系统的控制带来一定的挑战。子模块均压控制是MMC必需的控制环节,用以保证子模块的电容电压值维持在额定值上下波动,以减少换流器输出的桥臂电压谐波含量。无论高电平的MMC系统采用哪一种调制策略,其进行均压控制时均需要采集所有子模块的电容电压,然后采用与调制策略对应的均压控制算法,完成整个均压控制的流程。With the improvement of the transmission power and the increase of the number of levels, it brings certain challenges to the control of the MMC system. Sub-module voltage equalization control is a necessary control link of MMC, which is used to ensure that the capacitor voltage value of the sub-module maintains fluctuations above and below the rated value, so as to reduce the harmonic content of the bridge arm voltage output by the converter. No matter which modulation strategy the high-level MMC system adopts, it needs to collect the capacitor voltages of all sub-modules when performing voltage equalization control, and then use the voltage equalization control algorithm corresponding to the modulation strategy to complete the entire voltage equalization control process.

但是,以N+1电平的MMC系统为例,每一相的上下桥臂在进行均压控制的时候均需要采集N个子模块的电容电压。当N的数值变大,采集的电容电压数量就相应变大,对于控制周期的要求也越高:在实时仿真器(Real Time Digital Simulation,RTDS)中,采用光纤传输512个子模块的电容电压,需要耗时4个小步长约共10us的周期;在实际工程中,均压控制需要采集分散串联布置的子模块的电容电压,再合并到一起进行排序,这也会消耗较多的控制时间。However, taking the N+1 level MMC system as an example, the upper and lower bridge arms of each phase need to collect the capacitor voltages of N sub-modules when performing voltage equalization control. When the value of N becomes larger, the number of capacitor voltages to be collected will increase correspondingly, and the requirements for the control cycle will also be higher: In the real-time simulator (Real Time Digital Simulation, RTDS), the capacitor voltage of 512 sub-modules is transmitted by optical fiber, It takes 4 small steps with a total period of about 10us; in actual engineering, the voltage equalization control needs to collect the capacitor voltages of the sub-modules arranged in series in a scattered manner, and then merge them together for sorting, which will also consume more control time .

因此,本发明提出一种模块化多电平换流器均压控制方法,通过采集桥臂电流和少量电容电压实现模块化多电平换流器的均压控制,为降低实际均压控制中的数据通信量提供一种切实可行的解决途径。Therefore, the present invention proposes a voltage equalization control method for a modular multilevel converter, which realizes the voltage equalization control of the modular multilevel converter by collecting bridge arm current and a small amount of capacitor voltage, in order to reduce the actual voltage equalization control The amount of data traffic provides a practical solution.

发明内容Contents of the invention

本发明的目的在于提出一种模块化多电平换流器均压控制方法,其特征在于,包括如下步骤:The object of the present invention is to propose a method for voltage equalization control of a modular multilevel converter, which is characterized in that it includes the following steps:

1)根据模块化多电平换流器启动时子模块是否预充电的不同情况,初始化均压控制器内部的所有子模块的电容电压值;当子模块未充电时,将均压控制器内部的所有子模块的电容电压初始化为0;当子模块已预充电至额定值时,将均压控制器内部的所有子模块的电容电压初始化为额定值Ucref1) According to the different conditions of whether the sub-modules are pre-charged when the modular multi-level converter is started, initialize the capacitor voltage values of all sub-modules inside the voltage equalization controller; when the sub-modules are not charged, The capacitor voltages of all sub-modules are initialized to 0; when the sub-modules have been precharged to the rated value, the capacitor voltages of all the sub-modules inside the voltage equalizing controller are initialized to the rated value U cref ;

2)采集模块化多电平换流器每一相的桥臂电流,利用电容的电压电流关系进行差分化,获得所有子模块每个控制周期Δt的电容电压变化值ΔUc(t);将所有子模块的电容电压Uctr_i(t)叠加电容电压变化值ΔUc(t),修正均压控制器内部所有子模块的电容电压Uctr_i(t),得到t+Δt时刻各个子模块的电容电压Uctr_i(t+Δt);2) Collect the bridge arm current of each phase of the modular multilevel converter, use the voltage-current relationship of the capacitor to differentiate, and obtain the capacitance voltage change value ΔU c (t) of each control cycle Δt of all sub-modules; The capacitance voltage U ctr_i (t) of all sub-modules is superimposed on the capacitance voltage change value ΔU c (t), and the capacitance voltage U ctr_i (t) of all sub-modules inside the voltage equalization controller is corrected to obtain the capacitance of each sub-module at time t+Δt Voltage U ctr_i (t+Δt);

3)采集k个电容电压,k为正整数且k=0.25N,N为单个桥臂上子模块总数,k个电容电压中包含一个投入子模块的电容电压Ucr_m(t+Δt);若该投入子模块为第m个子模块,m为正整数,则读取均压控制器内部存储的第m个子模块的电容电压Uctr_m(t+Δt),进而获得均压控制器内部存储的第m个子模块的电容电压Uctr_m(t+Δt)与采集值Ucr_m(t+Δt)之间的误差值ΔUcd(t+Δt);3) Collect k capacitor voltages, k is a positive integer and k=0.25N, N is the total number of sub-modules on a single bridge arm, and k capacitor voltages include a capacitor voltage U cr_m (t+Δt) input into a sub-module; if The input sub-module is the mth sub-module, and m is a positive integer, then read the capacitance voltage U ctr_m (t+Δt) of the m-th sub-module stored in the voltage equalizing controller, and then obtain the first voltage U ctr_m (t+Δt) stored in the voltage equalizing controller The error value ΔU cd (t+Δt) between the capacitance voltage U ctr_m (t+Δt) of the m sub-modules and the collected value U cr_m (t+Δt);

4)利用误差值ΔUcd(t+Δt)修正t+Δt时刻各个子模块的电容电压Uctr_i(t+Δt);当i=m时,Uctr_i(t+Δt)修正为Ucr_m(t+Δt);当i≠m时,Uctr_i(t+Δt)修正为Ucr_m(t+Δt)与ΔUcd(t+Δt)的差值;对均压控制器内部所有子模块的电容电压排序,选择对应子模块进行投入,实现模块化多电平换流器均压控制。4) Use the error value ΔU cd (t+Δt) to correct the capacitance voltage U ctr_i (t+Δt) of each sub-module at the time t+Δt; when i=m, U ctr_i (t+Δt) is corrected to U cr_m (t +Δt); when i≠m, U ctr_i (t+Δt) is corrected as the difference between U cr_m (t+Δt) and ΔU cd (t+Δt); for the capacitor voltage of all sub-modules inside the voltage equalizing controller Sorting, selecting the corresponding sub-modules for input, and realizing the voltage equalization control of the modular multi-level converter.

所述电容的电压电流关系为:The voltage-current relationship of the capacitor is:

公式(1)中,C为子模块电容的电容值;Uc(t)为t时刻子模块的电容电压;i(t)为t时刻流经子模块的电流。In formula (1), C is the capacitance value of the sub-module capacitor; U c (t) is the capacitor voltage of the sub-module at time t; i(t) is the current flowing through the sub-module at time t.

所述电容电压变化值ΔUc(t)的计算公式为:The calculation formula of the capacitance voltage change value ΔU c (t) is:

公式(2)中,C为子模块电容的电容值;Uc(t-Δt)为t-Δt时刻子模块的电容电压;ic(t-Δt)为t-Δt时刻流经子模块的电流。In formula (2), C is the capacitance value of the sub-module capacitor; U c (t-Δt) is the capacitor voltage of the sub-module at the time t-Δt; i c (t-Δt) is the voltage flowing through the sub-module at the time t-Δt current.

所述t+Δt时刻各个子模块的电容电压值Uctr_i(t+Δt)的计算公式为:The calculation formula of the capacitance voltage value U ctr_i (t+Δt) of each sub-module at the time t+Δt is:

Uctr_i(t+Δt)=Uctr_i(t)+FPi1(t)*ΔUc(t) (3)U ctr_i (t+Δt)=U ctr_i (t)+FP i1 (t)*ΔU c (t) (3)

公式(3)中,FPi1(t)表示子模块电容的投入状态;当子模块电容投入时,FPi1(t)=1;当子模块未投入时,FPi1(t)=0。In formula (3), FP i1 (t) represents the input state of the sub-module capacitor; when the sub-module capacitor is switched on, FP i1 (t)=1; when the sub-module is not switched on, FP i1 (t)=0.

所述均压控制器内部存储的第m个子模块的电容电压Uctr_m(t+Δt)与采集值Ucr_m(t+Δt)之间的误差值ΔUcd(t+Δt)=Uctr_m(t+Δt)-Ucr_m(t+Δt)。The error value ΔU cd (t+Δt)= U ctr_m ( t +Δt)−U cr_m (t+Δt).

本发明的有益效果是针对目前均压控制中存在采集传输电容电压数量过大,导致仿真时间过长或仿真步长受限的问题,提出了一种模块化多电平换流器均压控制方法,通过采集桥臂电流和少量电容电压实现模块化多电平换流器的均压控制,从而避免了大量的子模块电容电压的实时采集,既能够减少采集电容电压在控制周期中占用的时间,又能够保证子模块的均压控制效果不受影响,为降低实际均压控制中的数据通信量、提高工程效率提供一种切实可行的解决途径。The beneficial effect of the present invention is to propose a modularized multilevel converter voltage equalization control in view of the problem that the number of collected transmission capacitor voltages is too large in the current voltage equalization control, resulting in too long simulation time or limited simulation step length method, by collecting the bridge arm current and a small amount of capacitor voltage to realize the voltage equalization control of the modular multi-level converter, thereby avoiding the real-time collection of a large number of sub-module capacitor voltages, which can reduce the time occupied by the acquisition capacitor voltage in the control cycle. It can also ensure that the voltage equalization control effect of the sub-module is not affected, and provides a practical solution for reducing the data communication volume in the actual voltage equalization control and improving engineering efficiency.

附图说明Description of drawings

图1为一种模块化多电平换流器均压控制方法流程图。Fig. 1 is a flowchart of a voltage equalization control method for a modular multilevel converter.

图2为21电平单端MMC直流输电系统仿真模型图。Figure 2 is a simulation model diagram of a 21-level single-ended MMC direct current transmission system.

图3为A相上桥臂电容电压波形图。Figure 3 is a waveform diagram of the capacitor voltage of the upper arm of the A phase.

具体实施方式detailed description

本发明提出一种模块化多电平换流器均压控制方法,下面结合附图和具体实施例对本发明作详细说明。The present invention proposes a voltage equalization control method for a modularized multilevel converter. The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.

图1所示为一种模块化多电平换流器均压控制方法流程图,包括如下步骤:Fig. 1 shows a flow chart of a voltage equalization control method for a modular multilevel converter, including the following steps:

1)根据模块化多电平换流器启动时子模块是否预充电的不同情况,初始化均压控制器内部的所有子模块的电容电压值;当子模块未充电时,将均压控制器内部的所有子模块的电容电压初始化为0;当子模块已预充电至额定值时,将均压控制器内部的所有子模块的电容电压初始化为额定值Ucref1) According to the different conditions of whether the sub-modules are pre-charged when the modular multi-level converter is started, initialize the capacitor voltage values of all sub-modules inside the voltage equalization controller; when the sub-modules are not charged, The capacitor voltages of all sub-modules are initialized to 0; when the sub-modules have been precharged to the rated value, the capacitor voltages of all the sub-modules inside the voltage equalizing controller are initialized to the rated value U cref ;

2)采集模块化多电平换流器每一相的桥臂电流,利用电容的电压电流关系进行差分化,获得所有子模块每个控制周期Δt的电容电压变化值ΔUc(t);将所有子模块的电容电压Uctr_i(t)叠加电容电压变化值ΔUc(t),修正均压控制器内部所有子模块的电容电压Uctr_i(t),得到t+Δt时刻各个子模块的电容电压Uctr_i(t+Δt);2) Collect the bridge arm current of each phase of the modular multilevel converter, use the voltage-current relationship of the capacitor to differentiate, and obtain the capacitance voltage change value ΔU c (t) of each control cycle Δt of all sub-modules; The capacitance voltage U ctr_i (t) of all sub-modules is superimposed on the capacitance voltage change value ΔU c (t), and the capacitance voltage U ctr_i (t) of all sub-modules inside the voltage equalization controller is corrected to obtain the capacitance of each sub-module at time t+Δt Voltage U ctr_i (t+Δt);

3)采集k个电容电压,k为正整数且k=0.25N,N为单个桥臂上子模块总数,k个电容电压中包含一个投入子模块的电容电压Ucr_m(t+Δt);若该投入子模块为第m个子模块,m为正整数,则读取均压控制器内部存储的第m个子模块的电容电压Uctr_m(t+Δt),进而获得均压控制器内部存储的第m个子模块的电容电压Uctr_m(t+Δt)与采集值Ucr_m(t+Δt)之间的误差值ΔUcd(t+Δt);3) Collect k capacitor voltages, k is a positive integer and k=0.25N, N is the total number of sub-modules on a single bridge arm, and k capacitor voltages include a capacitor voltage U cr_m (t+Δt) input into a sub-module; if The input sub-module is the mth sub-module, and m is a positive integer, then read the capacitance voltage U ctr_m (t+Δt) of the m-th sub-module stored in the voltage equalizing controller, and then obtain the first voltage U ctr_m (t+Δt) stored in the voltage equalizing controller The error value ΔU cd (t+Δt) between the capacitance voltage U ctr_m (t+Δt) of the m sub-modules and the collected value U cr_m (t+Δt);

4)利用误差值ΔUcd(t+Δt)修正t+Δt时刻各个子模块的电容电压Uctr_i(t+Δt);当i=m时,Uctr_i(t+Δt)修正为Ucr_m(t+Δt);当i≠m时,Uctr_i(t+Δt)修正为Ucr_m(t+Δt)与ΔUcd(t+Δt)的差值;对均压控制器内部所有子模块的电容电压排序,选择对应子模块进行投入,实现模块化多电平换流器均压控制。4) Use the error value ΔU cd (t+Δt) to correct the capacitance voltage U ctr_i (t+Δt) of each sub-module at the time t+Δt; when i=m, U ctr_i (t+Δt) is corrected to U cr_m (t +Δt); when i≠m, U ctr_i (t+Δt) is corrected as the difference between U cr_m (t+Δt) and ΔU cd (t+Δt); for the capacitor voltage of all sub-modules inside the voltage equalizing controller Sorting, selecting the corresponding sub-modules for input, and realizing the voltage equalization control of the modular multi-level converter.

其中,所述电容的电压电流关系为:Wherein, the voltage-current relationship of the capacitor is:

公式(1)中,C为子模块电容的电容值;Uc(t)为t时刻子模块的电容电压;i(t)为t时刻流经子模块的电流。In formula (1), C is the capacitance value of the sub-module capacitor; U c (t) is the capacitor voltage of the sub-module at time t; i(t) is the current flowing through the sub-module at time t.

其中,所述电容电压变化值ΔUc(t)的计算公式为:Wherein, the calculation formula of the capacitance voltage change value ΔU c (t) is:

公式(2)中,C为子模块电容的电容值;Uc(t-Δt)为t-Δt时刻子模块的电容电压;ic(t-Δt)为t-Δt时刻流经子模块的电流。In formula (2), C is the capacitance value of the sub-module capacitor; U c (t-Δt) is the capacitor voltage of the sub-module at the time t-Δt; i c (t-Δt) is the voltage flowing through the sub-module at the time t-Δt current.

其中,所述t+Δt时刻各个子模块的电容电压值Uctr_i(t+Δt)的计算公式为:Wherein, the calculation formula of the capacitance voltage value U ctr_i (t+Δt) of each sub-module at the time t+Δt is:

Uctr_i(t+Δt)=Uctr_i(t)+FPi1(t)*ΔUc(t) (3)U ctr_i (t+Δt)=U ctr_i (t)+FP i1 (t)*ΔU c (t) (3)

公式(3)中,FPi1(t)表示子模块电容的投入状态;当子模块电容投入时,FPi1(t)=1;当子模块未投入时,FPi1(t)=0。In formula (3), FP i1 (t) represents the input state of the sub-module capacitor; when the sub-module capacitor is switched on, FP i1 (t)=1; when the sub-module is not switched on, FP i1 (t)=0.

其中,所述均压控制器内部存储的第m个子模块的电容电压Uctr_m(t+Δt)与采集值Ucr_m(t+Δt)之间的误差值ΔUcd(t+Δt)=Uctr_m(t+Δt)-Ucr_m(t+Δt)。Wherein, the error value ΔU cd (t+Δt)=U ctr_m between the capacitor voltage U ctr_m (t+Δt) of the mth sub-module stored inside the voltage equalizing controller and the collected value U cr_m (t+Δt) (t+Δt)-U cr_m (t+Δt).

具体地,specifically,

在PSCAD/EMTDC中搭建如图2所示的21电平单端MMC直流输电系统仿真模型图,仿真参数如表1;In PSCAD/EMTDC, build the simulation model diagram of the 21-level single-ended MMC DC transmission system shown in Figure 2, and the simulation parameters are shown in Table 1;

表1仿真参数表Table 1 Simulation parameter table

MMC系统中整流侧采用定有功功率和无功功率控制,控制的有功功率与无功功率分别为10MW和3Mvar,调制策略采用最近电平逼近调制。In the MMC system, the rectifier side adopts constant active power and reactive power control, the controlled active power and reactive power are 10MW and 3Mvar respectively, and the modulation strategy adopts the nearest level approximation modulation.

在MMC系统和控制器启动时,对均压控制器内部的子模块电容电压值进行初始化,所有子模块电容电压主要分为两种不同的情况:子模块未预充电、子模块已预充电至额定值;当子模块未预充电时,则将均压控制器内部的所有子模块电容电压初始化为0;当子模块已预充电至额定值时,则将均压控制器内部的所有子模块电容电压初始化为子模块额定值2.0kV。When the MMC system and the controller are started, the capacitor voltage values of the sub-modules inside the voltage equalizing controller are initialized. The capacitor voltages of all sub-modules are mainly divided into two different situations: the sub-module is not pre-charged, and the sub-module has been pre-charged to Rated value; when the sub-module is not pre-charged, the capacitor voltage of all sub-modules inside the voltage equalizing controller is initialized to 0; when the sub-module has been pre-charged to the rated value, all sub-modules inside the voltage equalizing controller The capacitor voltage is initialized to the sub-module rating of 2.0kV.

采集模块化多电平换流器每一相的桥臂电流,利用电容的电压电流关系进行差分化,获得所有子模块每个控制周期Δt的电容电压变化值ΔUc(t);Collect the bridge arm current of each phase of the modular multilevel converter, use the voltage-current relationship of the capacitor to differentiate, and obtain the capacitor voltage change value ΔU c (t) of each control cycle Δt of all sub-modules;

电容的电压电流关系为:The voltage-current relationship of a capacitor is:

公式(1)中,C为子模块电容的电容值;Uc(t)为t时刻子模块的电容电压;i(t)为t时刻流经子模块的电流;In formula (1), C is the capacitance value of the sub-module capacitor; U c (t) is the capacitor voltage of the sub-module at time t; i(t) is the current flowing through the sub-module at time t;

将公式(1)进行差分化得到:Differentiate formula (1) to get:

公式(2)中,C为子模块电容的电容值;Uc(t-Δt)为t-Δt时刻子模块的电容电压;ic(t-Δt)为t-Δt时刻流经子模块的电流;In formula (2), C is the capacitance value of the sub-module capacitor; U c (t-Δt) is the capacitor voltage of the sub-module at the time t-Δt; i c (t-Δt) is the voltage flowing through the sub-module at the time t-Δt current;

由于桥臂中子模块是串联的且电容值C相等,因此桥臂中流入投入子模块的桥臂电流都是相等的;即对于同一桥臂投入的每个子模块之间,公式(2)中ic(t)相等,且公式(2)中ic(t-Δt)相等;因此,根据公式(2)可以得到所有子模块每个控制周期Δt的电容电压变化值ΔUc(t)。Since the sub-modules in the bridge arm are connected in series and the capacitance C is equal, the bridge arm current flowing into the input sub-module in the bridge arm is equal; that is, between each sub-module input in the same bridge arm, the formula (2) i c (t) is equal, and i c (t-Δt) in formula (2) is equal; therefore, according to formula (2), the capacitance voltage change value ΔU c (t) of each control cycle Δt of all sub-modules can be obtained.

将所有子模块的电容电压Uctr_i(t)叠加电容电压变化值ΔUc(t),修正均压控制器内部所有子模块的电容电压Uctr_i(t),得到t+Δt时刻各个子模块的电容电压Uctr_i(t+Δt);t+Δt时刻各个子模块的电容电压值Uctr_i(t+Δt)的计算公式为:The capacitance voltage U ctr_i (t) of all sub-modules is superimposed on the capacitance voltage change value ΔU c (t), and the capacitance voltage U ctr_i (t) of all sub-modules inside the voltage equalization controller is corrected to obtain the value of each sub-module at time t+Δt The capacitance voltage U ctr_i (t+Δt); the calculation formula of the capacitance voltage value U ctr_i (t+Δt) of each sub-module at the time t+Δt is:

Uctr_i(t+Δt)=Uctr_i(t)+FPi1(t)*ΔUc(t) (3)U ctr_i (t+Δt)=U ctr_i (t)+FP i1 (t)*ΔU c (t) (3)

公式(3)中,FPi1(t)表示子模块电容的投入状态;当子模块电容投入时,FPi1(t)=1;当子模块未投入时,FPi1(t)=0。In formula (3), FP i1 (t) represents the input state of the sub-module capacitor; when the sub-module capacitor is switched on, FP i1 (t)=1; when the sub-module is not switched on, FP i1 (t)=0.

通过公式(3)即可获得t+Δt时刻各个子模块的电容电压值,而无需从MMC系统中实时采集所有子模块的电容电压,从而减少了采集电容电压在控制周期中占用的时间。The capacitance voltage value of each sub-module at time t+Δt can be obtained by formula (3), without real-time collection of capacitance voltages of all sub-modules from the MMC system, thereby reducing the time taken in the control cycle of collecting capacitance voltage.

采集k个电容电压,k为正整数且k=0.25N,N为单个桥臂上子模块总数,k个电容电压中包含一个投入子模块的电容电压Ucr_m(t+Δt);以图2所搭建系统中A相上桥臂为例,若采集的少量的电容电压为5个,每个桥臂子模块个数为N=20个,子模块电容电压因此也对应为20个,桥臂中子模块编号为1到20。Collect k capacitor voltages, k is a positive integer and k=0.25N, N is the total number of sub-modules on a single bridge arm, and k capacitor voltages include a capacitor voltage U cr_m (t+Δt) input into the sub-module; as shown in Figure 2 Take the upper bridge arm of phase A in the built system as an example. If a small number of capacitor voltages collected are 5, the number of sub-modules in each bridge arm is N=20, and the capacitor voltage of the sub-module is therefore corresponding to 20. The bridge arm The neutron modules are numbered 1 to 20.

若该投入子模块为第m个子模块,m为正整数,则读取均压控制器内部存储的第m个子模块的电容电压Uctr_m(t+Δt),进而获得均压控制器内部存储的第m个子模块的电容电压Uctr_m(t+Δt)与采集值Ucr_m(t+Δt)之间的误差值ΔUcd(t+Δt),即:ΔUcd(t+Δt)=Uctr_m(t+Δt)-Ucr_m(t+Δt)。If the input sub-module is the mth sub-module, and m is a positive integer, then read the capacitor voltage U ctr_m (t+Δt) of the m-th sub-module stored in the voltage equalizing controller, and then obtain the voltage equalizing controller internally stored The error value ΔU cd (t+Δt) between the capacitance voltage U ctr_m (t+Δt) of the mth sub-module and the collected value U cr_m (t+Δt), namely: ΔU cd (t+Δt)=U ctr_m ( t+Δt)-U cr_m (t+Δt).

利用误差值ΔUcd(t+Δt)修正t+Δt时刻各个子模块的电容电压Uctr_i(t+Δt);当i=m时,Uctr_i(t+Δt)修正为Ucr_m(t+Δt);当i≠m时,Uctr_i(t+Δt)修正为Ucr_m(t+Δt)与ΔUcd(t+Δt)的差值;对均压控制器内部所有子模块的电容电压排序,选择对应子模块进行投入,实现模块化多电平换流器均压控制。Use the error value ΔU cd (t+Δt) to correct the capacitance voltage U ctr_i (t+Δt) of each sub-module at the time t+Δt; when i=m, U ctr_i (t+Δt) is corrected to U cr_m (t+Δt ); when i≠m, U ctr_i (t+Δt) is corrected as the difference between U cr_m (t+Δt) and ΔU cd (t+Δt); sorting the capacitor voltages of all sub-modules inside the voltage equalizing controller, Select the corresponding sub-modules to invest in, and realize the voltage equalization control of the modular multi-level converter.

通过实时采集的任一个投入子模块的电容电压,来修正由于均压控制器运算产生的累积误差,从而保证子模块的均压控制效果不受累积误差影响。The cumulative error generated by the operation of the voltage equalization controller is corrected by collecting the capacitor voltage of any input sub-module in real time, so as to ensure that the voltage equalization control effect of the sub-module is not affected by the cumulative error.

针对实施例中搭建的21电平单端MMC直流输电系统仿真模型,利用本发明所提出的模块化多电平换流器均压控制方法进行均压控制,所得到的A相上桥臂电容电压波形图如图3所示;由图3可以看出:子模块电容电压波动量在额定值的8%以下,控制效果良好;子模块电容电压的实时采集量明显减少,从而避免了实际均压控制应用中大量子模块电容电压的实时采集,既能够减少采集电容电压在控制周期中占用的时间,又能够保证子模块的均压控制效果不受影响,为降低实际均压控制中的数据通信量、提高工程效率提供一种切实可行的解决途径。For the simulation model of the 21-level single-ended MMC direct current transmission system built in the embodiment, the voltage equalization control method of the modular multilevel converter proposed by the present invention is used for voltage equalization control, and the obtained A-phase upper bridge arm capacitance The voltage waveform diagram is shown in Figure 3; it can be seen from Figure 3 that the fluctuation of the capacitor voltage of the sub-module is below 8% of the rated value, and the control effect is good; the real-time collection of the capacitor voltage of the sub-module is significantly reduced, thus avoiding the actual average The real-time acquisition of the capacitor voltage of a large number of sub-modules in the voltage control application can not only reduce the time occupied by the acquisition of the capacitor voltage in the control cycle, but also ensure that the effect of the voltage equalization control of the sub-modules is not affected. In order to reduce the data in the actual voltage equalization control It provides a practical solution to reduce communication volume and improve engineering efficiency.

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权力要求的保护范围为准。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art within the technical scope disclosed in the present invention can easily think of changes or Replacement should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.

Claims (4)

1.一种模块化多电平换流器均压控制方法,其特征在于,包括如下步骤:1. A modular multilevel converter voltage equalization control method, characterized in that, comprises the steps: 1)根据模块化多电平换流器启动时子模块是否预充电的不同情况,初始化均压控制器内部的所有子模块的电容电压值;当子模块未充电时,将均压控制器内部的所有子模块的电容电压初始化为0;当子模块已预充电至额定值时,将均压控制器内部的所有子模块的电容电压初始化为额定值Ucref1) According to the different conditions of whether the sub-modules are pre-charged when the modular multi-level converter is started, initialize the capacitor voltage values of all sub-modules inside the voltage equalization controller; when the sub-modules are not charged, The capacitor voltages of all sub-modules are initialized to 0; when the sub-modules have been precharged to the rated value, the capacitor voltages of all the sub-modules inside the voltage equalizing controller are initialized to the rated value U cref ; 2)采集模块化多电平换流器每一相的桥臂电流,利用电容的电压电流关系进行差分化,获得所有子模块每个控制周期Δt的电容电压变化值ΔUc(t);将所有子模块的电容电压Uctr_i(t)叠加电容电压变化值ΔUc(t),修正均压控制器内部所有子模块的电容电压Uctr_i(t),得到t+Δt时刻各个子模块的电容电压Uctr_i(t+Δt);2) Collect the bridge arm current of each phase of the modular multilevel converter, use the voltage-current relationship of the capacitor to differentiate, and obtain the capacitance voltage change value ΔU c (t) of each control cycle Δt of all sub-modules; The capacitance voltage U ctr_i (t) of all sub-modules is superimposed on the capacitance voltage change value ΔU c (t), and the capacitance voltage U ctr_i (t) of all sub-modules inside the voltage equalization controller is corrected to obtain the capacitance of each sub-module at time t+Δt Voltage U ctr_i (t+Δt); 3)采集k个电容电压,k为正整数且k=0.25N,N为单个桥臂上子模块总数,k个电容电压中包含一个投入子模块的电容电压Ucr_m(t+Δt);若该投入子模块为第m个子模块,m为正整数,则读取均压控制器内部存储的第m个子模块的电容电压Uctr_m(t+Δt),进而获得均压控制器内部存储的第m个子模块的电容电压Uctr_m(t+Δt)与采集值Ucr_m(t+Δt)之间的误差值ΔUcd(t+Δt);3) Collect k capacitor voltages, k is a positive integer and k=0.25N, N is the total number of sub-modules on a single bridge arm, and k capacitor voltages include a capacitor voltage U cr_m (t+Δt) input into a sub-module; if The input sub-module is the mth sub-module, and m is a positive integer, then read the capacitance voltage U ctr_m (t+Δt) of the m-th sub-module stored in the voltage equalizing controller, and then obtain the first voltage U ctr_m (t+Δt) stored in the voltage equalizing controller The error value ΔU cd (t+Δt) between the capacitance voltage U ctr_m (t+Δt) of the m sub-modules and the collected value U cr_m (t+Δt); 4)利用误差值ΔUcd(t+Δt)修正t+Δt时刻各个子模块的电容电压Uctr_i(t+Δt);当i=m时,Uctr_i(t+Δt)修正为Ucr_m(t+Δt);当i≠m时,Uctr_i(t+Δt)修正为Ucr_m(t+Δt)与ΔUcd(t+Δt)的差值;对均压控制器内部所有子模块的电容电压排序,选择对应子模块进行投入,实现模块化多电平换流器均压控制。4) Use the error value ΔU cd (t+Δt) to correct the capacitance voltage U ctr_i (t+Δt) of each sub-module at the time t+Δt; when i=m, U ctr_i (t+Δt) is corrected to U cr_m (t +Δt); when i≠m, U ctr_i (t+Δt) is corrected as the difference between U cr_m (t+Δt) and ΔU cd (t+Δt); for the capacitor voltage of all sub-modules inside the voltage equalizing controller Sorting, selecting the corresponding sub-modules for input, and realizing the voltage equalization control of the modular multi-level converter. 2.根据权利要求1所述一种模块化多电平换流器均压控制方法,其特征在于,所述电容的电压电流关系为:2. A method for voltage equalization control of a modular multilevel converter according to claim 1, wherein the voltage-current relationship of the capacitor is: <mrow> <mi>i</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>C</mi> <mfrac> <mrow> <msub> <mi>dU</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>i</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>C</mi><mfrac><mrow><msub><mi>dU</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow> 公式(1)中,C为子模块电容的电容值;Uc(t)为t时刻子模块的电容电压;i(t)为t时刻流经子模块的电流。In formula (1), C is the capacitance value of the sub-module capacitor; U c (t) is the capacitor voltage of the sub-module at time t; i(t) is the current flowing through the sub-module at time t. 3.根据权利要求1所述一种模块化多电平换流器均压控制方法,其特征在于,所述电容电压变化值ΔUc(t)的计算公式为:3. A method for voltage equalization control of a modular multilevel converter according to claim 1, wherein the formula for calculating the capacitance voltage change value ΔU c (t) is: <mrow> <msub> <mi>&amp;Delta;U</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>U</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>U</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>&amp;Delta;</mi> <mi>t</mi> </mrow> <mrow> <mn>2</mn> <mi>C</mi> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <msub> <mi>i</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>i</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>&amp;Delta;U</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>U</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>-</mo><msub><mi>U</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>-</mo><mi>&amp;Delta;</mi><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mi>&amp;Delta;</mi><mi>t</mi></mrow><mrow><mn>2</mn><mi>C</mi></mrow></mfrac><mo>&amp;lsqb;</mo><msub><mi>i</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>i</mi><mi>c</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>-</mo><mi>&amp;Delta;</mi><mi>t</mi><mo>)</mo></mrow><mo>&amp;rsqb;</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow> 公式(2)中,C为子模块电容的电容值;Uc(t-Δt)为t-Δt时刻子模块的电容电压;ic(t-Δt)为t-Δt时刻流经子模块的电流。In formula (2), C is the capacitance value of the sub-module capacitor; U c (t-Δt) is the capacitor voltage of the sub-module at the time t-Δt; i c (t-Δt) is the voltage flowing through the sub-module at the time t-Δt current. 4.根据权利要求1所述一种模块化多电平换流器均压控制方法,其特征在于,所述t+Δt时刻各个子模块的电容电压值Uctr_i(t+Δt)的计算公式为:4. A kind of modularized multilevel converter voltage equalization control method according to claim 1, it is characterized in that, the calculation formula of the capacitor voltage value U ctr_i (t+Δt) of each sub-module at the time t+Δt for: Uctr_i(t+Δt)=Uctr_i(t)+FPi1(t)*ΔUc(t) (3)U ctr_i (t+Δt)=U ctr_i (t)+FP i1 (t)*ΔU c (t) (3) 公式(3)中,FPi1(t)表示子模块电容的投入状态;当子模块电容投入时,FPi1(t)=1;当子模块未投入时,FPi1(t)=0。In formula (3), FP i1 (t) represents the input state of the sub-module capacitor; when the sub-module capacitor is switched on, FP i1 (t)=1; when the sub-module is not switched on, FP i1 (t)=0.
CN201510736687.XA 2015-10-30 2015-10-30 Voltage-sharing control method for modular multilevel converter Active CN105375801B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510736687.XA CN105375801B (en) 2015-10-30 2015-10-30 Voltage-sharing control method for modular multilevel converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510736687.XA CN105375801B (en) 2015-10-30 2015-10-30 Voltage-sharing control method for modular multilevel converter

Publications (2)

Publication Number Publication Date
CN105375801A CN105375801A (en) 2016-03-02
CN105375801B true CN105375801B (en) 2017-11-14

Family

ID=55377680

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510736687.XA Active CN105375801B (en) 2015-10-30 2015-10-30 Voltage-sharing control method for modular multilevel converter

Country Status (1)

Country Link
CN (1) CN105375801B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106340857B (en) * 2016-09-18 2018-07-20 国网福建省电力有限公司 Flexible direct current transverter static direct current charging tolerance time protects fixed value adjusting method
CN106301043B (en) * 2016-10-12 2018-08-07 国网浙江省电力公司电力科学研究院 A Modular Multilevel Half-Bridge Converter
CN106786726B (en) * 2017-02-17 2019-03-05 中国南方电网有限责任公司超高压输电公司 A kind of modulation error compensation method of the modularization multi-level converter for direct current transportation
CN108155814B (en) * 2018-01-05 2019-04-30 湖南大学 MMC converter valve voltage-sharing control method based on temperature
CN109004853B (en) * 2018-07-27 2019-11-15 国网江苏省电力有限公司苏州供电分公司 Submodule status monitoring method and device for modular multilevel converter
CN109120174B (en) * 2018-09-03 2020-06-23 国网山东省电力公司潍坊供电公司 Capacitor Voltage Equalization Method Based on Gemini MMC Module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130619A (en) * 2011-03-21 2011-07-20 中国电力科学研究院 A Voltage Equalization Control Method for Modular Multilevel Converter
CN102916592A (en) * 2012-11-12 2013-02-06 华北电力大学 Submodule grouped voltage-sharing control method for modular multi-level current converter
CN103532419A (en) * 2013-09-09 2014-01-22 西安交通大学 Module capacitor voltage sharing control method for modular multilevel converter
CN104135177A (en) * 2014-07-24 2014-11-05 华北电力大学 Voltage balancing control method applicable for sub-module capacitor voltage hierarchy of high-level MMC (Modular Multilevel Converter)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5993675B2 (en) * 2012-09-14 2016-09-14 株式会社日立製作所 Power converter, power conversion system, and control method for power converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130619A (en) * 2011-03-21 2011-07-20 中国电力科学研究院 A Voltage Equalization Control Method for Modular Multilevel Converter
CN102916592A (en) * 2012-11-12 2013-02-06 华北电力大学 Submodule grouped voltage-sharing control method for modular multi-level current converter
CN103532419A (en) * 2013-09-09 2014-01-22 西安交通大学 Module capacitor voltage sharing control method for modular multilevel converter
CN104135177A (en) * 2014-07-24 2014-11-05 华北电力大学 Voltage balancing control method applicable for sub-module capacitor voltage hierarchy of high-level MMC (Modular Multilevel Converter)

Also Published As

Publication number Publication date
CN105375801A (en) 2016-03-02

Similar Documents

Publication Publication Date Title
CN105375801B (en) Voltage-sharing control method for modular multilevel converter
CN112531694B (en) AC/DC hybrid power grid universe real-time simulation method based on digital twinning technology
CN106230257B (en) A kind of two-way DC converter feedback linearization contragradience sliding-mode control
CN103916039B (en) A control method for photovoltaic grid-connected inverter based on backstepping sliding mode control
CN103269176B (en) Inverter control method based on fractional order PI forecasting function
CN104638676B (en) A kind of AC series photovoltaic power generation grid-connecting system and control system thereof and method
CN107230983A (en) A kind of electric power spring application system and its control method based on Power Control
CN108599605A (en) Three-level inverter model prediction Poewr control method based on two Vector modulations
CN103532419B (en) A kind of module capacitance voltage pressure equalizing control method of modularization multi-level converter
CN104158418B (en) A kind of photovoltaic network inverter
CN107147315A (en) A MMC Circulation Control Method Based on Multi-step Model Predictive Control
CN107579526A (en) A method of electric spring voltage control based on backstepping sliding mode
CN107959431A (en) Quasi- Z-source inverter direct current bus voltage control method is predicted based on straight-through duty cycle
CN106410932B (en) Chain type battery energy storage current transformer and control method suitable for middle straightening stream power distribution network
CN108631361A (en) A kind of LC types three-phase grid-connected inverter control method
CN104868773B (en) Single-phase grid-connected inverter control device based on Lyapunov function of states
CN110071525A (en) Distributed generation system accesses distribution network electric energy quality control method
CN111697857B (en) MPC control method of single-phase cascade rectifier for DC microgrid
CN103501018A (en) Hybrid energy storage system based on fuzzy algorithm and DSP (Digital Signal Processor) and power smoothing method
CN115987086A (en) Single-switch DC-DC converter on-line control method based on neural network
CN106059355A (en) MMC (Modular Multilevel Converter)-HVDC (High Voltage Direct Current) low-frequency model prediction control method
CN114329980A (en) Electromechanical transient modeling method and topological structure of modular multilevel matrix converter
CN110675276B (en) Method and system for inversion droop control of direct current power transmission system
Baker et al. Resilient Model based Predictive Control Scheme Inspired by Artificial intelligence methods for grid-interactive inverters
Wang et al. A robust voltage control of dual active full bridge converter based on RBF neural network sliding mode control with reduced order modeling approach

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant