CN105373645B - 基于slm工艺的零件轻量化设计加工方法 - Google Patents

基于slm工艺的零件轻量化设计加工方法 Download PDF

Info

Publication number
CN105373645B
CN105373645B CN201510559822.8A CN201510559822A CN105373645B CN 105373645 B CN105373645 B CN 105373645B CN 201510559822 A CN201510559822 A CN 201510559822A CN 105373645 B CN105373645 B CN 105373645B
Authority
CN
China
Prior art keywords
model
topological optimization
final
light weighed
slm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510559822.8A
Other languages
English (en)
Other versions
CN105373645A (zh
Inventor
张正文
李忠华
罗珺
徐华鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Langlan Technology Co Ltd
Chongqing Xdm Technology Co Ltd
Suzhou Xdm Three-Dimensional Printing Technology Co Ltd
Original Assignee
Chongqing Langlan Technology Co Ltd
Chongqing Xdm Technology Co Ltd
Suzhou Xdm Three-Dimensional Printing Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Langlan Technology Co Ltd, Chongqing Xdm Technology Co Ltd, Suzhou Xdm Three-Dimensional Printing Technology Co Ltd filed Critical Chongqing Langlan Technology Co Ltd
Priority to CN201510559822.8A priority Critical patent/CN105373645B/zh
Publication of CN105373645A publication Critical patent/CN105373645A/zh
Application granted granted Critical
Publication of CN105373645B publication Critical patent/CN105373645B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种基于SLM工艺的零件轻量化设计加工方法,包括以下步骤:通过零件的三维数字模型建立有限元模型,定义载荷及边界条件;建立零件拓扑优化模型并设定拓扑优化单向拔模约束;进行零件拓扑优化生成初始轻量化模型,对所述初始轻量化模型进行力学性能分析,根据初始轻量化模型的应力分布布置不同密度的自支撑多孔结构,生成最终轻量化模型;利用生成的最终轻量化模型通过选择性激光熔化成形技术加工出最终轻量化实体零件,在拓扑优化过程中按指定方向设定单向拔模约束,完成零件拓扑优化,实现了零件轻量化设计,且基于拔模约束的拓扑优化结果适用于SLM工艺,无需添加支撑结构,不需要繁杂的去支撑工序,简化了设计工序;引入不同密度的自支撑多孔结构,进一步降低了结构的重量。

Description

基于SLM工艺的零件轻量化设计加工方法
技术领域
本发明涉及超轻量零件优化设计领域,具体为一种基于SLM工艺的零件轻量化设计加工方法。
背景技术
拓扑优化是实现结构轻量化设计的有效手段。但由于传统加工工艺的限制,目前拓扑优化仅用于结构的概念设计,后期详细设计阶段由于考虑加工工艺,最终的设计重量通常远大于拓扑优化结果的重量,国内外学者及工业设计人员均认为拓扑优化与增材制造工艺相结合是实现零件轻量化设计的有效手段,并进行了初步试验研究将拓扑优化与选择性激光熔化成形技术相结合,选择性激光熔化成形技术(Selective Laser Melting,SLM)是利用零件3D模型分层数据,通过激光逐层熔化冷凝堆积金属粉末直接成形最终零件的工艺过程,具有复杂结构构造能力强、节约材料、无切削浪费、加工周期短、成本低、无需工装模具等显著优点,但由于现有拓扑优化软件中均无法设置SLM加工工艺约束,因此优化设计出的结构通常无法通过SLM工艺加工,或需要设计大量的支撑结构,且支撑结构难以去除。
因此,需要一种将拓扑优化与选择性激光熔化成形技术(Selective LaserMelting,SLM)相结合,同时使零件满足SLM无支撑加工的条件,从而能够使零件通过SLM工艺直接加工,实现零件的轻量化设计与加工。
发明内容
有鉴于此,本发明的目的是克服现有技术的缺陷,提供一种将拓扑优化与选择性激光熔化成形技术(Selective Laser Melting,SLM)相结合,同时使零件满足SLM无支撑加工的条件,从而能够使零件通过SLM工艺直接加工,实现零件的轻量化设计与加工的基于SLM工艺的零件轻量化设计加工方法。
本发明公开的一种基于SLM工艺的零件轻量化设计加工方法,包括以下步骤:通过零件的三维数字模型建立有限元模型,定义载荷及边界条件;建立零件拓扑优化模型并设定拓扑优化单向拔模约束;进行零件拓扑优化生成初始轻量化模型,对所述初始轻量化模型进行力学性能分析,根据初始轻量化模型的应力分布布置不同密度的自支撑多孔结构,生成最终轻量化模型;利用生成的最终轻量化模型通过选择性激光熔化成形技术加工出最终轻量化实体零件;
进一步,将所述最终轻量化模型进行零件数据分层并设定相应的工艺参数;激光根据最终轻量化模型数据及设定的工艺参数层层熔化金属粉末加工出最终轻量化实体零件;
进一步,通过选择性激光熔化成形技术加工零件前,将生成的最终轻量化模型进行有限元分析以验证其力学性能是否满足设计标准;
进一步,利用所述最终轻量化模型生成STL模型;将所述STL模型进行零件数据分层后生成SLI模型;将所述SLI模型导入SLM设备并设定相应的工艺参数进行选择性激光熔化成形技术加工后得到最终轻量化实体零件;
进一步,建立零件拓扑优化模型前,应确定零件基于SLM工艺的加工方向;拓扑优化模型建立后,根据SLM工艺的加工方向设定零件拓扑优化单向拔模约束。
本发明的有益效果是:本发明的基于SLM工艺的零件轻量化设计加工方法,在拓扑优化过程中按指定方向设定单向拔模约束,完成零件拓扑优化,实现了零件轻量化设计,且基于拔模约束的拓扑优化结果适用于SLM工艺,无需添加支撑结构,不需要繁杂的去支撑工序,简化了设计工序。
附图说明
下面结合附图和实施例对本发明作进一步描述:
图1为本发明的基于SLM工艺的零件轻量化设计加工方法的流程图;
图2为本实施例的自支撑多孔结构推导示意图;
图3为本实施例的自支撑多孔结构的示意图。
具体实施方式
如图1所示,本实施例的基于SLM工艺的零件轻量化设计加工方法,包括以下步骤:通过零件的三维数字模型建立有限元模型,定义载荷及边界条件;进行零件拓扑优化生成初始轻量化模型,对所述初始轻量化模型进行力学性能分析,根据初始轻量化模型的应力分布布置不同密度的自支撑多孔结构,生成最终轻量化模型;利用生成的最终轻量化模型通过选择性激光熔化成形技术加工出最终轻量化实体零件,本实施例的拓扑优化模型为:
find X=(x1,x2,K,xn);
s.t.KU=F (1);
0<δ≤xi≤1,i=1,K,n
其中,X为设计变量;n为设计变量个数;Φ(X)为目标函数;K为有限元模型总体刚度矩阵;F为节点等效载荷向量;U为节点整体位移向量;Gj(X)为第j个约束函数;为第j个约束函数的上限;J为约束的数量;δ=10-3以避免刚度矩阵奇异;
对拔模方向上处于同一列的单元,其伪密度在拔模方向上的顺序依次为ρi,ρi+1,...,ρi+m,(m=1,K,M);拔模方向为模型的分模/型面4的法向方向,单元i距离模型的分模/型面4最近,单元i+m距离模型的分模/型面4最远,则:
对处于拔模方向上同一列的单元ρi,ρi+1,...,ρi+m,(m=1,K,M),0<δ≤xi≤1则:
由上式可得:1>ρi≥ρi+1≥,...,≥ρi+m≥0,(m=1,K,M),即满足拔模约束条件;
在拓扑优化过程中按指定方向设定单向拔模约束,完成零件拓扑优化,并根据应力分布布置了自支撑多孔结构,实现了零件轻量化设计,且基于拔模约束的拓扑优化结果适用于SLM工艺,无需添加支撑结构,不需要繁杂的去支撑工序,简化了设计工序。本实施例中,对零件进行拓扑优化后生成初始轻量化模型并对所述初始轻量化模型进行力学性能分析,并根据初始轻量化模型的应力分布设置不同密度的自支撑多孔结构;利用OptiStruct等程序对零件进行拓扑优化后利用Pro/E等三维建模软件建立拓扑优化后的初始轻量化模型,进行力学性能分析后根据力学分析结果,布置不同密度的自支撑多孔结构;图2为本实施例的自支撑多孔结构推导示意图,图3为本实施例的自支撑多孔结构的示意图;如图2所示∠ABC=∠BCE=φ;平面ABC与平面ABE的夹角为θ;sinφ=1/tanθ,其中MB为L,(L≤5mm时,为自支撑多孔结构),在MB=BN的条件下推出结构如图3所示的的空间结构,该结构具有自重较轻,同时保证其具有较强的力学性能。
本实施例中,将所述最终轻量化模型进行零件数据分层并设定相应的工艺参数;激光根据最终轻量化模型数据及设定的工艺参数层层熔化金属粉末加工出最终轻量化实体零件,利用该技术加工零件具有复杂结构构造能力强、节约材料、无切削浪费、加工周期短、成本低、无需工装模具等显著优点。
本实施例中,通过选择性激光熔化成形技术加工零件前,将生成的最终轻量化模型进行有限元分析以验证其力学性能是否满足设计标准,由于设置多孔结构后将削弱零件的力学性能,因此,在设置多孔结构后应再次进行力学性能分析,以确保零件达到设计标准。
本实施例总,利用所述最终轻量化模型生成STL模型;将所述STL模型进行零件数据分层后生成SLI模型;将所述SLI模型导入SLM设备并设定相应的工艺参数进行选择性激光熔化成形技术加工后得到最终轻量化实体零件。
本实施例中,建立零件拓扑优化模型前,应确定零件基于SLM工艺的加工方向;拓扑优化模型建立后,根据SLM工艺的加工方向设定零件拓扑优化单向拔模约束,在对零件进行拓扑优化之前,根据零件边界条件及载荷确定零件设计区域,并确定零件基于SLM工艺的加工方向,在拓扑优化时,才能根据该加工方向设定零件拓扑优化单向拔模约束,确保实际加工中的拔模方向与设定的加工方向一致,实现无支撑加工,保证SLM加工的顺利进行。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (1)

1.一种基于SLM工艺的零件轻量化设计加工方法,其特征在于,包括以下步骤:
通过零件的三维数字模型建立有限元模型,定义载荷及边界条件;
建立零件拓扑优化模型并设定拓扑优化单向拔模约束;
进行零件拓扑优化生成初始轻量化模型,对所述初始轻量化模型进行力学性能分析,根据初始轻量化模型的应力分布布置不同密度的自支撑多孔结构,生成最终轻量化模型;
利用生成的最终轻量化模型通过选择性激光熔化成形技术加工出最终轻量化实体零件;将所述最终轻量化模型进行零件数据分层并设定相应的工艺参数;利用激光根据生成的最终轻量化模型及设定的工艺参数层层熔化金属粉末加工出最终轻量化实体零件;利用所述最终轻量化模型生成STL模型;将所述STL模型进行零件数据分层后生成SLI模型;将所述SLI模型导入SLM设备并设定相应的工艺参数进行选择性激光熔化成形技术加工并得到最终轻量化实体零件;通过选择性激光熔化成形技术加工零件前,将生成的最终轻量化模型进行有限元分析以验证其力学性能是否满足设计标准;建立零件拓扑优化模型前,应确定零件基于SLM工艺的加工方向;拓扑优化模型建立后,根据确定的SLM工艺的加工方向设定零件拓扑优化单向拔模约束。
CN201510559822.8A 2015-09-06 2015-09-06 基于slm工艺的零件轻量化设计加工方法 Active CN105373645B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510559822.8A CN105373645B (zh) 2015-09-06 2015-09-06 基于slm工艺的零件轻量化设计加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510559822.8A CN105373645B (zh) 2015-09-06 2015-09-06 基于slm工艺的零件轻量化设计加工方法

Publications (2)

Publication Number Publication Date
CN105373645A CN105373645A (zh) 2016-03-02
CN105373645B true CN105373645B (zh) 2019-04-02

Family

ID=55375841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510559822.8A Active CN105373645B (zh) 2015-09-06 2015-09-06 基于slm工艺的零件轻量化设计加工方法

Country Status (1)

Country Link
CN (1) CN105373645B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105912803B (zh) * 2016-04-28 2019-06-18 华南理工大学 一种基于增材制造的产品轻量化设计方法
CN107363142B (zh) * 2016-05-13 2020-11-03 株式会社日立制作所 复合金属板的热冲压成型控制方法
CN106503342A (zh) * 2016-10-31 2017-03-15 马钢(集团)控股有限公司 产品金属零件轻量化方法
CN106649976A (zh) * 2016-11-04 2017-05-10 南方科技大学 基于球单元的隔热散热设计方法
CN106649975A (zh) * 2016-11-04 2017-05-10 南方科技大学 基于球单元的产品吸声降噪的设计方法
CN106499625B (zh) * 2016-11-22 2018-05-15 浙江大学 基于slm技术的轻量化柱塞及柱塞泵
CN106523345B (zh) * 2016-11-22 2018-05-29 浙江大学 一种基于slm技术的封闭空心薄壁柱塞及柱塞泵
CN106650026B (zh) * 2016-11-24 2019-09-13 浙江大学 一种面向三维打印的自支撑结构设计方法
CN107391824B (zh) * 2017-07-11 2020-05-12 西北工业大学 增材制造中自支撑结构的拓扑优化设计方法
CN107577861A (zh) * 2017-08-30 2018-01-12 清华大学 基于有限元方法的实体零件镂空方法
EP3502931B1 (en) * 2017-12-24 2023-03-15 Dassault Systèmes Designing a part by topology optimization
CN109290571A (zh) * 2018-08-28 2019-02-01 湖南省军合科技有限公司 一种3d 打印巡飞弹的轻量化设计与制造方法
JP7058207B2 (ja) * 2018-10-25 2022-04-21 Dmg森精機株式会社 工作機械の製造方法、及び製造システム
CN110103474B (zh) * 2019-04-04 2021-03-26 同济大学 一种基于应力调控的零件仿生结构增材制造方法
CN110781610A (zh) * 2019-11-11 2020-02-11 中国工程物理研究院机械制造工艺研究所 一种适宜于焊接的板状结构轻量化设计方法及轻量化结构
CN111222232B (zh) * 2019-12-30 2023-02-24 浙江大学 一种基于slm技术的轻量化电静液作动器壳体设计方法
CN113268823A (zh) * 2021-04-13 2021-08-17 中广核工程有限公司 轻量化多点吊装分配器及制造方法
CN113779715B (zh) * 2021-08-24 2023-06-27 汕头大学 轻量化机械外骨骼设计方法
CN114951693A (zh) * 2022-04-15 2022-08-30 中国航发北京航空材料研究院 一种具有小尺寸异形孔零件的激光选区熔化成形方法
CN117195666B (zh) * 2023-11-08 2024-03-01 江西应用科技学院 一种基于slm技术的零件轻量化制造方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622486A (zh) * 2012-03-17 2012-08-01 西北工业大学 考虑拔模制造约束的拓扑优化设计方法
CN104715091A (zh) * 2013-12-16 2015-06-17 华中科技大学 一种铝合金周期性点阵多孔结构的快速成形制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9943410B2 (en) * 2011-02-28 2018-04-17 DePuy Synthes Products, Inc. Modular tissue scaffolds

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102622486A (zh) * 2012-03-17 2012-08-01 西北工业大学 考虑拔模制造约束的拓扑优化设计方法
CN104715091A (zh) * 2013-12-16 2015-06-17 华中科技大学 一种铝合金周期性点阵多孔结构的快速成形制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3D打印中的几何计算研究进展;刘利刚;《计算机学报》;20150630;第38卷(第06期);第1243-1267页
Interior structural optimization based on the density-variable shape modeling of 3D printed objects;Dawei Li 等;《Int J Adv Manuf Technol》;20150818;第1627-1635页
远程控制快速成型加工技术研究;贾振元;《大连理工大学学报》;20110731;第41卷(第04期);第472-476页

Also Published As

Publication number Publication date
CN105373645A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
CN105373645B (zh) 基于slm工艺的零件轻量化设计加工方法
Jiang et al. A review of multiple degrees of freedom for additive manufacturing machines
Ma Research on application of SLA technology in the 3D printing technology
Ren et al. Topology optimisation for steel structural design with additive manufacturing
CN102451882B (zh) 一种金属件快速复合精密制造方法
CN109513924A (zh) 一种激光选区熔化过程中表面粗糙度控制方法
US20200401102A1 (en) Frame Structure Optimization Method Based on 3D Printing
Mostafavi et al. Materially informed design to robotic production: a robotic 3D printing system for informed material deposition
Ahtiluoto et al. Model for evaluating additive manufacturing feasibility in end-use production
CN105956301B (zh) 一种基于功能-概念-决策模型的可重构机床构形设计方法
Gardiner et al. FreeFab: Development of a construction-scale robotic formwork 3D printer
Shen et al. Structural dynamic design optimization and experimental verification of a machine tool
Wu et al. Design for additive manufacturing of conformal cooling channels using thermal-fluid topology optimization and application in injection molds
Azarian et al. Integrating additive manufacturing into a virtual Industry 4.0 factory
Monkova et al. Some aspects influencing production of porous structures with complex shapes of cells
Urbanic et al. Material bead deposition with 2+ 2 ½ multi-axis machining process planning strategies with virtual verification for extruded geometry
Rios et al. Evaluation of advanced polymers for additive manufacturing
Feldhausen et al. Hybrid Manufacturing of Conformal Cooling Channels for Tooling
Mostafavi et al. Multimode robotic materialization: design to robotic fabrication method of integrating subtractively produced hard components and additively deposited soft silicone
Wang et al. Web-DPP: towards job-shop machining process planning and monitoring
CN107512002A (zh) 一种光固化快速成型中材料收缩的补偿方法及系统
CN109885946B (zh) 一种确定复合热源的能量分配的方法及焊接模拟方法
Zhao et al. Solid mechanics based design and optimization for support structure generation in stereolithography based additive manufacturing
Wang et al. Knowledge Enterprise: Intelligent Strategies in Product Design, Manufacturing, and Management: Proceedings of PROLAMAT 2006, IFIP TC5, International Conference, June 15-17 2006, Shanghai, China
CN101980222B (zh) 一种基于拓扑优化的仿蜘蛛网夹层筋板复合结构设计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant