CN105372637B - 基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法 - Google Patents

基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法 Download PDF

Info

Publication number
CN105372637B
CN105372637B CN201510711242.6A CN201510711242A CN105372637B CN 105372637 B CN105372637 B CN 105372637B CN 201510711242 A CN201510711242 A CN 201510711242A CN 105372637 B CN105372637 B CN 105372637B
Authority
CN
China
Prior art keywords
mrow
radar
target
moving vehicle
false point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510711242.6A
Other languages
English (en)
Other versions
CN105372637A (zh
Inventor
周峰
粟华林
石晓然
赵博
陶明亮
张子敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201510711242.6A priority Critical patent/CN105372637B/zh
Publication of CN105372637A publication Critical patent/CN105372637A/zh
Application granted granted Critical
Publication of CN105372637B publication Critical patent/CN105372637B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/38Jamming means, e.g. producing false echoes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法,包括以下步骤:(1)在雷达观测场景中的运动车辆目标上设置干扰机,由干扰机产生单个虚假点目标;干扰机截获虚假点目标的基频回波信号,利用平动调制函数对其进行平动调制,产生虚假点目标的平动调制后的回波信号;(2)将运动车辆目标的轮胎等效为K个均匀分布的散射点,利用微动调制函数对虚假点目标的平动调制后的回波信号进行微动调制,得到虚假点目标对应的欺骗干扰信号;(3)在雷达观测场景中产生多个虚假点目标,依次利用平动、微动调制函数对每个虚假点目标进行平动调制和微动调制,得到并转发每个虚假点目标对应的欺骗干扰信号,实现对雷达的窄带欺骗干扰。

Description

基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法
技术领域
本发明属于雷达信号处理技术领域,尤其涉及一种基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法。
背景技术
传统欺骗干扰技术主要建立虚假场景干扰,由于地面监视雷达的主要监视对象为动目标,所以常见的噪声干扰、虚假场景干扰等静态干扰将被当作杂波消除掉,导致欺骗干扰失败。目标运动时,除了自身平动,目标或目标的某些结构部件还具有相对目标的微运动,即“微多普勒”效应。随着对目标特征的精细化描述,微多普勒特征分析在目标识别方面发挥了重要作用。
学者们在欺骗式干扰技术方面取得了许多有价值的研究成果。孙光才、周峰等在“虚假场景SAR欺骗式干扰技术及实时性分析”(西安电子科技大学学报,2009,36(5):813-818)中考虑到合成孔径雷达平台存在运动误差的情况,提出了一种虚假场景SAR欺骗式干扰的实时性方法,得到更为逼真的欺骗式虚假场景,同时保证了虚假场景生成的实时性,但是该方法只能产生静止的虚假目标或虚假地面场景,不能产生运动的虚假目标。
Xu Shaokun,Liu Jihong等在“A New Deceptive Jamming Method for SARBased on False Moving Targes”(2008 International Conference on Radar,2008,2-5:371-374)中形成了虚假的运动目标,但其只考虑了目标的平动特性,未涉及目标的微动特性,在一定程度上影响了欺骗干扰的有效性。
赵博,周峰等在“基于电磁散射模型的ISAR成像干扰新方法”(电子与信息学报,2014,36(1):194-201)中利用目标的电磁散射模型对雷达回波进行调制,模拟遮挡、多次散射等散射特性以及目标的平动、姿态等运动特性,保证了虚假目标的逼真性,但它依赖于3D建模软件建立电磁散射模型数据库,存在一定的局限性,且以刚体建模虚假目标,未考虑目标的微动部件。
发明内容
针对上述现有技术的不足,本发明的目的在于提出一种基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法,该方法在运动车辆目标上设置干扰机,并通过对干扰机截获的雷达发射信号依次进行平动调制、微动调制和转发,能够实现对雷达的窄带欺骗干扰。
为了实现上述技术目的,本发明采用如下技术方案予以实现。
一种基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法,其特征在于,包括以下步骤:
首先,在雷达观测场景中的运动车辆目标上设置干扰机J,由干扰机J在雷达观测场景中随机产生多个虚假点目标,每个虚假点目标相对于雷达的平移速度与真实目标相对于雷达的平移速度相同;然后,利用平动调制函数对每个虚假点目标的基频回波信号进行平动调制,产生每个虚假点目标的平动调制后的回波信号;接着,利用运动车辆目标的微动调制函数对每个虚假点目标的平动调制后的回波信号进行微动调制,得到每个虚假点目标对应的欺骗干扰信号;最后,转发每个虚假点目标对应的欺骗干扰信号,实现对雷达的窄带欺骗干扰。
其中,所述多个虚假点目标中任意一个虚假点目标对应的欺骗干扰信号的产生过程如下:
步骤1,首先,由干扰机J在雷达观测场景中产生单个虚假点目标,该虚假点目标相对于雷达的平移速度与真实目标相对于雷达的平移速度相同,且该虚假点目标到雷达的瞬时斜距为RP(t),由电子侦察系统观测得到的干扰机J到雷达的瞬时斜距为RJ(t);然后,干扰机J截获雷达的发射信号,即干扰机J得到虚假点目标的基频回波信号最后,利用平动调制函数Mb(fr,t)对虚假点目标的基频回波信号进行平动调制,即对虚假点目标的基频回波信号依次进行距离延时和相位调制,产生虚假点目标的平动调制后的回波信号其中,为快时间,t为慢时间,fr为雷达回波信号在距离频域的频率;
步骤2,首先,将运动车辆目标的轮胎等效为K个均匀分布的散射点;然后,利用微动调制函数Mm(t)对虚假点目标的平动调制后的回波信号进行微动调制,得到虚假点目标对应的欺骗干扰信号
本发明的有益效果为:本发明采用了平动调制和微动调制结合的方法,利用运动车辆目标的微动特性实现了对雷达的窄带欺骗干扰。
附图说明
下面结合附图和具体实施方式对本发明做进一步详细说明。
图1为本发明的流程图;
图2a为真实目标和虚假点目标的分布图,横坐标为水平轴,单位为米,纵坐标为垂直轴,单位为米;
图2b为未对雷达进行欺骗干扰的检测结果图,横坐标为多普勒频率,单位为赫兹(Hz),纵坐标为距离,单位为米;
图2c为基于平动调制的对雷达进行欺骗干扰的检测结果图,横坐标为多普勒频率,单位为赫兹(Hz),纵坐标为距离,单位为米;
图3a为真实目标的二维频域图,横坐标为多普勒频率,单位为赫兹(Hz),纵坐标为距离,单位为米;
图3b为虚假点目标的二维频域图,横坐标为多普勒频率,单位为赫兹(Hz),纵坐标为距离,单位为米;
图3c为基于微动调制的真实目标和虚假点目标的微多普勒谱对比结果图,横坐标为多普勒频率,单位为赫兹(Hz),纵坐标为归一化幅度。
具体实施方式
参照图1,本发明的基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法,包括以下具体步骤:
步骤1,首先,在雷达观测场景中的运动车辆目标上设置干扰机J,由电子侦察系统观测得到的干扰机J到雷达的瞬时斜距为RJ(t);考虑运动车辆目标的平动特性,由干扰机J在雷达观测场景中产生单个虚假点目标,该虚假点目标相对于雷达的平移速度与真实目标相对于雷达的平移速度相同,且该虚假点目标到雷达的瞬时斜距为RP(t);然后,干扰机J截获雷达的发射信号,即干扰机J得到虚假点目标的基频回波信号最后,利用平动调制函数Mb(fr,t)对虚假点目标的基频回波信号进行平动调制,即对虚假点目标的基频回波信号依次进行距离延时和相位调制,产生虚假点目标的平动调制后的回波信号其中,为快时间,t为慢时间,fr为雷达回波信号在距离频域的频率。
所述运动车辆目标的平动特性是指:运动车辆目标与干扰机J在某一时间段内做相同的平移运动。
所述干扰机J到雷达的瞬时斜距RJ(t)为:
其中,t为慢时间,(xJ,yJ)为干扰机J相对于雷达的坐标,v为运动车辆目标相对于雷达的平移速度。
所述虚假点目标到雷达的瞬时斜距RP(t)为:
其中,t为慢时间,(xp,yp)为虚假点目标相对于雷达的坐标,v为运动车辆目标相对于雷达的平移速度。
所述虚假点目标的基频回波信号为:
其中,为快时间,t为慢时间,σ0为虚假点目标的散射系数,fc为载频,c为光速,γ为调频率。
所述平动调制函数Mb(fr,t)为:
Mb(fr,t)=exp[-j2π(fr+fc)·2ΔR(t)/c],
其中,t为慢时间,fr为雷达回波信号在距离频域的频率,fc为载频,c为光速,ΔR(t)为虚假点目标与干扰机J间的瞬时斜距差,ΔR(t)=Rp(t)-RJ(t)。
所述虚假点目标的平动调制后的回波信号为:
其中,为快时间,t为慢时间,σP为幅度调制系数,表示卷积运算,δ[·]是冲激函数,c为光速,ΔR(t)为虚假点目标与干扰机J间的瞬时斜距差,ΔR(t)=Rp(t)-RJ(t),fc为载频。
步骤2,首先,考虑运动车辆目标的微动特性,将运动车辆目标的轮胎等效为K个均匀分布的散射点;然后,利用微动调制函数Mm(t)对虚假点目标的平动调制后的回波信号进行微动调制,得到虚假点目标对应的欺骗干扰信号
所述运动车辆目标的微动特性是指:运动车辆目标的轮胎某一时间段内做旋转运动。
所述微动调制函数Mm(t)为:
其中,i=1,2,…K,σi为第i个散射点的散射系数,fmDi(t)为第i个散射点的瞬时微多普勒频率,fmDi(t)的表达式为:
fmDi(t)=2vmi(t)·χ(t)/λ
其中,t为慢时间,χ(t)为虚假点目标的雷达视线方向,χ(t)=Rp(t)/||Rp(t)||,Rp(t)为虚假点目标到雷达的瞬时斜距,||·||表示求欧几里德范数,λ为雷达的回波波长,vmi(t)为第i个散射点的速度矢量,vmi(t)的表达式为:
vmi(t)=[rωcos(θi+ωt),0,-rωsin(θi+ωt)]T
其中,r为运动车辆目标的轮胎的旋转半径,ω为运动车辆目标的轮胎的旋转角速度,θi为第i个散射点的初始角度,θi=i·2π/K,上标T表示转置。
所述虚假点目标对应的欺骗干扰信号为:
其中,表示卷积运算。
步骤3,由干扰机J在雷达观测场景中随机产生多个虚假点目标,每个虚假点目标相对于雷达的平移速度与真实目标相对于雷达的平移速度相同;首先,利用平动调制函数对每个虚假点目标的基频回波信号进行平动调制,产生每个虚假点目标的平动调制后的回波信号;然后,利用运动车辆目标的微动调制函数对每个虚假点目标的平动调制后的回波信号进行微动调制,得到每个虚假点目标对应的欺骗干扰信号;最后,转发每个虚假点目标对应的欺骗干扰信号,实现对雷达的窄带欺骗干扰。
本发明的效果可由以下仿真实验作进一步说明:
1)仿真条件
雷达发射线性调频连续波,波段为Ka波段,带宽为10MHz,重复周期为1ms,采用Dechirp(去调频)接收,采样频率为3MHz,运动车辆目标沿雷达坐标系的x轴正方向作平移运动,平移速度为1m/s。
2)仿真内容及结果分析
首先,对虚假点目标的基频回波信号进行平动调制。图2a为真实目标(运动车辆目标)和虚假点目标的分布图,图2b为未对雷达进行欺骗干扰的检测结果图,图2c为基于平动调制的对雷达进行欺骗干扰的检测结果图。
从图2c中可以看出,基于平动调制对雷达进行欺骗干扰后,检测到的虚假点目标与真实目标存在明显差异,极易被雷达的识别系统所识别,导致欺骗干扰失败。
然后,在对虚假点目标的基频回波信号进行平动调制的基础上,利用真实目标(运动车辆目标)的微动特性对虚假点目标的回波信号进行微动调制。为了进行对比,取图2a中的一个虚假点目标(800,1000),在该虚假点目标处放置真实目标。图3a和图3b分别为真实目标和虚假点目标的二维频域图,图3c为基于微动调制的真实目标和虚假点目标的微多普勒谱对比结果图。
从图3a和图3b中可以看出,真实目标和虚假点目标的距离以及多普勒中心位置基本相同,二者的微多普勒的展宽范围基本保持一致。从图3c中可以看出,真实目标和虚假点目标的微多普勒谱的分布范围和主分量基本保持一致,只是在归一化幅度上稍有差别,说明基于微动调制成功地对雷达进行了欺骗干扰。
利用干扰效果评估指标对图3c中的微多普勒谱进行定量分析,评价欺骗干扰的效果,结果如表1所示。
表1
从表1中可以看出,欺骗干扰前后的对象指标具有相同的数量级,且欺骗干扰后的对象指标的变化率均在1左右,说明虚假点目标与真实目标的微多普勒基本一致,从而验证了本发明方法的有效性。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围;这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (7)

1.一种基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法,其特征在于,包括以下步骤:
首先,在雷达观测场景中的运动车辆目标上设置干扰机J,由干扰机J在雷达观测场景中随机产生多个虚假点目标,每个虚假点目标相对于雷达的平移速度与真实目标相对于雷达的平移速度相同;然后,利用平动调制函数对每个虚假点目标的基频回波信号进行平动调制,产生每个虚假点目标的平动调制后的回波信号;接着,利用运动车辆目标的微动调制函数对每个虚假点目标的平动调制后的回波信号进行微动调制,得到每个虚假点目标对应的欺骗干扰信号;最后,转发每个虚假点目标对应的欺骗干扰信号,实现对雷达的窄带欺骗干扰;
其中,所述多个虚假点目标中任意一个虚假点目标对应的欺骗干扰信号的产生过程如下:
步骤1,首先,根据运动车辆目标的平动特性,由干扰机J在雷达观测场景中产生单个虚假点目标,该虚假点目标相对于雷达的平移速度与真实目标相对于雷达的平移速度相同,且该虚假点目标到雷达的瞬时斜距为RP(t),由电子侦察系统观测得到的干扰机J到雷达的瞬时斜距为RJ(t);然后,干扰机J截获雷达的发射信号,即干扰机J得到虚假点目标的基频回波信号最后,利用平动调制函数Mb(fr,t)对虚假点目标的基频回波信号进行平动调制,即对虚假点目标的基频回波信号依次进行距离延时和相位调制,产生虚假点目标的平动调制后的回波信号其中,为快时间,t为慢时间,fr为雷达回波信号在距离频域的频率;
步骤2,首先,根据运动车辆目标的微动特性,将运动车辆目标的轮胎等效为K个均匀分布的散射点;然后,利用微动调制函数Mm(t)对虚假点目标的平动调制后的回波信号进行微动调制,得到虚假点目标对应的欺骗干扰信号
2.如权利要求1所述的基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法,其特征在于,所述运动车辆目标的平动特性是指:运动车辆目标与干扰机J在某一时间段内做相同的平移运动。
3.如权利要求1所述的基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法,其特征在于,所述平动调制函数Mb(fr,t)为:
Mb(fr,t)=exp[-j2π(fr+fc)·2ΔR(t)/c],
其中,t为慢时间,fr为雷达回波信号在距离频域的频率,fc为载频,c为光速,ΔR(t)为虚假点目标与干扰机J间的瞬时斜距差,ΔR(t)=Rp(t)-RJ(t)。
4.如权利要求1所述的基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法,其特征在于,所述虚假点目标的平动调制后的回波信号为:
<mrow> <msub> <mi>s</mi> <mi>P</mi> </msub> <mrow> <mo>(</mo> <mover> <mi>t</mi> <mo>^</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;sigma;</mi> <mi>P</mi> </msub> <msub> <mi>s</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mover> <mi>t</mi> <mo>^</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;CircleTimes;</mo> <mi>&amp;delta;</mi> <mo>&amp;lsqb;</mo> <mover> <mi>t</mi> <mo>^</mo> </mover> <mo>-</mo> <mn>2</mn> <mi>&amp;Delta;</mi> <mi>R</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>c</mi> <mo>&amp;rsqb;</mo> <mo>&amp;CenterDot;</mo> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>c</mi> </msub> <mo>&amp;CenterDot;</mo> <mn>2</mn> <mi>&amp;Delta;</mi> <mi>R</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>c</mi> <mo>&amp;rsqb;</mo> </mrow>
其中,为快时间,t为慢时间,σP为幅度调制系数,表示卷积运算,δ[·]是冲激函数,c为光速,ΔR(t)为虚假点目标与干扰机J间的瞬时斜距差,ΔR(t)=Rp(t)-RJ(t),fc为载频。
5.如权利要求1所述的基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法,其特征在于,所述运动车辆目标的微动特性是指:运动车辆目标的轮胎某一时间段内做旋转运动。
6.如权利要求1所述的基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法,其特征在于,所述微动调制函数Mm(t)为:
<mrow> <msub> <mi>M</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </munderover> <msub> <mi>&amp;sigma;</mi> <mi>i</mi> </msub> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>t</mi> </msubsup> <msub> <mi>f</mi> <mrow> <mi>m</mi> <mi>D</mi> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>u</mi> <mo>&amp;rsqb;</mo> </mrow>
其中,i=1,2,...K,σi为第i个散射点的散射系数,fmDi(t)为第i个散射点的瞬时微多普勒频率,fmDi(t)的表达式为:
fmDi(t)=2vmi(t)·χ(t)/λ
其中,t为慢时间,χ(t)为虚假点目标的雷达视线方向,χ(t)=Rp(t)/||Rp(t)||,RP(t)为虚假点目标到雷达的瞬时斜距,||·||表示求欧几里德范数,λ为雷达的回波波长,vmi(t)为第i个散射点的速度矢量,vmi(t)的表达式为:
vmi(t)=[rωcos(θi+ωt),0,-rωsin(θi+ωt)]T
其中,r为运动车辆目标的轮胎的旋转半径,ω为运动车辆目标的轮胎的旋转角速度,θi为第i个散射点的初始角度,θi=i·2π/K,上标T表示转置。
7.如权利要求1所述的基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法,其特征在于,所述虚假点目标对应的欺骗干扰信号为:
<mrow> <msub> <mi>s</mi> <mrow> <mi>P</mi> <mi>m</mi> </mrow> </msub> <mrow> <mo>(</mo> <mover> <mi>t</mi> <mo>^</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>s</mi> <mi>P</mi> </msub> <mrow> <mo>(</mo> <mover> <mi>t</mi> <mo>^</mo> </mover> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;CircleTimes;</mo> <msub> <mi>M</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow>
其中,表示卷积运算。
CN201510711242.6A 2015-10-28 2015-10-28 基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法 Active CN105372637B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510711242.6A CN105372637B (zh) 2015-10-28 2015-10-28 基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510711242.6A CN105372637B (zh) 2015-10-28 2015-10-28 基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法

Publications (2)

Publication Number Publication Date
CN105372637A CN105372637A (zh) 2016-03-02
CN105372637B true CN105372637B (zh) 2017-09-29

Family

ID=55374990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510711242.6A Active CN105372637B (zh) 2015-10-28 2015-10-28 基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法

Country Status (1)

Country Link
CN (1) CN105372637B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443671A (zh) * 2016-08-30 2017-02-22 西安电子科技大学 基于调频连续波的sar雷达动目标检测与成像方法
CN107229047B (zh) * 2017-05-27 2019-12-24 西安电子科技大学 基于宽带雷达相位测距的目标微动参数估计方法
CN111427039B (zh) * 2020-04-21 2021-02-12 北京航天长征飞行器研究所 基于微动特征调制的isar成像欺骗干扰方法和装置
CN113093122B (zh) * 2021-04-01 2023-06-13 西安电子科技大学 一种对合成孔径雷达快速场景欺骗干扰的方法
CN113203991B (zh) * 2021-04-29 2022-05-31 电子科技大学 一种多基sar在多干扰机环境下的抗欺骗型干扰方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101017590B1 (ko) * 2010-05-12 2011-02-28 엘아이지넥스원 주식회사 거리 기만 재밍 측정 방법 및 장치
RU2450285C1 (ru) * 2011-03-04 2012-05-10 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Способ формирования ложной колонны движущейся техники при радиолокационном наблюдении
CN102721948A (zh) * 2012-07-06 2012-10-10 西安电子科技大学 一种大场景sar欺骗干扰实现方法
CN103163505B (zh) * 2013-01-31 2014-12-03 西安电子科技大学 基于jade的时变窄带干扰抑制方法
CN104898098B (zh) * 2015-06-23 2017-05-24 西安电子科技大学 一种针对圆周sar的多接收机欺骗干扰方法

Also Published As

Publication number Publication date
CN105372637A (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
CN105372637B (zh) 基于运动车辆目标微动特性的对雷达的窄带欺骗干扰方法
CN104914415B (zh) 基于目标距离像模板匹配的单脉冲雷达相干干扰方法
CN106405517B (zh) 针对脉冲多普勒雷达的微动假目标生成方法
Persico et al. Novel classification algorithm for ballistic target based on HRRP frame
Shi et al. Deception jamming method based on micro‐Doppler effect for vehicle target
CN106291489B (zh) 适用于多种发射信号波形的合成孔径雷达回波仿真方法
Gong et al. Mathematic principle of active jamming against wideband LFM radar
CN104898098B (zh) 一种针对圆周sar的多接收机欺骗干扰方法
CN109541594A (zh) 基于涡旋电磁波的条带sar三维成像方法
CN107942323B (zh) 基于频域熵的进动目标时频曲线提取方法
Kusk et al. Synthetic SAR image generation using sensor, terrain and target models
CN107153191B (zh) 一种针对隐形飞机的双基isar成像检测方法
CN105467368A (zh) 基于多接收机等距直角分布的sar欺骗干扰方法及系统
Jasiński A generic validation scheme for real-time capable automotive radar sensor models integrated into an autonomous driving simulator
CN103616670B (zh) 基于浮空平台改进的sar散射波干扰方法
Zhu et al. Classification of ground vehicles based on micro-Doppler effect and singular value decomposition
Woollard et al. Investigating the effects of bistatic SAR phenomenology on feature extraction
Shi et al. Deceptive jamming for tracked vehicles based on micro‐Doppler signatures
Willetts et al. Optimal time-frequency distribution selection for LPI radar pulse classification
Zhu et al. Classification of UAV-to-ground vehicles based on micro-Doppler signatures using singular value decomposition and reconstruction
CN114089304A (zh) 一种动态交会状态目标近场散射回波的求解方法
Hongtu et al. Efficient raw signal generation based on equivalent scatterer and subaperture processing for SAR with arbitrary motion
CN112363124A (zh) 一种基于功率的仿真雷达目标模拟方法
Chen et al. Efficient Time Domain Echo Simulation of Bistatic SAR Considering Topography Variation
Clemente et al. Application of the singular spectrum analysis for extraction of micro-doppler signature of helicopters

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant