CN105358794A - 深水低速率评价生产系统 - Google Patents

深水低速率评价生产系统 Download PDF

Info

Publication number
CN105358794A
CN105358794A CN201480036023.6A CN201480036023A CN105358794A CN 105358794 A CN105358794 A CN 105358794A CN 201480036023 A CN201480036023 A CN 201480036023A CN 105358794 A CN105358794 A CN 105358794A
Authority
CN
China
Prior art keywords
hydrocarbon
pontoon
amount
reservoir
sub sea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480036023.6A
Other languages
English (en)
Inventor
J·H·格雷森
J·P·J·马楚拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of CN105358794A publication Critical patent/CN105358794A/zh
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/001Survey of boreholes or wells for underwater installation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/012Risers with buoyancy elements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • E21B43/0107Connecting of flow lines to offshore structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B22/00Buoys
    • B63B22/02Buoys specially adapted for mooring a vessel
    • B63B22/021Buoys specially adapted for mooring a vessel and for transferring fluids, e.g. liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明涉及一种用于评价深水井的方法,所述方法包括:从海底储层生产第一量的烃;将所述第一量的烃输送到浮船;从所述浮船卸载所述第一量的烃;从所述海底储层生产第二量的烃;以及将第二量的烃输送到浮船。

Description

深水低速率评价生产系统
相关申请的交叉引用
本申请要求在2013年6月6日提交的美国临时申请No.61/831,967的权益,其全部内容在此通过引用并入本文。
技术领域
本公开整体涉及一种评价离岸储层的方法。更加具体地,在某些实施例中,本公开涉及一种用于评估离岸储层的长期、低速率、间歇浮式烃生产系统和相关方法。
背景技术
评价新近发现的井田的一个目的是提供足够的数据,使得可对与不同井田发展情况相关的成本、收益和风险进行可靠评估。在评价井田之后,可以作出关于在将来如何可能最好地获得价值的机会的明智决定(例如,选择井田开发计划、转让部分投资战略、阶段性开发或者只是保持发现而就近开采待定)。从井和地下的角度来看,井田评价旨在减小关于以下事项的不确定性:所存在的烃的体积、不同开发情境的生产曲线、期望的初始井流量、可持续的井流量和每口井的最终开采率。
用于评价深水储层的系统典型地遵循用来评价深水储层的三种方法中的一种:(1)用多口井进行系列评价活动,之后可以进行短期井测试;(2)长期井测试;和(3)早期的生产系统。
第一种方法尽管最为常见,但是因钻井和完井成本高而可能是成本最高的。利用这种方法进行非常短期的井测试(还通常称为钻杆井测试)是可行的;然而,由这种方法收集的信息常常局限于井筒附近。
第二种方法也趋向于费用高,因为其通常利用昂贵的可动离岸钻井单元来实施井测试活动。由于可动的离岸钻井单元常常不具备任何显著的气体存储和外输能力,所以井测试的时间长度通常也受到限制。
第三种方法通常意味着油处理率能力为至少每天5,000桶,其要求安装气体外输管道或者要求有在通过所述生产系统开采储层的过程中燃烧生产出的气体的受监管的豁免权。这种系统的投资成本往往很高,尤其是当气体管道范围包括在内时。交替的长期燃烧成本也高昂,通常就体积和位置而言有局限性,而且从环境保护观点来看并不有利,从而限制早期生产系统的可用性。
在深水开发中低速率井测试相对少见。这种低速率可以允许间歇地使用由具有有限量的气体(如压缩的天然气)存储容积的小浮动系统构成的评价系统。因为这种低速率评价系统将允许使用间歇浮式烃生产系统,所以使用这种低速率评价系统可能是理想的。
发明内容
本公开整体涉及一种评价离岸储层的方法。更加具体地,在某些实施例中,本公开涉及一种长期、低速率、间歇浮式烃生产系统和相关方法。
在一个实施例中,本公开提供了一种评价深水井的方法,所述方法包括:将第一量的烃从海底储层生产至浮船;从浮船将第一量的烃外输至卸载船;以及将第二量的烃从海底储层生产至浮船。
在另一个实施例中,本公开提供了一种评价深水井的方法,所述方法包括:将浮船连接到海底储层;将第一量的烃从海底储层生产至浮船;将浮船与海底储层脱开连接;从浮船上卸载第一量的烃;将浮船与海底储层再次连接;以及将第二量的烃从海底储层生产至浮船。
在另一个实施例中,本公开提供一种系统,所述系统包括:深水立管,所述水深立管附接到深水井;浮筒,所述浮筒连接到深水立管;和浮船,其中,浮船以可脱开连接的方式连接到深水立管。
对于本领域中的技术人员而言本公开的特征和优势将显而易见。虽然本领域技术人员可作出各种修改时,但这些改变在本发明的精神范围内。
附图说明
参照在附图中图解的本公开的实施例,可以对在上文概述的公开内容进行更加特别的描述,使得可更加详尽地理解本公开的上述特征和优势。然而,应当注意的是,附图仅仅图解了本公开的典型实施例,并且因此并不认为对本公开的范围有限制。附图不必按照比例绘制,并且为了清晰和简明,可扩大比例或者示意性地示出附图的某些特征和某些视图。
图1是根据本公开的深水低速率评价生产系统(DEL-RAPS)的图示。
具体实施方式
本公开整体涉及一种评价离岸储层的方法。更加具体地,在某些实施例中,本公开涉及一种用于评价离岸储层的长期、低速率、间歇浮式烃生产系统和相关方法。
以下描述包括体现本发明主题的技术的示例性设备、方法、技术和指令序列。然而,应当理解的是,可以在不具有这些具体细节的情况下实施所描述的实施例。
在一个实施例,本公开提供了一种用于评价深水井的方法,所述方法包括:将第一量的烃从海底储层生产至浮船;将第一量的烃从浮船外输至卸载船;以及将第二量的烃从海底储层生产至浮船。
在某些实施例中,从海底储层生产出的烃的量可以是最小量。在某些实施例中,从海底储层生产烃的速率可以小于每天5,000桶油和/或小于每天10百万标准立方英尺天然气。在某些实施例中,从海底储层生产烃的速率可以小于每天2,500桶油和/或小于每天5百万标准立方英尺天然气。在其它实施例中,从海底储层生产烃的速率可以小于每天1,000桶油和/或小于每天2百万标准立方英尺天然气。
在某些实施例中,第一量的烃和/或第二量的烃可以是从大约1,000桶油至大约50,000桶油,和/或是从2百万标准立方英尺天然气至大约100百万标准立方英尺天然气。在其它实施例中,第一量的烃和/或第二量的烃可以是从大约2,000桶油至大约10,000桶油,和/或是从4百万标准立方英尺天然气至大约20百万标准立方英尺天然气。尽管第一量的烃和/或第二量的烃的各自生产时间可以为1天至10天,但是从海底储层生产烃的整个生产时间可以延长1个月至18个月,以允许进行长期井测试。
在某些实施例中,在生产第一量的烃和/或第二量的烃之后,浮船可以与海底储层脱开连接,然后将所存储的烃运送到离岸设施或者陆上设施。一旦卸载所存储的烃,则浮船可以返回到井田并且再次连接到井,以继续进行生产测试。在某些实施例中,将第一量的烃和/或第二量的烃从浮船外输至卸载船,用于陆上销售。
在某些实施例中,经由深水可再部署的立管可以将第一量和/或第二量的烃生产至浮船。深水可再部署的立管可以附接到系泊浮筒,所述系泊浮筒可脱开连接地附接到浮船。当将第一量的烃和第二量的烃从海底储层生产至浮船时,深水立管可以附接到系泊浮筒和浮船两者。当从浮船卸载第一量的烃和第二量的烃时,深水立管可以附接到系泊浮筒而不附接到浮船。
浮船可以是具有储气能力的浮船。在某些实施例中,浮船包括用于生产和存储相对少量油、含油水和气体,所述气体呈压缩天然气(CNC)或液化天然气(LNG)的形式或者通过转换而成为液体(已知为天然气合成油或者气转油)或者以水合物形式存储的天然气。天然气还可被消耗用于向浮船提供动力。在某些实施例中,浮船能够存储高达100百万标准立方英尺的天然气。包括这种存储设施的益处可以包括不需要付出高昂的成本且耗时地安装气体外输管道。
在某些实施例中,该方法还可以包括测量靠近生产区域和/或地下任何地方中的井下压力变化和温度变化,而与此同时从储层生产烃。测量压差允许人们评估现场储层容积、连通性和含水层强度、以及在评估储层时对于进一步开发而言重要其它储层参数。通过使用这些最小的油生产速率,这种方法使得能够具有成本优势、从一口或更多口离岸井更长期地收集储层数据、延长收集信息的有效半径。利用这种速率可以使得在需要卸载浮船之前能够使得生产第一量的烃和/或第二量的烃持续数个月。
在另一个实施例中,本公开提供一种评价深水井的方法,所述方法包括:将浮船连接到海底储层;将第一量的烃从海底储层生产至浮船;将浮船与海底储层脱开连接;从浮船上卸载第一量的烃;将浮船与海底储层再次连接;以及将第二量的烃从海底储层生产至浮船。
在另一个实施例中,本公开提供了一种用于评价深水井的系统,所述系统包括:深水立管,所述深水立管附接到深水井;浮筒,所述浮筒连接到深水立管;和浮船,所述浮船可脱开连接地附接到深水立管。
在图1中图解了这个实施例的示例。图1图解了深水低速率评价生产系统100,该系统包括井场110、水下采油树120、立管130、船140和浮筒150。如可在图1中看到的,立管130可连接到井场110的水下采油树120,而且还连接到浮筒150。浮筒150可以通过一根或多根系缆160系泊到海床170。船140可以可脱开连接地附接到立管130。
为了有助于更好地理解本发明,给出了具体实施例的以下示例。以下示例绝不应该解读为限制或者限定本发明的范围。
示例
研究DEL-RAPS系统对四种主要动态测试的适用性。在这些研究中,假定系统具有以下规格:油生产速率无上限的油生产系统;28,000bbls的储油能力;与储油能力相当的储气能力;并且卸载生产的流体需要使得DEL-RAPS与井脱开连接,从而导致2天的停产。
示例1-短期生产测试
评估DEL-RAPS对短期测试的适用性。因为DEL-RAPS容许低生产速率至高生产速率,所以其可以是能够实施短期生产测试(例如,步进速率测试)的非常具有灵活性的系统。然而,如果井需要在非常高的速率下生产,则有限的存储能力可能成为局限条件。在这些情况中,可以将测试分为较短期的测试,以便在两个高生产速率时期之间卸载所存储的流体。因为在短生产测试期间利用DEL-RAPS收集的数据和通常由传统系统(例如由钻机)收集的数据之间不存在明显的区别,所以得出结论:DEL-RAPS系统等效于针对此目的的其它系统,并且因此足以执行短期生产测试。
示例2-长期生产测试
通过储层模拟来研究DEL-RAPS对长期生产测试的适用性。在模拟中,针对各种地下场景对比因采用具有假定DEL-RAPS规格的系统而导致的井底压力变化和井田压力变化。选择场景,使得它们代表在实际井田评估中所遇到的现实地下不确定范围。
第一储层模型模仿将DEL-RAPS应用于大型储层。针对这种储层的STOIIP不确定性假设为1.5Bbbls。第二模型对应于中等规模的储层应用,其中,STOIIP为500MMbbls。最后一个模型代表小型储层(深水标准),其中,STOIIP为100MMbbls。
对于所有实施的模拟,生产是循环的,生产7天,随后停产2天,依此方式循环一年以上。当完成模拟时,提取针对最后一次压力恢复(build-up)所产生的压力曲线,用于与对应于不同地下情境的其它模拟进行比较。
表示DEL-RAPS生产速率和循环操作的模拟允许针对不同地理情境产生不同井底压力响应。压差通常足够大(通常为几帕斯卡至数十帕斯卡),以便能由现代井下压力计清楚地区分开。
还发现的是速率的变化仅仅影响压差的幅值,但不会影响模拟曲线的相对位置。因此显而易见的是,更高的流量不会导致产生其它储层信息或者不会导致消除模糊中的一些模糊(即,不存在在更高流量的情况下产生较大的压差的明显益处)。
所有测试表明:各种情境之间的显著的压差可能更多地发生在模拟所用的1年持续时间之前。根据储层状况,测试的持续时间可以更短(数周或者数月)或者更长(若干年)。所提供的模拟表明可从DEL-RAPS长生产测试收集有价值的数据。
由上文得出结论:在低流量或者高流量下,可源自从长生产测试收集的井底压力数据的储层信息是类似的。在大多数情况中,使用DEL-RAPS来实现各种可能的地质情境之间的足够大压差应该是可行的。
在所有模拟的情况中,DEL-RAPS能够在与被测试的生产井相距很远距离的位置处并且在合理的时间范围内产生相当大的储层压力变化。利用可替代系统可实现的更高的速率似乎除了能够更快地实现相同的压力效应之外不能提供其它益处。
示例3-瞬态压力恢复井测试
评估应用DEL-RAPS对压力瞬态恢复井测试的适用性。因为DEL-RAPS可以作为长期低速率系统或者作为短期高速率系统进行操作,所以重要的是证实在那些条件下产生的压力信号能够用于压力瞬态分析。
建立对应于代表大范围情况的五组储层条件的井测试模型。模拟假设在距离垂直井300m或者1000m处存在单个断层。基于先前部分的结果,假设噪声水平是0psi、0.1psi和0.5psi。
将利用DEL-RAPS产生的井测试数据和来自能力不受限的系统(例如,来自钻机)的井测试数据进行比较。
使用基本情况储层条件来详细调查研究传统井测试和利用DEL-RAPS实施的井测试之间的区别。首先,建立对应于在15000bod和4000bod条件下在7天流量期间之后压力恢复的两个简单模型。因为计算基本上基于基本流动方程,所以当在模型中没有噪声时,两个压力曲线成比例。在实践中,两条压力曲线以及类似地它们的衍生曲线可以以对数-对数标尺(log-logscale)垂直移动。
增加生产持续时间对阐明数据收效甚微,所述生产持续时间具有一系列生产/停产周期(诸如,能够由DEL-RAPS所实施的生产/停产周期)。然而,增加流量并且同时缩短生产持续时间(保持在DEL-RAPS存储能力范围内)会显著减小(即,采用高流量/短生产持续时间的策略(在大约15000bod条件下导致降低大约6000psi))噪声导入。高流量/短生产持续时间解决方案还可以适用于下述情况:如果噪声水平不是很大,则需要检测距离井较远距离处是否存在流动障碍。
井测试建模表明:DEL-RAPS能够作为可行的井测试系统应用。在大多数情况中其等效于传统井测试方法(例如,来自钻机)。然而,当储层条件不利于低速率井测试时,即,当渗透性较高或者粘性低从而导致在低速率条件下小幅下降时,较之利用可能延长高流量的传统系统,利用DEL-RAPS更加难以控制数据中的高水平噪声。在这些储层条件下,一种方法是在推进压力恢复之前使得井以高速率流动一段很短持续时间(保持在DEL-RAPS存储能力范围内)。在这种策略情况下,需要准确测量关于能快速提升产量但不能在稳定条件下生产的井的流量的能力。在推进压力恢复之前使用这种短期高生产速率流动期对于当前实践来讲是一个改变。
示例4-压力瞬态干扰测试
在这个示例中,认为0.1psi的压力变化是建立储层连通性所需的最小压力变化并且最后实施干扰测试分析所需的最小值。相信即使存在0.1psi噪声,0.1psi压力变化也应当保持能检测到,如针对压力恢复数据发现的潮汐效应所论证的那样。
使用提出的压力方程来计算压力曲线,该压力曲线作为与假定以恒定速率流动的井相距的距离的函数。假设储层无流动边界。朝向井的流动必须仅仅是径向的。
在任何给定时间,储层压力很大程度上依赖于储层岩石和流体属性。作为一个示例,在4000bod条件下生产7天之后的预期压力曲线的比较结果表明:对于不同组的储层条件而言压力迥然不同。
为了完成7天/4000bod的情境,计算针对三种其它流动情境的理论压力曲线:1天/28000bod、56天/500bod和280天/100bod。对于所有情境,累计的生产容积符合系统的假定存储能力(28000bbls)。
针对4种流动情境和5个储层情境评估在其处压力变化大于0.1psi情况下的距离。结果表明:大型储层(厚、高孔隙率)在实施干扰测试时出现问题最多,原因在于升高储层压力需要在这些储层中有高生产容积。
模型表明:能够使用测试设计方法来在与被测试井相距远的距离(1500m或者更大)处产生至少0.1psi的压力变化,所述测试设计方法包括将低速率与长期生产相组合或者将高速率与短期生产相组合。由此,这种DEL-RAPS能够用作可行技术来建立储层连通性并且可能衍生的有价值信息,诸如位于源和观察井之间的区域中的储层渗透率。
尽管参照各种实施方案和开采方案描述了实施例,但是应当理解的是这些实施例是阐释性,并且发明主题的范围并不局限于此。多种变形方案、修改方案、添加方案和改进方案皆是可能的。
作为单数实例,可以向如在此描述的部件、操作或者结构提供复数实例。通常,在示例性构造中的呈现为单独部件的结构和功能可以实施为组合的结构或者部件。类似地,呈现为单个部件的结构和功能可以实施为单独的部件。这些和其它变形方案、修改方案、添加方案和改进方案可以在本发明主题的范围内。

Claims (20)

1.一种用于评价深水井的方法,所述方法包括:
将第一量的烃从海底储层生产至浮船;
从所述浮船卸载所述第一量的烃;以及
将第二量的烃至从所述海底储层生产至所述浮船。
2.根据权利要求1所述的方法,所述方法还包括:在生产所述第一量的烃和所述第二量的烃的同时测量所述海底储层中的压力变化。
3.根据权利要求2所述的方法,所述方法还包括基于测量的所述压力变化来评估储层参数。
4.根据权利要求3所述的方法,其中,以小于每天2,500桶油的速率生产所述第一量的烃和所述第二量的烃。
5.根据权利要求3所述的方法,其中,以小于每天1,000桶油的速率生产所述第一量的烃和第二量的烃。
6.根据权利要求1所述的方法,其中,所述第一量的烃为小于10,000桶的油。
7.根据权利要求1所述的方法,其中,所述浮船包括具有储气能力的浮船。
8.根据权利要求1所述的方法,其中,所述浮船经由可重新部署的立管连接到所述海底储层,并且与此同时生产所述第一量的烃和第二量的烃。
9.根据权利要求8所述的方法,其中,所述可重新部署的立管连接到系泊浮筒。
10.一种评价深水井的方法,所述方法包括:
将浮船连接到海底储层;
将第一量的烃从所述海底储层生产至所述浮船;
将所述浮船与所述海底储层脱开连接;
从所述浮船上卸载所述第一量的烃;
将所述浮船与所述海底储层再次连接;以及
将第二量的烃至从所述海底储层生产至所述浮船。
11.根据权利要求10所述的方法,所述方法还包括在生产所述第一量的烃和所述第二量的烃的同时测量所述海底储层中的压力变化。
12.根据权利要求11所述的方法,所述方法还包括基于测量的所述压力变化来评估储层参数。
13.根据权利要求12所述的方法,其中,以小于每天2,500桶油的速率生产所述第一量的烃和所述第二量的烃。
14.根据权利要求12所述的方法,其中,以小于每天1,000桶油的速率生产所述第一量的烃和所述第二量的烃。
15.根据权利要求10所述的方法,其中,所述第一量的烃为小于10,000桶的油。
16.根据权利要求10所述的方法,其中,所述浮船包括具有储气能力的浮船。
17.根据权利要求10所述的方法,其中,将所述浮船连接到所述海底储层包括将所述浮船连接到与所述海底储层相连的可重新部署的立管,将所述浮船与所述海底储层脱开连接包括将所述浮船与所述可重新部署的立管脱开连接,将所述浮船与所述海底储层再次连接包括将所述浮船再次连接到所述可重新部署的立管。
18.根据权利要求17所述的方法,其中,所述可重新部署立管连接到系泊浮筒。
19.一种系统,所述系统包括:
深水立管,所述深水立管附接到深水井;
浮筒,所述浮筒连接到所述深水立管;和
浮船,其中,所述浮船以能够脱开连接的方式连接到所述深水立管。
20.根据权利要求19所述的系统,其中,所述浮筒通过一根或多根系缆系泊到海床。
CN201480036023.6A 2013-06-06 2014-06-04 深水低速率评价生产系统 Pending CN105358794A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361831967P 2013-06-06 2013-06-06
US61/831,967 2013-06-06
PCT/US2014/040850 WO2014197559A1 (en) 2013-06-06 2014-06-04 Deepwater low-rate appraisal production systems

Publications (1)

Publication Number Publication Date
CN105358794A true CN105358794A (zh) 2016-02-24

Family

ID=52008554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480036023.6A Pending CN105358794A (zh) 2013-06-06 2014-06-04 深水低速率评价生产系统

Country Status (7)

Country Link
US (1) US9551211B2 (zh)
EP (1) EP3004536A4 (zh)
CN (1) CN105358794A (zh)
AU (1) AU2014275022B2 (zh)
BR (1) BR112015030236B1 (zh)
MY (1) MY182947A (zh)
WO (1) WO2014197559A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892495A (en) * 1986-03-24 1990-01-09 Svensen Niels Alf Subsurface buoy mooring and transfer system for offshore oil and gas production
US5878814A (en) * 1994-12-08 1999-03-09 Den Norske Stats Oljeselskap A.S. Method and system for offshore production of liquefied natural gas
US20030099517A1 (en) * 1998-06-05 2003-05-29 Single Buoy Moorings Inc. Loading arrangement for floating production storage and offloading vessel
CN1440485A (zh) * 2000-07-11 2003-09-03 哈利伯顿能源服务公司 油井管理系统
US20050042952A1 (en) * 2000-11-22 2005-02-24 Stephane Montbarbon Marine riser system
US20080138159A1 (en) * 2006-12-06 2008-06-12 Chevron U.S.A. Inc. Marine Riser System
CN101730784A (zh) * 2007-06-12 2010-06-09 单浮筒系泊公司 可解脱立管系泊系统
CN102388200A (zh) * 2009-04-06 2012-03-21 瑞士单浮筒系泊公司 使用地下气体贮存以在相互连接的处理单元间提供流动保障缓冲
WO2013037012A1 (en) * 2011-09-16 2013-03-21 Woodside Energy Technologies Pty Ltd Marine transportation of unsweetened natural gas

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980940B1 (en) * 2000-02-22 2005-12-27 Schlumberger Technology Corp. Intergrated reservoir optimization
GB0100565D0 (en) * 2001-01-10 2001-02-21 2H Offshore Engineering Ltd Operating a subsea well
GB0124610D0 (en) * 2001-10-12 2001-12-05 Alpha Thames Ltd Early hydrocarbon extraction system
US7793723B2 (en) * 2006-01-19 2010-09-14 Single Buoy Moorings, Inc. Submerged loading system
US8122965B2 (en) * 2006-12-08 2012-02-28 Horton Wison Deepwater, Inc. Methods for development of an offshore oil and gas field
FR2935679B1 (fr) * 2008-09-05 2010-09-24 Saipem Sa Support flottant comprenant un touret equipe de deux bouees d'amarrage de lignes d'ancrage et de conduites de liaison fond/surface
US8141645B2 (en) * 2009-01-15 2012-03-27 Single Buoy Moorings, Inc. Offshore gas recovery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892495A (en) * 1986-03-24 1990-01-09 Svensen Niels Alf Subsurface buoy mooring and transfer system for offshore oil and gas production
US5878814A (en) * 1994-12-08 1999-03-09 Den Norske Stats Oljeselskap A.S. Method and system for offshore production of liquefied natural gas
US20030099517A1 (en) * 1998-06-05 2003-05-29 Single Buoy Moorings Inc. Loading arrangement for floating production storage and offloading vessel
CN1440485A (zh) * 2000-07-11 2003-09-03 哈利伯顿能源服务公司 油井管理系统
US20050042952A1 (en) * 2000-11-22 2005-02-24 Stephane Montbarbon Marine riser system
US20080138159A1 (en) * 2006-12-06 2008-06-12 Chevron U.S.A. Inc. Marine Riser System
CN101730784A (zh) * 2007-06-12 2010-06-09 单浮筒系泊公司 可解脱立管系泊系统
CN102388200A (zh) * 2009-04-06 2012-03-21 瑞士单浮筒系泊公司 使用地下气体贮存以在相互连接的处理单元间提供流动保障缓冲
WO2013037012A1 (en) * 2011-09-16 2013-03-21 Woodside Energy Technologies Pty Ltd Marine transportation of unsweetened natural gas

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
单传祯等: "《采气地质》", 31 January 2009, 四川大学出版社 *
卢琳等: "低产油井间歇生产工作制度的研究与应用", 《断块油气田》 *
姚军等: "《流线数值试井解释理论与方法》", 31 May 2008, 中国石油大学出版 *
张鹏等: "多次开关井变产量叠加分析对试井解释曲线的影响", 《油气井测试》 *

Also Published As

Publication number Publication date
US20160123131A1 (en) 2016-05-05
US9551211B2 (en) 2017-01-24
BR112015030236B1 (pt) 2021-10-05
AU2014275022A1 (en) 2016-01-28
WO2014197559A1 (en) 2014-12-11
EP3004536A1 (en) 2016-04-13
AU2014275022B2 (en) 2017-03-09
EP3004536A4 (en) 2017-05-03
BR112015030236A2 (pt) 2017-07-25
MY182947A (en) 2021-02-05

Similar Documents

Publication Publication Date Title
Alcalde et al. A criteria-driven approach to the CO2 storage site selection of East Mey for the acorn project in the North Sea
CN111260216A (zh) 一种运营期地下水封储油库渗流场综合评价与防治方法
Neele et al. Independent assessment of high-capacity offshore CO2 storage options
Corbel et al. Identification and geothermal influence of faults in the Perth metropolitan area, Australia
Aldenius Subsurface characterization of the Lund Sandstone–3D model of the sandstone reservoir and evaluation of the geoenergy storage potential, SW Skåne, south Sweden-merged
CN104854478A (zh) 使用模拟测井记录来确定笼合物存在和饱和度的方法和系统
Widyanita et al. Advanced analysis of CO2 storage development plan and its unique compared to field development plan
Allsop et al. Utilizing publicly available datasets for identifying offshore salt strata and developing salt caverns for hydrogen storage
Eremin et al. Smart Fields and wells
Patidar et al. Understanding the Oil and Gas Sector and Its Processes: Upstream, Downstream
Whitaker et al. Simulating flow through forward sediment model stratigraphies: insights into climatic control of reservoir quality in isolated carbonate platforms
Witherspoon et al. Evaluation of underground gas-storage conditions in aquifers through investigations of groundwater hydrology
Omagbon et al. Experiences in developing a dual porosity model of the Leyte geothermal production field
Hasbollah et al. A preliminary basin scale evaluation framework of potential sedimentary basins in Malaysia for carbon dioxide sequestration
Neal et al. The role of core in twenty-first century reservoir characterization: an introduction
CN105358794A (zh) 深水低速率评价生产系统
Angeli et al. Evaluating seal quality for potential storage sites in the Norwegian North Sea
Ohaeri et al. Evaluation of reservoir connectivity and hydrocarbon resource size in a deep water gas field using multi-well interference tests
Frederick et al. Forecasting marine sediment properties with geospatial machine learning
Smyth et al. Best Management Practices for subseabed geologic sequestration of carbon dioxide
Jones et al. The use of reservoir simulation in estimating reserves
Al-Shuaib et al. Innovative Pressure Assessment & Mapping in a Giant Carbonate Reservoir Brown Field Under Water Flood Development
Rosa et al. Mero Reservoir: A Journey of Challenges and Opportunities
Rojas Application of J-functions to prepare a consistent tight gas reservoir simulation model: Bossier field
Williams et al. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160224

RJ01 Rejection of invention patent application after publication