CN105356889A - Cdr中基于三级流水线的高速qc-ldpc编码器 - Google Patents

Cdr中基于三级流水线的高速qc-ldpc编码器 Download PDF

Info

Publication number
CN105356889A
CN105356889A CN201510644407.2A CN201510644407A CN105356889A CN 105356889 A CN105356889 A CN 105356889A CN 201510644407 A CN201510644407 A CN 201510644407A CN 105356889 A CN105356889 A CN 105356889A
Authority
CN
China
Prior art keywords
vector
equal
matrix
check
cyclic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201510644407.2A
Other languages
English (en)
Inventor
张鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RONGCHENG DINGTONG ELECTRONIC INFORMATION TECHNOLOGY Co Ltd
Original Assignee
RONGCHENG DINGTONG ELECTRONIC INFORMATION TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RONGCHENG DINGTONG ELECTRONIC INFORMATION TECHNOLOGY Co Ltd filed Critical RONGCHENG DINGTONG ELECTRONIC INFORMATION TECHNOLOGY Co Ltd
Priority to CN201510644407.2A priority Critical patent/CN105356889A/zh
Publication of CN105356889A publication Critical patent/CN105356889A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1148Structural properties of the code parity-check or generator matrix

Landscapes

  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Complex Calculations (AREA)

Abstract

本发明提供了一种CDR中基于三级流水线的高速QC-LDPC编码器,该编码器包括1个I型后向迭代电路、1个高密度矩阵与向量的乘法器和1个II型后向迭代电路。高密度矩阵与向量的乘法器实现高密度矩阵与向量的乘法运算,I型和II型后向迭代电路都实现后向迭代运算。整个编码过程划分为3级流水线。本发明提供的CDR系统中1/4码率高速QC-LDPC编码器具有结构简单、成本低、吞吐量大等优点。

Description

CDR中基于三级流水线的高速QC-LDPC编码器
技术领域
本发明涉及信道编码领域,特别涉及一种CDR(ChinaDigitalRadio)系统中基于三级流水线的高速QC-LDPC编码器。
背景技术
低密度奇偶校验(Low-DensityParity-Check,LDPC)码是高效的信道编码技术之一,而准循环LDPC(Quasi-CyclicLDPC,QC-LDPC)码是一种特殊的LDPC码。QC-LDPC码的生成矩阵G和校验矩阵H都是由循环矩阵构成的阵列,具有分段循环的特点,故被称为QC-LDPC码。循环矩阵的首行是末行循环右移1位的结果,其余各行都是其上一行循环右移1位的结果,因此,循环矩阵完全由其首行来表征。通常,循环矩阵的首行被称为它的生成多项式。
CDR标准采用系统形式的QC-LDPC码,其生成矩阵G的左半部分是一个单位矩阵,右半部分是由e×c个b×b阶循环矩阵Gi,j(0≤i<e,e≤j<t,t=e+c)构成的阵列,如下所示:
其中,I是b×b阶单位矩阵,0是b×b阶全零矩阵。G的连续b行和b列分别被称为块行和块列。由式(1)可知,G有e块行和t块列。CDR标准采用了一种码率η=1/4的QC-LDPC码,对于该码,t=36,e=9,c=27,b=256。
CDR标准中1/4码率QC-LDPC编码器的现有解决方案是基于27个I型移位寄存器加累加器(Type-IShift-Register-Adder-Accumulator,SRAA-I)电路的串行编码器。由27个SRAA-I电路构成的串行编码器,在2304个时钟周期内完成编码。该方案需要13824个寄存器、6912个二输入与门和6912个二输入异或门,还需要62208比特ROM存储循环矩阵的生成多项式。该方案有两个缺点:一是需要大量存储器,导致电路成本高;二是串行输入信息比特,编码速度慢。
发明内容
CDR系统中1/4码率QC-LDPC编码器的现有实现方案存在成本高、编码速度慢的缺点,针对这些技术问题,本发明提供了一种基于三级流水线的高速QC-LDPC编码器。
如图2所示,通信系统中基于三级流水线的高速QC-LDPC编码器主要由3部分组成:I型后向迭代电路、高密度矩阵与向量的乘法器和II型后向迭代电路。编码过程分3步完成:第1步,使用I型后向迭代电路计算向量q和x;第2步,使用高密度矩阵与向量的乘法器计算部分校验向量px;第3步,使用II型后向迭代电路计算部分校验向量py,从而得到校验向量p=(px,py)。
本发明提供的CDR系统中1/4码率高速QC-LDPC编码器结构简单,能在显著提高编码速度的条件下,减少存储器,从而降低成本,提高吞吐量。
关于本发明的优势与方法可通过下面的发明详述及附图得到进一步的了解。
附图说明
图1是行列交换后近似下三角校验矩阵的结构示意图;
图2是基于三级流水线的QC-LDPC编码过程;
图3是循环左移累加器RLA电路的功能框图;
图4是由1个RLA电路构成的一种高密度矩阵与向量的乘法器;
图5是I型后向迭代电路;
图6给出了矩阵Q中非零循环矩阵所在的块位置及其循环右移位数;
图7是II型后向迭代电路;
图8给出了矩阵Y中非零循环矩阵所在的块位置及其循环右移位数;
图9总结了编码器各编码步骤以及整个编码过程所需的硬件资源和处理时间。
具体实施方式
下面结合附图对本发明的较佳实施例作详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围作出更为清楚明确的界定。
循环矩阵的行重和列重相同,记作w。如果w=0,那么该循环矩阵是全零矩阵。如果w=1,那么该循环矩阵是可置换的,称为置换矩阵,它可通过对单位矩阵I循环右移若干位得到。QC-LDPC码的校验矩阵H是由c×t个b×b阶循环矩阵Hj,k(1≤j≤c,1≤k≤t,t=e+c)构成的如下阵列:
通常情况下,校验矩阵H中的任一循环矩阵要么是全零矩阵(w=0)要么是置换矩阵(w=1)。令循环矩阵Hj,k的首行gj,k=(gj,k,1,gj,k,2,…,gj,k,b)是其生成多项式,其中gj,k,m=0或1(1≤m≤b)。因为H是稀疏的,所以gj,k只有1个‘1’,甚至没有‘1’。
对于CDR系统中1/4码率的QC-LDPC码,H的前9块列对应的是信息向量a,后27块列对应的是校验向量p。以b比特为一段,信息向量a被等分为9段,即a=(a1,a2,…,a9);校验向量p被等分为27段,即p=(p1,p2,…,p27)。
对校验矩阵H进行行交换和列交换操作,将其变换成近似下三角形状HALT,如图1所示。行列交换的过程如下:第1步,进行块列交换,前9块列保持不动,后27块列重新排序,它们分别对应原来的第22、13、11、24、15、17、14、21、16、29、30、10、12、26、25、19、31、35、18、36、32、33、34、20、23、27、28块列;第2步,对所有块行进行块行交换,它们分别对应原来的第20、4、26、16、2、17、3、12、24、11、6、18、7、27、1、22、14、5、13、23、19、21、15、10、8、25、9块行;第3步,将27块行中的置换矩阵分别循环左移167、227、130、81、149、72、189、128、3、236、111、39、81、180、42、171、184、217、130、41、190、7、248、145、97、138、96位。
在图1中,所有矩阵的单位都是b=256比特而不是1比特。A是由26×9个b×b阶循环矩阵构成,B是由26×1个b×b阶循环矩阵构成,T是由26×26个b×b阶循环矩阵构成,C是由1×9个b×b阶循环矩阵构成,D是由1×1个b×b阶循环矩阵构成,E是由1×26个b×b阶循环矩阵构成。T是下三角矩阵,u=1反映了校验矩阵HALT与下三角矩阵的接近程度。在图1中,矩阵A和C对应信息向量a,矩阵B和D对应一部分校验向量px=p1,矩阵T和E则对应余下的校验向量py=(p2,p3,…,p27)。p=(px,py)。上述矩阵和向量满足如下关系:
px Τ=Φ(ET-1AaΤ+CaΤ)(3)
py Τ=T-1(AaΤ+Bpx Τ)(4)
其中,Φ=(ET-1B+D)-1,上标Τ-1分别表示转置和逆。众所周知,循环矩阵的逆、乘积、和仍然是循环矩阵。因此,Φ也是由循环矩阵构成的阵列。虽然矩阵E、T、B和D都是稀疏矩阵,但通常情况下Φ不再稀疏而是高密度的。
令qT=T–1AaT,xT=EqT+CaT以及px T=ΦxT
向量q和x可由下式计算得到:
A T 0 C E I a q x T = Q a q x T = 0 - - - ( 5 )
其中,
Q = A T 0 C E I - - - ( 6 )
一旦计算得出px,式(4)可改写为:
[ABT][apxpy]Τ=Y[apxpy]Τ=0(7)
其中,
Y=[ABT](8)
因为Q和Y与T一样都是下三角矩阵,所以式(5)中的[qx]和式(7)中的py都可采用后向迭代的计算方式。
Φ涉及高密度矩阵与向量的乘法,而Q和Y涉及后向迭代计算。根据以上讨论,可给出一种基于三级流水线的QC-LDPC编码过程,如图2所示。
px T=ΦxT等价于px=xΦT。令x=(x1,x2,…,xu×b)。定义u比特向量sn=(xn,xn+b,…,xn+(u-1)×b),其中1≤n≤b。令Φj(1≤j≤u)是由ΦT的第j块列中所有循环矩阵生成多项式构成的u×b阶矩阵。则有
pj=(…((0+s1Φj)ls(1)+s2Φj)ls(1)+…+sbΦj)ls(1)(9)
其中,上标ls(1)表示循环左移1位。
由式(9)可得到一种循环左移累加器(Rotate-Left-Accumulator,RLA)电路,如图3所示。查找表的索引是u比特向量sn,查找表Lj事先存储可变的u比特向量与固定的Φj的所有可能乘积,故需2ub比特的只读存储器(Read-OnlyMemory,ROM)。b比特寄存器R1,R2,…,Ru分别用于缓冲向量x的向量段x1,x2,…,xu,b比特寄存器Ru+j用于存储px的校验段pj。1个RLA电路计算向量pj需要b个时钟周期。
对于CDR系统,使用1个RLA电路计算px=p1是一种合理方案,如图4所示的高密度矩阵与向量的乘法器。因为ΦT是一个循环矩阵,矩阵Φ1恰好等于ΦT的循环矩阵生成多项式。高密度矩阵与向量的乘法器由1个查找表L1、2个b比特寄存器R2,1和R2,2以及1个b位二输入异或门X2,1组成。查找表L1存储可变的1比特向量与固定的矩阵Φ1的所有可能乘积,寄存器R2,1用于缓冲向量x的向量段x1,寄存器R2,2用于存储px的校验段p1。1个RLA电路需使用256个二输入异或门,512比特的ROM和512个寄存器。1个RLA电路计算向量px需要256个时钟周期。使用高密度矩阵与向量的乘法器计算向量px的步骤如下:
第1步,清零寄存器R2,2,输入向量段x1,将它存入寄存器R2,1中;
第2步,寄存器R2,1循环左移1次,异或门X2,1对查找表L1的输出和寄存器R2,2的内容进行异或,异或结果被循环左移1次后存回寄存器R2,2
第3步,重复第2步255次,完成后,寄存器R2,2存储的内容是校验段p1,它构成了部分校验向量px
式(5)隐含了后向迭代操作,必须逐段求解向量q和x。定义[qx]=(q1,q2,…,q27),并初始化为全零。首先,q1是矩阵Q的第1块行与向量[aqx]T之积。其次,q2是矩阵Q的第2块行与向量[aqx]T之积。重复上述过程,直到算完q27为止,如图5所示的I型后向迭代电路。I型后向迭代电路由36个b比特寄存器R1,1,R1,2,…,R1,36和27个多输入模2加法器A1,1,A1,2,…,A1,27组成。
以计算qj(1≤j≤27)为例。校验矩阵H中的非零循环矩阵通常是单位矩阵的循环右移版本。假设矩阵Q的第j块行的前9块列中有M个非零循环矩阵,它们的循环右移位数分别是sj,k1,sj,k2,…,sj,kM(1≤k1,k2,…,kM≤9),矩阵Q的第j块行的后27块列中有N个非零循环矩阵,它们的循环右移位数分别是sj,m1,sj,m2,…,sj,mN(9<m1,m2,…,mN<9+j)。则
q j = I r s ( s j , k 1 ) a k 1 + I r s ( s j , k 2 ) a k 2 + ... + I r s ( s j , k M ) a k M + I r s ( s j , m 1 ) q m 1 - e + I r s ( s j , m 2 ) q m 2 - e + ... + I r s ( s j , m N ) q m N - e = a k 1 l s ( s j , k 1 ) + a k 2 l s ( s j , k 2 ) + ... + a k M l s ( s j , k M ) + q m 1 - e l s ( s j , m 1 ) + q m 2 - e l s ( s j , m 2 ) + ... + q m N - e l s ( s j , m N ) - - - ( 10 )
其中,上标rs(n)ls(n)分别表示循环右移n位和循环左移n位。因为M和N都很小,所以式(10)可由一个对输入循环左移的多输入模2加法器在1个时钟周期内计算完毕。因此,计算向量[qx]共需27个时钟周期。既然矩阵Q中共有β=109个非零循环矩阵,那么I型后向迭代电路需使用(β–2c)b=14080个二输入异或门。
矩阵Q是由27×36个b×b阶循环矩阵Qj,k(1≤j≤27,1≤k≤36)构成的阵列。非零循环矩阵Qj,k相对于b×b阶单位矩阵的循环右移位数是sj,k,0≤sj,k<b。为便于描述,全零循环矩阵相对于b×b阶循环矩阵的循环右移位数记作sj,k=‘-’。在图5中,当1≤k≤9时,Qj,k在垂直方向上对应向量段ak,当9<k<9+j时,Qj,k在垂直方向上对应向量段qk-9。全零循环矩阵Qj,k在垂直方向上对应的向量段不参与异或运算,非零循环矩阵Qj,k在垂直方向上对应的向量段ak或qk-9被循环左移sj,k位后送入多输入模2加法器A1,j中进行异或运算,A1,j的计算结果是qj,存入寄存器R1,j中。图6给出了矩阵Q中非零循环矩阵所在的块位置及其循环右移位数。使用I型后向迭代电路计算向量q和x的步骤如下:
第1步,输入信息段a1,a2,…,a9,将它们分别存入寄存器R1,28,R1,29,…,R1,36中;
第2步,非零循环矩阵Qj,k在垂直方向上对应的向量段ak或qk-9被循环左移sj,k位后送入多输入模2加法器A1,j中进行异或运算,异或结果qj被存入寄存器R1,j中,其中,1≤j≤27,1≤k<36,0≤sj,k<b,当1≤k≤9时,Qj,k在垂直方向上对应向量段ak,当9<k<9+j时,Qj,k在垂直方向上对应向量段qk-9
第3步,以1为步长递增改变j的取值,重复第2步26次,最终,寄存器R1,1,R1,2,…,R1,27存储的分别是向量段q1,q2,…,q27,它们构成了向量q和x。
式(7)也隐含了后向迭代操作,必须逐段求解部分校验向量py。初始化py=(p2,p3,…,p27)为全零。首先,p2是矩阵Y的第1块行与向量[apxpy]T之积。其次,p3是矩阵Y的第2块行与向量[apxpy]T之积。重复上述过程,直到算完p27为止,如图7所示的II型后向迭代电路。II型后向迭代电路由36个b比特寄存器R3,1,R3,2,…,R3,36和26个多输入模2加法器A3,1,A3,2,…,A3,26组成。计算部分校验向量py共需26个时钟周期。既然矩阵Y中共有ξ=106个非零循环矩阵,那么II型后向迭代电路需使用(ξ–2c+2u)b=13824个二输入异或门。矩阵Y是由26×36个b×b阶循环矩阵Yj,k(1≤j≤26,1≤k≤36)构成的阵列。非零循环矩阵Yj,k相对于b×b阶单位矩阵的循环右移位数是sj,k,0≤sj,k<b。图8给出了矩阵Y中非零循环矩阵所在的块位置及其循环右移位数。使用II型后向迭代电路计算部分校验向量py的步骤如下:
第1步,输入信息段a1,a2,…,a9,将它们分别存入寄存器R3,27,R3,28,…,R3,35中,输入校验段p1,将它存入寄存器R3,36中;
第2步,非零循环矩阵Yj,k在垂直方向上对应的向量段ak或pk-9被循环左移sj,k位后送入多输入模2加法器A3,j中进行异或运算,异或结果pj+1被存入寄存器R3,j中,其中,1≤j≤26,1≤k<36,0≤sj,k<b,当1≤k≤9时,Yj,k在垂直方向上对应向量段ak,当9<k<9+j时,Yj,k在垂直方向上对应向量段pk-9
第3步,以1为步长递增改变j的取值,重复第2步25次,最终,寄存器R3,1,R3,2,…,R3,26存储的分别是向量段p2,p3,…,p27,它们构成了部分校验向量py
本发明提供了一种基于三级流水线的高速QC-LDPC编码方法,适用于CDR系统中的1/4码率QC-LDPC码,其编码步骤描述如下:
第1步,使用I型后向迭代电路计算向量q和x;
第2步,使用高密度矩阵与向量的乘法器计算部分校验向量px
第3步,使用II型后向迭代电路计算部分校验向量py,从而得到校验向量p=(px,py)。
图9总结了编码器各编码步骤以及整个编码过程所需的硬件资源消耗和处理时间。
从图9不难看出,流水线充满时,整个编码过程共需max(t,u+b)=257个时钟周期,远小于基于27个SRAA-I电路的串行编码方法所需的2304个时钟周期。前者的编码速度是后者的9倍。
CDR标准中1/4码率QC-LDPC编码器的现有解决方案需要13824个寄存器、6912个二输入与门和6912个二输入异或门,还需要62208比特ROM存储循环矩阵的生成多项式。而本发明需要18944个寄存器、0个二输入与门和28160个二输入异或门,只需要512比特ROM。
综上可见,与传统的串行SRAA法相比,本发明具有编码速度快、存储器消耗少等优点。
以上所述,仅为本发明的具体实施方式之一,但本发明的保护范围并不局限于此,任何熟悉本领域的技术人员在本发明所揭露的技术范围内,可不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。

Claims (5)

1.一种CDR中基于三级流水线的高速QC-LDPC编码器,1/4码率QC-LDPC码的校验矩阵H是由c×t个b×b阶循环矩阵构成的阵列,其中,c=27,t=36,b=256,e=t-c=9,校验矩阵H通过行列交换变换成近似下三角形状,可划分为6个子矩阵, H = A B T C D E , A是由26×9个b×b阶循环矩阵构成,B是由26×1个b×b阶循环矩阵构成,下三角矩阵T是由26×26个b×b阶循环矩阵构成,C是由1×9个b×b阶循环矩阵构成,D是由1×1个b×b阶循环矩阵构成,E是由1×26个b×b阶循环矩阵构成,Φ=(ET-1B+D)-1是由1×1个b×b阶循环矩阵构成,Φ1是由ΦT的循环矩阵生成多项式构成的1×b阶矩阵,其中,上标Τ-1分别表示转置和逆, Q = A T 0 C E I 是由27×36个b×b阶循环矩阵Qj,k构成,其中,I是单位矩阵,0是全零矩阵,1≤j≤27,1≤k≤36,非零循环矩阵Qj,k相对于b×b阶单位矩阵的循环右移位数是sj,k,其中,0≤sj,k<b,Y=[ABT]是由26×36个b×b阶循环矩阵Yj,k构成,其中,1≤j≤26,1≤k≤36,非零循环矩阵Yj,k相对于b×b阶单位矩阵的循环右移位数是sj,k,其中,0≤sj,k<b,A和C对应信息向量a,矩阵B和D对应一部分校验向量px,矩阵T和E则对应余下的校验向量py,校验向量p=(px,py),以b比特为一段,信息向量a被等分为9段,即a=(a1,a2,…,a9),校验向量p被等分为27段,即p=(p1,p2,…,p27),px=p1,py=(p2,p3,…,p27),向量q被等分为26段,即q=(q1,q2,…,q26),向量x被等分为1段,即x=q27,[qx]=(q1,q2,…,q27),其特征在于,所述编码器包括以下部件:
I型后向迭代电路,由36个b比特寄存器R1,1,R1,2,…,R1,36和27个多输入模2加法器A1,1,A1,2,…,A1,27组成,用于计算向量q和x;
高密度矩阵与向量的乘法器,由1个查找表L1、2个b比特寄存器R2,1和R2,2以及1个b位二输入异或门X2,1组成,用于计算部分校验向量px,查找表L1存储可变的1比特向量与固定的矩阵Φ1的所有可能乘积;
II型后向迭代电路,由36个b比特寄存器R3,1,R3,2,…,R3,36和26个多输入模2加法器A3,1,A3,2,…,A3,26组成,用于计算部分校验向量py,从而得到校验向量p=(px,py)。
2.根据权利要求1所述的一种CDR中基于三级流水线的高速QC-LDPC编码器,其特征在于,所述I型后向迭代电路计算向量q和x的步骤如下:
第1步,输入信息段a1,a2,…,a9,将它们分别存入寄存器R1,28,R1,29,…,R1,36中;
第2步,非零循环矩阵Qj,k在垂直方向上对应的向量段ak或qk-9被循环左移sj,k位后送入多输入模2加法器A1,j中进行异或运算,异或结果qj被存入寄存器R1,j中,其中,1≤j≤27,1≤k<36,0≤sj,k<b,当1≤k≤9时,Qj,k在垂直方向上对应向量段ak,当9<k<9+j时,Qj,k在垂直方向上对应向量段qk-9
第3步,以1为步长递增改变j的取值,重复第2步26次,最终,寄存器R1,1,R1,2,…,R1,27存储的分别是向量段q1,q2,…,q27,它们构成了向量q和x。
3.根据权利要求1所述的一种CDR中基于三级流水线的高速QC-LDPC编码器,其特征在于,所述高密度矩阵与向量的乘法器计算向量px的步骤如下:
第1步,清零寄存器R2,2,输入向量段x1,将它存入寄存器R2,1中;
第2步,寄存器R2,1循环左移1次,异或门X2,1对查找表L1的输出和寄存器R2,2的内容进行异或,异或结果被循环左移1次后存回寄存器R2,2
第3步,重复第2步255次,完成后,寄存器R2,2存储的内容是校验段p1,它构成了部分校验向量px
4.根据权利要求1所述的一种CDR中基于三级流水线的高速QC-LDPC编码器,其特征在于,所述II型后向迭代电路计算部分校验向量py的步骤如下:
第1步,输入信息段a1,a2,…,a9,将它们分别存入寄存器R3,27,R3,28,…,R3,35中,输入校验段p1,将它存入寄存器R3,36中;
第2步,非零循环矩阵Yj,k在垂直方向上对应的向量段ak或pk-9被循环左移sj,k位后送入多输入模2加法器A3,j中进行异或运算,异或结果pj+1被存入寄存器R3,j中,其中,1≤j≤26,1≤k<36,0≤sj,k<b,当1≤k≤9时,Yj,k在垂直方向上对应向量段ak,当9<k<9+j时,Yj,k在垂直方向上对应向量段pk-9
第3步,以1为步长递增改变j的取值,重复第2步25次,最终,寄存器R3,1,R3,2,…,R3,26存储的分别是向量段p2,p3,…,p27,它们构成了部分校验向量py
5.一种CDR中基于三级流水线的高速QC-LDPC编码方法,1/4码率QC-LDPC码的校验矩阵H是由c×t个b×b阶循环矩阵构成的阵列,其中,c=27,t=36,b=256,e=t-c=9,校验矩阵H通过行列交换变换成近似下三角形状,可划分为6个子矩阵, H = A B T C D E , A是由26×9个b×b阶循环矩阵构成,B是由26×1个b×b阶循环矩阵构成,下三角矩阵T是由26×26个b×b阶循环矩阵构成,C是由1×9个b×b阶循环矩阵构成,D是由1×1个b×b阶循环矩阵构成,E是由1×26个b×b阶循环矩阵构成,Φ=(ET-1B+D)-1是由1×1个b×b阶循环矩阵构成,Φ1是由ΦT的循环矩阵生成多项式构成的1×b阶矩阵,其中,上标Τ-1分别表示转置和逆, Q = A T 0 C E I 是由27×36个b×b阶循环矩阵Qj,k构成,其中,I是单位矩阵,0是全零矩阵,1≤j≤27,1≤k≤36,非零循环矩阵Qj,k相对于b×b阶单位矩阵的循环右移位数是sj,k,其中,0≤sj,k<b,Y=[ABT]是由26×36个b×b阶循环矩阵Yj,k构成,其中,1≤j≤26,1≤k≤36,非零循环矩阵Yj,k相对于b×b阶单位矩阵的循环右移位数是sj,k,其中,0≤sj,k<b,A和C对应信息向量a,矩阵B和D对应一部分校验向量px,矩阵T和E则对应余下的校验向量py,校验向量p=(px,py),以b比特为一段,信息向量a被等分为9段,即a=(a1,a2,…,a9),校验向量p被等分为27段,即p=(p1,p2,…,p27),px=p1,py=(p2,p3,…,p27),向量q被等分为26段,即q=(q1,q2,…,q26),向量x被等分为1段,即x=q27,[qx]=(q1,q2,…,q27),其特征在于,所述编码方法包括以下步骤:
第1步,使用I型后向迭代电路计算向量q和x;
第2步,使用高密度矩阵与向量的乘法器计算部分校验向量px
第3步,使用II型后向迭代电路计算部分校验向量py,从而得到校验向量p=(px,py)。
CN201510644407.2A 2015-10-03 2015-10-03 Cdr中基于三级流水线的高速qc-ldpc编码器 Withdrawn CN105356889A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510644407.2A CN105356889A (zh) 2015-10-03 2015-10-03 Cdr中基于三级流水线的高速qc-ldpc编码器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510644407.2A CN105356889A (zh) 2015-10-03 2015-10-03 Cdr中基于三级流水线的高速qc-ldpc编码器

Publications (1)

Publication Number Publication Date
CN105356889A true CN105356889A (zh) 2016-02-24

Family

ID=55332787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510644407.2A Withdrawn CN105356889A (zh) 2015-10-03 2015-10-03 Cdr中基于三级流水线的高速qc-ldpc编码器

Country Status (1)

Country Link
CN (1) CN105356889A (zh)

Similar Documents

Publication Publication Date Title
US8352847B2 (en) Matrix vector multiplication for error-correction encoding and the like
CN109586732B (zh) 中短码ldpc编解码系统和方法
Huang et al. Bit reliability-based decoders for non-binary LDPC codes
US10333554B2 (en) Efficient generalized tensor product codes encoding schemes
CN104579366B (zh) Wpan中基于三级流水线的高速qc-ldpc编码器
CN103902509A (zh) Wpan中全并行输入的循环左移准循环矩阵乘法器
CN105141319A (zh) 深空通信中基于三级流水线的高速qc-ldpc编码器
CN104579364B (zh) Cdr中基于四级流水线的高速qc-ldpc编码器
CN105356889A (zh) Cdr中基于三级流水线的高速qc-ldpc编码器
CN104539297B (zh) Dtmb中基于四级流水线的高速qc-ldpc编码器
CN104518803B (zh) Cmmb中基于四级流水线的高速qc-ldpc编码器
CN104579365B (zh) 基于四级流水线的高速qc-ldpc编码器
CN106972864A (zh) 深空通信中基于校验矩阵的准循环ldpc编码器
CN105245237A (zh) Dtmb中基于三级流水线的高速qc-ldpc编码器
CN106982063A (zh) Wpan中基于校验矩阵的准循环ldpc编码器
CN105119608A (zh) Cmmb中基于三级流水线的高速qc-ldpc编码器
CN106953646A (zh) 基于共享机制的准循环ldpc编码器
CN105141320A (zh) 基于三级流水线的高速qc-ldpc编码器
CN105099468A (zh) 深空通信中基于四级流水线的高速qc-ldpc编码器
CN105245236A (zh) Wpan中基于二级流水线的高速qc-ldpc编码器
CN104518804A (zh) 基于三级流水线的高速qc-ldpc编码器
CN105141321A (zh) 基于二级流水线的高速qc-ldpc编码器
CN106982064A (zh) Cdr中基于校验矩阵的准循环ldpc编码器
Khan et al. A real time programmable encoder for low density parity check code as specified in the IEEE P802. 16E/D7 standard and its efficient implementation on a DSP processor
CN106982065A (zh) 基于校验矩阵的准循环ldpc编码器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20160224

WW01 Invention patent application withdrawn after publication