CN105355682A - 一种高光电转换效率的太阳能电池 - Google Patents

一种高光电转换效率的太阳能电池 Download PDF

Info

Publication number
CN105355682A
CN105355682A CN201510717447.5A CN201510717447A CN105355682A CN 105355682 A CN105355682 A CN 105355682A CN 201510717447 A CN201510717447 A CN 201510717447A CN 105355682 A CN105355682 A CN 105355682A
Authority
CN
China
Prior art keywords
solar cell
transformation efficiency
photoelectric transformation
photoelectric conversion
conversion efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510717447.5A
Other languages
English (en)
Inventor
陆希悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Tianqing Electronic Communication Co Ltd
Original Assignee
Suzhou Tianqing Electronic Communication Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Tianqing Electronic Communication Co Ltd filed Critical Suzhou Tianqing Electronic Communication Co Ltd
Priority to CN201510717447.5A priority Critical patent/CN105355682A/zh
Publication of CN105355682A publication Critical patent/CN105355682A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开一种高光电转换效率的太阳能电池,所述高光电转换效率的太阳能电池包括最上层的光学增透膜、中间层的钕铁硼磁性材料和最下层的铜铟镓硒组合而成,所述光学增透膜包括氟化镁、氧化钛、硫化铅、硒化铅,所述的光学增透膜占高光电转换效率的太阳能电池总体分量的4%-5%,所述的钕铁硼磁性材料占高光电转换效率的太阳能电池总体分量的54%-56%,所述的铜铟镓硒占高光电转换效率的太阳能电池总体分量的41%-42%,本发明提供一种高光电转换效率的太阳能电池,具有耐热、耐寒性、延长使用寿命和降低成本等特点。

Description

一种高光电转换效率的太阳能电池
技术领域
本发明涉及一种塑料,尤其涉及一种高光电转换效率的太阳能电池。
背景技术
数据显示2012年,我国太阳能电池继续保持产量和性价比优势,国际竞争力愈益增强。产量持续增大,预计2012年,我国太阳能电池产能将超过40GW,产量将超过24GW,仍将占据全球半壁江山。
随着太阳能电池行业的不断发展,内业竞争也在不断加剧,大型太阳能电池企业间并购整合与资本运作日趋频繁,国内优秀的太阳能电池生产企业愈来愈重视对行业市场的研究,特别是对产业发展环境和产品购买者的深入研究。正因为如此,一大批国内优秀的太阳能电池品牌迅速崛起,逐渐成为太阳能电池行业中的翘楚。
而推行太阳能发电最积极的国家首推日本。1994年日本实施补助奖励办法,推广每户3,000瓦特的“市电并联型太阳光电能系统”。在第一年,政府补助49%的经费,以后的补助再逐年递减。“市电并联型太阳光电能系统”是在日照充足的时候,由太阳能电池提供电能给自家的负载用,若有多余的电力则另行储存。当发电量不足或者不发电的时候,所需要的电力再由电力公司提供。到了1996年,日本有2,600户装置太阳能发电系统,装设总容量已经有8百万瓦特。一年后,已经有9,400户装置,装设的总容量也达到了32百万瓦特。随着环保意识的高涨和政府补助金的制度,预估日本住家用太阳能电池的需求量,也会急速增加。
发明内容
本发明的目的在于提供一种高光电转换效率的太阳能电池,具有耐热、耐寒性、延长使用寿命和降低成本等特点。
本发明的技术方案是:一种高光电转换效率的太阳能电池,所述高光电转换效率的太阳能电池包括最上层的光学增透膜、中间层的钕铁硼磁性材料和最下层的铜铟镓硒组合而成,所述光学增透膜包括氟化镁、氧化钛、硫化铅、硒化铅,所述的光学增透膜占高光电转换效率的太阳能电池总体分量的4%-5%,所述的钕铁硼磁性材料占高光电转换效率的太阳能电池总体分量的54%-56%,所述的铜铟镓硒占高光电转换效率的太阳能电池总体分量的41%-42%。
在本发明一个较佳实施例中,所述钕铁硼磁性材料包括镨钕金属和硼铁合金。
在本发明一个较佳实施例中,所述的光学增透膜占高光电转换效率的太阳能电池总体分量的4%,所述的钕铁硼磁性材料占高光电转换效率的太阳能电池总体分量的55%,所述的铜铟镓硒占高光电转换效率的太阳能电池总体分量的41%。
本发明的一种高光电转换效率的太阳能电池,具有耐热、耐寒性、延长使用寿命和降低成本等特点。
具体实施方式
下面结合对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
在一实施例中,本发明的一种高光电转换效率的太阳能电池,所述高光电转换效率的太阳能电池包括最上层的光学增透膜、中间层的钕铁硼磁性材料和最下层的铜铟镓硒组合而成,所述光学增透膜包括氟化镁、氧化钛、硫化铅、硒化铅,所述的光学增透膜占高光电转换效率的太阳能电池总体分量的4%-5%,所述的钕铁硼磁性材料占高光电转换效率的太阳能电池总体分量的54%-56%,所述的铜铟镓硒占高光电转换效率的太阳能电池总体分量的41%-42%。
进一步说明,所述钕铁硼磁性材料包括镨钕金属和硼铁合金,所述的光学增透膜占高光电转换效率的太阳能电池总体分量的4%,所述的钕铁硼磁性材料占高光电转换效率的太阳能电池总体分量的55%,所述的铜铟镓硒占高光电转换效率的太阳能电池总体分量的41%。
进一步说明,钕铁硼是一种磁铁,和我们平时见到的磁铁所不同的是,其优异的磁性能而被称为“磁王”。钕铁硼中含有大量的稀土元素钕、铁及硼,其特性硬而脆。由于表面极易被氧化腐蚀,钕铁硼必须进行表面涂层处理。表面化学钝化是很好的解决方法之一。钕铁硼作为稀土永磁材料的一种具有极高的磁能积和矫顽力,同时高能量密度的优点使钕铁硼永磁材料在现代工业和电子技术中获得了广泛应用,从而使仪器仪表、电声电机、磁选磁化等设备的小型化、轻量化、薄型化成为可能。钕铁硼的优点是性价比高,具良好的机械特性;不足之处在于工作温度低,温度特性差,且易于粉化腐蚀,必须通过调整其化学成分和采取表面处理方法使之得以改进,才能达到实际应用的要求。钕铁硼永磁材料是以金属间化合物Re2Fe14B为基础的永磁材料。主要成分为稀土元素钕(Re)、铁(Fe)、硼(B)。其中稀土元素主要为钕(Nd),为了获得不同性能可用部分镝(Dy)、镨(Pr)等其他稀土金属替代,铁也可被钴(Co)、铝(Al)等其他金属部分替代,硼的含量较小,但却对形成四方晶体结构金属间化合物起着重要作用,使得化合物具有高饱和磁化强度,高的单轴各向异性和高的居里温度。
在进一步说明,铜铟镓硒具有性能稳定、抗辐射能力强,光电转换效率,目前是各种薄膜太阳电池之首,接近于目前市场主流产品晶体硅太阳电池转换效率,成本却是其1/3。正是因为其性能优异被国际上称为下一代的廉价太阳电池,无论是在地面阳光发电还是在空间微小卫星动力电源的应用上具有广阔的市场前景。本发明提供一种高光电转换效率的太阳能电池,具有耐热、耐寒性、延长使用寿命和降低成本等特点。
本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本领域的技术人员在本发明所揭露的技术范围内,可不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。

Claims (3)

1.一种高光电转换效率的太阳能电池,其特征在于:所述高光电转换效率的太阳能电池包括最上层的光学增透膜、中间层的钕铁硼磁性材料和最下层的铜铟镓硒组合而成,所述光学增透膜包括氟化镁、氧化钛、硫化铅、硒化铅,所述的光学增透膜占高光电转换效率的太阳能电池总体分量的4%-5%,所述的钕铁硼磁性材料占高光电转换效率的太阳能电池总体分量的54%-56%,所述的铜铟镓硒占高光电转换效率的太阳能电池总体分量的41%-42%。
2.根据权利要求1所述的高光电转换效率的太阳能电池,其特征在于:所述钕铁硼磁性材料包括镨钕金属和硼铁合金。
3.根据权利要求1所述的高光电转换效率的太阳能电池,其特征在于:所述的光学增透膜占高光电转换效率的太阳能电池总体分量的4%,所述的钕铁硼磁性材料占高光电转换效率的太阳能电池总体分量的55%,所述的铜铟镓硒占高光电转换效率的太阳能电池总体分量的41%。
CN201510717447.5A 2015-10-30 2015-10-30 一种高光电转换效率的太阳能电池 Pending CN105355682A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510717447.5A CN105355682A (zh) 2015-10-30 2015-10-30 一种高光电转换效率的太阳能电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510717447.5A CN105355682A (zh) 2015-10-30 2015-10-30 一种高光电转换效率的太阳能电池

Publications (1)

Publication Number Publication Date
CN105355682A true CN105355682A (zh) 2016-02-24

Family

ID=55331612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510717447.5A Pending CN105355682A (zh) 2015-10-30 2015-10-30 一种高光电转换效率的太阳能电池

Country Status (1)

Country Link
CN (1) CN105355682A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114792737A (zh) * 2022-04-25 2022-07-26 长沙精英军纳米科技有限公司 一种提高6倍吸收储存释放太阳能的太阳能交流电池

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060096633A1 (en) * 2004-11-05 2006-05-11 Industrial Technology Research Institute Magnetic field enhanced photovoltaic device
CN101924184A (zh) * 2010-07-09 2010-12-22 电子科技大学 一种有机薄膜太阳能电池及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060096633A1 (en) * 2004-11-05 2006-05-11 Industrial Technology Research Institute Magnetic field enhanced photovoltaic device
CN101924184A (zh) * 2010-07-09 2010-12-22 电子科技大学 一种有机薄膜太阳能电池及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114792737A (zh) * 2022-04-25 2022-07-26 长沙精英军纳米科技有限公司 一种提高6倍吸收储存释放太阳能的太阳能交流电池

Similar Documents

Publication Publication Date Title
Mrinalini et al. Stipulating low production cost solar cells all set to retail…!
Ma et al. Bismuth Nanoparticles Anchored on Ti3C2Tx MXene Nanosheets for High‐Performance Sodium‐Ion Batteries
US20210135235A1 (en) Film made of metal or a metal alloy
Chen et al. Structural and photoelectron spectroscopic studies of band alignment at the Cu2ZnSnS4/CdS heterojunction with slight Ni doping in Cu2ZnSnS4
Wang et al. Optimal tunneling enhances the quantum photovoltaic effect in double quantum dots
CN105355682A (zh) 一种高光电转换效率的太阳能电池
Jin et al. Theoretically quantifying the effect of pre-lithiation on energy density of Li-ion batteries
Kim et al. Towards sustainable silicon PV manufacturing at the terawatt level
Jarrett et al. Calculating material criticality of transparent conductive electrodes used for thin film and third generation solar cells
Kim et al. Integrated energy conversion and storage device for stable fast charging power systems
CN204288996U (zh) 一种烧结钕铁硼磁体
Wang et al. Effect of Sm doping into CuInTe2 on cohesive energy before and after light absorption
Yan et al. Effects of Ga, Ge and As modification on structural, electrochemical and electronic properties of Li2MnSiO4
US20190051901A1 (en) Battery negative electrode material
Wang et al. Efficient n-doping of MoO3 for improved performance of organic light emitting diodes and polymer solar cells
CN110994078A (zh) 镁电气石离子发电池
Sowe et al. How can insights from degradation modelling inform operational strategies to increase the lifetime of li-ion batteries in islanded mini-grids?
CN103035832B (zh) 热电合金材料与热电元件
Illoul et al. Approaches Towards Improving Zinc-Nickel Batteries Performance
Choi Atomic Layer 2D MoS2 Coated Li-Metal for Advanced Li-Metal Rechargeable Batteries
Kim et al. Improving the Electrochemical Long-Term Stability of a Si Dominant Anode Using a Porous Cu Current Collector Fabricated By the Chemical Methods
Asif Manufacturing of Photovoltaic Devices, Power Electronics and Batteries for Local Direct Current Power Based Nanogrid
Alvi et al. Stable Cycling of BiSbSe1. 5Te1. 5 Conversion-Alloying Anodes
Li et al. Intercalation of Solvated Magnesium-Ions into Layered Transition Metal Sulfide for Fast Mg Storage
Jo et al. Pyro-Synthesis of Nanostructured Spinel ZnMn2O4/C As Negative Electrode for Rechargeable Lithium-Ion Batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160224