CN105354558A - Face image matching method - Google Patents
Face image matching method Download PDFInfo
- Publication number
- CN105354558A CN105354558A CN201510820897.7A CN201510820897A CN105354558A CN 105354558 A CN105354558 A CN 105354558A CN 201510820897 A CN201510820897 A CN 201510820897A CN 105354558 A CN105354558 A CN 105354558A
- Authority
- CN
- China
- Prior art keywords
- image
- matching
- point
- pixel
- surf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 65
- 230000004044 response Effects 0.000 claims description 33
- 238000001514 detection method Methods 0.000 claims description 9
- 230000001815 facial effect Effects 0.000 claims description 8
- 238000005286 illumination Methods 0.000 claims description 7
- 230000001186 cumulative effect Effects 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 5
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 3
- 230000001629 suppression Effects 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims 4
- 238000010168 coupling process Methods 0.000 claims 4
- 238000005859 coupling reaction Methods 0.000 claims 4
- 230000003321 amplification Effects 0.000 claims 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims 2
- 238000002407 reforming Methods 0.000 claims 2
- 241000196324 Embryophyta Species 0.000 claims 1
- 230000019552 anatomical structure morphogenesis Effects 0.000 claims 1
- HUTDUHSNJYTCAR-UHFFFAOYSA-N ancymidol Chemical compound C1=CC(OC)=CC=C1C(O)(C=1C=NC=NC=1)C1CC1 HUTDUHSNJYTCAR-UHFFFAOYSA-N 0.000 claims 1
- 239000012141 concentrate Substances 0.000 claims 1
- 238000010606 normalization Methods 0.000 claims 1
- 230000031068 symbiosis, encompassing mutualism through parasitism Effects 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 3
- 238000012545 processing Methods 0.000 abstract description 2
- 238000005070 sampling Methods 0.000 description 6
- 238000012795 verification Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 206010034719 Personality change Diseases 0.000 description 1
- 108010063499 Sigma Factor Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000004709 eyebrow Anatomy 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000000513 principal component analysis Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/16—Human faces, e.g. facial parts, sketches or expressions
- G06V40/168—Feature extraction; Face representation
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
本发明人脸图像匹配方法,涉及图像数据处理,是基于两次SURF和形状上下文的人脸图像匹配方法,利用SURF算法粗匹配得到尺度差和方向差信息,再利用这些信息进行SURF算法精确匹配,对得到的匹配结果用形状上下文算法去除误匹配,步骤是:确定人脸区域;生成重构的积分图像;两次SURF特征匹配;生成形状上下文描述子,去除误匹配,完成人脸图像匹配。本发明方法克服了现有的人脸图像匹配方法中存在特征点少、匹配点少且正确率不高的缺陷。
The face image matching method of the present invention relates to image data processing. It is a face image matching method based on two SURF and shape contexts. The SURF algorithm is used for rough matching to obtain scale difference and direction difference information, and then the information is used for precise matching by the SURF algorithm. , use the shape context algorithm to remove the false match for the obtained matching result, the steps are: determine the face area; generate the reconstructed integral image; match the SURF feature twice; generate the shape context descriptor, remove the false match, and complete the face image matching . The method of the invention overcomes the defects of few feature points, few matching points and low correct rate in the existing face image matching method.
Description
技术领域technical field
本发明的技术方案涉及图像数据处理,具体地说是人脸图像匹配方法。The technical solution of the invention relates to image data processing, specifically a face image matching method.
背景技术Background technique
人脸图像匹配是图像匹配领域中的一个重要分支。随着自动化信息化时代的到来,人脸图像匹配在现实生活中有了越来越多的应用。因为人脸信息具有独特性,难以伪造且易于采集,广泛应用于门禁系统、视频监控和身份验证技术领域。Face image matching is an important branch in the field of image matching. With the advent of the automated information age, face image matching has more and more applications in real life. Because face information is unique, difficult to forge and easy to collect, it is widely used in access control systems, video surveillance and identity verification technologies.
现有的人脸图像匹配算法大都以提取人脸局部特征为基础,利用人脸局部特征进行匹配。主成分分析法(以下简称PCA方法)是最为常用的人脸局部特征提取方法。1991年,加利福尼亚大学的Turk等人利用PCA方法,提出了经典的“特征脸”人脸图像匹配算法,并取得了较好的效果。但是PCA方法只考虑了图像数据的二阶统计信息,未能利用数据中的高阶统计信息,忽略了多个像素间的非线性相关性。2004年,DavidLowe提出了尺度不变特征转换算法(以下简称SIFT算法),通过高斯微分函数来识别潜在的尺度和旋转不变的关键点,通过一个拟合精细的模型来确定位置和尺度,利用图像局部的梯度方向,给每个关键点位置分配一个或多个方向,实现了尺度和旋转的不变性,在每个关键点的邻域内,对一定尺度的图像局部的梯度,具有一种SIFT表示,可以允许较大的局部变形和光照变化。但是SIFT算法效率低且速度慢。2006年,瑞士的Bay等人提出了SpeededUpRobustFeature算法(以下简称SURF算法)改进了SIFT算法,利用Hessian矩阵行列式的极大值检测特征点,用积分图像盒子滤波的方法简化DOH(即Hessian矩阵的行列式值)中卷积的计算,大大提高了算法效率。但SURF算法仍然存在检测到的特征点少,得到的匹配对数目也少的问题。Most of the existing face image matching algorithms are based on extracting the local features of the face, and use the local features of the face for matching. Principal component analysis (hereinafter referred to as PCA method) is the most commonly used face local feature extraction method. In 1991, Turk and others at the University of California used the PCA method to propose a classic "eigenface" face image matching algorithm, and achieved good results. However, the PCA method only considers the second-order statistical information of the image data, fails to utilize the high-order statistical information in the data, and ignores the nonlinear correlation between multiple pixels. In 2004, David Lowe proposed the scale-invariant feature transformation algorithm (hereinafter referred to as the SIFT algorithm), which identifies potential scale and rotation-invariant key points through the Gaussian differential function, and determines the position and scale through a fine-fitting model. The local gradient direction of the image assigns one or more directions to each key point position, which realizes the invariance of scale and rotation. In the neighborhood of each key point, the local gradient of a certain scale image has a SIFT Indicates that large local deformation and illumination changes can be tolerated. But the SIFT algorithm is inefficient and slow. In 2006, Bay et al. in Switzerland proposed the SpeededUpRobustFeature algorithm (hereinafter referred to as the SURF algorithm) to improve the SIFT algorithm, using the maximum value of the Hessian matrix determinant to detect feature points, and simplifying the DOH (that is, the Hessian matrix) with the method of integral image box filtering. The calculation of the convolution in the determinant value) greatly improves the efficiency of the algorithm. However, the SURF algorithm still has the problem that few feature points are detected and the number of matching pairs obtained is also small.
现有的人脸图像匹配方法由于采用了PCA方法、SIFT算法或SURF算法进行特征提取,存在特征点少、匹配点少且正确率不高的缺陷,尤其对有姿态、表情、光照变化的人脸图像,特征点数目和正确率有待提高。因此,研究特征点多且正确率高的人脸图像匹配方法具有重要的意义。Due to the use of PCA method, SIFT algorithm or SURF algorithm for feature extraction, the existing face image matching methods have the defects of few feature points, few matching points and low accuracy rate, especially for people with posture, expression and illumination changes. Face images, the number of feature points and the accuracy rate need to be improved. Therefore, it is of great significance to study face image matching methods with many feature points and high accuracy.
发明内容Contents of the invention
本发明所要解决的技术问题是:提供人脸图像匹配方法,是基于两次SURF算法和形状上下文的人脸图像匹配方法,简称TSURF+SC(TwiceSURF+ShapeContext),利用SURF算法粗匹配得到尺度差和方向差信息,再利用这些信息进行SURF算法精确匹配,对得到的匹配结果用形状上下文算法去除误匹配,克服了现有的人脸图像匹配方法中存在特征点少、匹配点少且正确率不高的缺陷。The technical problem to be solved by the present invention is to provide a face image matching method, which is a face image matching method based on twice SURF algorithm and shape context, referred to as TSURF+SC (TwiceSURF+ShapeContext), and uses the SURF algorithm to roughly match to obtain the scale difference and direction difference information, and then use the information to perform accurate matching with the SURF algorithm, and use the shape context algorithm to remove the wrong match for the matching result, which overcomes the existing face image matching methods that have few feature points, few matching points and high accuracy. Not high flaws.
本发明解决该技术问题所采用的技术方案是:人脸图像匹配方法,是基于两次SURF和形状上下文的人脸图像匹配方法,具体步骤如下:The technical solution adopted by the present invention to solve the technical problem is: the face image matching method is a face image matching method based on twice SURF and shape context, and the specific steps are as follows:
第一步,确定人脸区域:The first step is to determine the face area:
输入两幅同一个人的相同大小的人脸图像,将其中一幅有表情、姿态和光照变化的图像作为待匹配图像,另一幅标准正面人脸图像作为模板图像,将待匹配图像和模板图像均进行缩放至模板图像的1/8,然后用一个20×20像素大小的人脸检测搜索框自左向右从上到下对上述两幅图像分别进行扫描,对每一个扫描到的子图像,用OpenCV自带的正面人脸检测器判定其是否为人脸图像,若是,则标记为人脸区域,每次对上述两幅图像分别扫描完一遍,将人脸检测搜索框放大10%,再重新扫描一遍,如此重复,直到人脸检测搜索框扩大到上述图像的一半大小时停止扫描,接着对所有被标记的人脸子图像从RGB转换到YCrCb颜色空间,对其中的每一个像素点的Cr、Cb分量进行肤色验证,验证所用肤色条件如公式(1)所示,Input two face images of the same size of the same person, one of the images with expression, posture and illumination changes is used as the image to be matched, and the other standard frontal face image is used as the template image, and the image to be matched and the template image are used Both are scaled to 1/8 of the template image, and then a face detection search box with a size of 20×20 pixels is used to scan the above two images from left to right and from top to bottom, and each scanned sub-image , Use the frontal face detector that comes with OpenCV to determine whether it is a face image, if so, mark it as a face area, scan the above two images each time, enlarge the face detection search box by 10%, and then start again Scan once and repeat until the face detection search box expands to half the size of the above image and stop scanning, then convert all marked face sub-images from RGB to YCrCb color space, and for each pixel in it Cr, The Cb component is used for skin color verification, and the skin color condition used for verification is shown in formula (1),
133≤Cr≤173∩77≤Cb≤127(1),133≤Cr≤173∩77≤Cb≤127(1),
式中Cr、Cb分别代表YCrCb颜色空间中图像的色调和饱和度,In the formula, Cr and Cb respectively represent the hue and saturation of the image in the YCrCb color space,
将上述扫描的图像中具有40%以上的像素点满足公式(1)的区域确定为人脸区域,即感兴趣区域,再将待匹配图像和模板图像中确定的人脸区域放大8倍,恢复到原始尺寸大小;In the above-mentioned scanned image, the area where more than 40% of the pixels satisfy the formula (1) is determined as the face area, that is, the area of interest, and then the face area determined in the image to be matched and the template image is enlarged by 8 times, and restored to original size;
第二步,生成重构的积分图像:In the second step, the reconstructed integral image is generated:
对上述第一步中确定的人脸区域再转换到RGB空间,然后利用公式(2)转换为灰度图像,Convert the face area determined in the first step above to RGB space, and then use formula (2) to convert it into a grayscale image,
X=0.299R+0.587G+0.114B(2),X=0.299R+0.587G+0.114B (2),
上式中,R、G和B分别是RGB空间的红色、绿色和蓝色通道,X表示灰度图像中的灰度值;In the above formula, R, G and B are the red, green and blue channels of the RGB space, respectively, and X represents the gray value in the gray image;
然后计算灰度图像中每个像素点的显著因子,得到显著因子图,如公式(3)所示,Then calculate the saliency factor of each pixel in the grayscale image to obtain the saliency factor map, as shown in formula (3),
σ(Xc)=magn×arctan(V/Xc)(3),σ(X c )=magn×arctan(V/X c ) (3),
上式中,magn为放大系数,σ(Xc)为人脸图像中的像素点的显著因子,V为人脸图像中像素点Xc与以像素点Xc为中心的八邻域Xi(i=0,…,7)的灰度差分,计算方法如公式(4)所示,In the above formula, magn is the magnification factor, σ(X c ) is the salience factor of the pixel in the face image, V is the pixel X c in the face image and the eight neighbors X i ( i =0,...,7), the calculation method is shown in formula (4),
将显著因子图左上角原点与该点所构成的矩形区域内所有点的像素值之和作为积分图上该点的像素值,生成重构的积分图像,如公式(5)所示,The sum of the pixel values of all points in the rectangular area formed by the origin of the upper left corner of the significant factor map and this point is used as the pixel value of the point on the integral map to generate a reconstructed integral image, as shown in formula (5),
上式中IN(Xc)为重构的积分图像中Xc处的像素值,Xc的坐标为(x,y),IN(Xc)的值等于显著因子图中(0,0)点、(x,0)点、(0,y)点与(x,y)点构成的矩形区域内所有像素值的和;In the above formula, IN(X c ) is the pixel value at X c in the reconstructed integral image, the coordinates of X c are (x, y), and the value of IN(X c ) is equal to (0,0) in the significant factor map The sum of all pixel values in the rectangular area formed by point, (x,0) point, (0,y) point and (x,y) point;
第三步,两次SURF特征匹配:The third step, two SURF feature matching:
匹配过程首先检测SURF特征并生成描述子,然后进行一次粗匹配得到尺度差和方向差信息,最后再利用这些信息进行一次精确匹配,具体步骤如下:The matching process first detects SURF features and generates descriptors, then performs a rough match to obtain scale difference and direction difference information, and finally uses this information to perform an accurate match. The specific steps are as follows:
(1)生成SURF描述子:(1) Generate SURF descriptor:
用不同尺寸的盒子滤波模板与上述第二步得到的重构的积分图像求取显著因子图的不同尺度的Hessian矩阵行列式响应图像,之后在这些响应图像上采用3D非极大值抑制进行检测,将具有响应极大值的点确定为特征点,该特征点的尺度为相应响应图像的尺度,设盒子滤波模板大小为L×L像素,初始尺寸L=9像素,其对应的响应图像尺度s=1.2,然后依次使用L=15像素、21像素、27像素的尺寸,分别对应的响应图像尺度s可由公式(6)算出,Use box filter templates of different sizes and the reconstructed integral image obtained in the second step above to obtain the Hessian matrix determinant response images of different scales of the saliency factor map, and then use 3D non-maximum value suppression on these response images for detection , determine the point with the maximum response value as the feature point, the scale of the feature point is the scale of the corresponding response image, set the size of the box filter template as L×L pixels, the initial size L=9 pixels, and the corresponding response image scale s=1.2, then use L=15 pixels, 21 pixels, and 27 pixels in turn, and the corresponding response image scale s can be calculated by formula (6),
s=1.2×L/9(6),s=1.2×L/9(6),
得到特征点的位置和尺度s后,对每个特征点,在以特征点为中心,6s为半径的圆形区域内对显著因子图用大小为4s×4s像素的Haar小波模板进行响应运算,这里s需四舍五入为整数,然后用一个以特征点为中心,张角为π/3的扇形滑动窗口,围绕特征点以步长0.2弧度进行旋转,每转到一处,统计滑动窗口内图像Haar小波水平方向和垂直方向响应值dx、dy的累加值∑dx+∑dy,具有最大响应累加值的方向作为特征点的主方向,得到主方向后,以特征点为中心沿主方向将20s×20s像素大小的图像划分成4×4个子块,每个子块利用大小为2s×2s像素的Haar模板进行响应值的计算,并对水平方向x和垂直方向y的响应值分别统计其累加和及绝对值累加和∑dx、∑|dx|、∑dy、∑|dy|,形成特征矢量,即SURF描述子,每个特征点共生成4×4×4=64维的SURF描述子;After obtaining the position and scale s of the feature points, for each feature point, in a circular area with the feature point as the center and a radius of 6s, the Haar wavelet template with a size of 4s×4s pixels is used to perform a response operation on the significant factor map. Here s needs to be rounded to an integer, and then use a fan-shaped sliding window with a feature point as the center and an opening angle of π/3 to rotate around the feature point with a step size of 0.2 radians. Every time it turns, the image Haar in the sliding window is counted. The accumulative value ∑dx+∑dy of the wavelet horizontal and vertical response values dx and dy, the direction with the largest response accumulative value is taken as the main direction of the feature point. The pixel-sized image is divided into 4×4 sub-blocks, and each sub-block uses a Haar template with a size of 2s×2s pixels to calculate the response value, and the cumulative sum and absolute value of the response values in the horizontal direction x and vertical direction y are respectively counted. Value accumulation and ∑dx, ∑|dx|, ∑dy, ∑|dy| form a feature vector, that is, a SURF descriptor. Each feature point generates a total of 4×4×4=64-dimensional SURF descriptors;
(2)SURF算法粗匹配:(2) SURF algorithm rough matching:
对待匹配图像中的每一个特征点,计算它与模板图像中所有特征点SURF描述子之间的欧氏距离,记录最近邻距离d1和次近邻距离d2,当d1/d2<th1且d1<th2时,将该点与其最近邻记录为一对匹配点,存入初始匹配集,由此完成SURF算法粗匹配,上述th1和th2为预先设定的阈值;For each feature point in the matching image, calculate the Euclidean distance between it and all feature point SURF descriptors in the template image, record the nearest neighbor distance d1 and the second nearest neighbor distance d2, when d1/d2<th1 and d1<th2 , the point and its nearest neighbor are recorded as a pair of matching points and stored in the initial matching set, thus completing the rough matching of the SURF algorithm. The above th1 and th2 are preset thresholds;
(3)SURF算法精确匹配:(3) SURF algorithm exact match:
计算并统计上述(2)步得到的初始匹配集中匹配点对之间的尺度差和角度差,这里所说的尺度为特征点的尺度,角度为特征点主方向,然后计算所有匹配点对尺度差的均值ds和标准差dc,计算角度差的均值dO,将初始匹配集清空,对待匹配图像中每一个特征点计算它与模板图像中所有特征点间的尺度差tds、角度差tdO,待匹配图像与模板图像各部分之间的尺度差和角度差应保持一致,匹配对之间的尺度差和角度差应该落在一定范围内,若tds和tdO满足公式(7)条件,Calculate and count the scale difference and angle difference between the matching point pairs in the initial matching set obtained in step (2) above. The scale mentioned here is the scale of the feature point, and the angle is the main direction of the feature point, and then calculate the scale of all matching point pairs The mean value ds and standard deviation dc of the difference, calculate the mean value dO of the angle difference, clear the initial matching set, and calculate the scale difference tds and angle difference tdO between it and all the feature points in the template image for each feature point in the image to be matched. The scale difference and angle difference between each part of the matching image and the template image should be consistent, and the scale difference and angle difference between the matching pairs should fall within a certain range. If tds and tdO satisfy the conditions of formula (7),
(ds-1.5dc)<tds<(ds+1.5dc)∩(dO-π/6)<tdO<(dO+π/6)(7),(ds-1.5dc)<tds<(ds+1.5dc)∩(dO-π/6)<tdO<(dO+π/6)(7),
则计算两匹配点之间的欧氏距离,重做上述(2)步SURF算法粗匹配步骤,将得到的匹配点存入匹配集中,如果不满足公式(7),则跳过该对匹配点,不再计算它们的欧氏距离;Then calculate the Euclidean distance between the two matching points, redo the above (2) rough matching step of the SURF algorithm, and store the obtained matching points in the matching set. If the formula (7) is not satisfied, skip the pair of matching points , no longer calculate their Euclidean distance;
第四步,去除误匹配:The fourth step is to remove the mismatch:
利用形状上下文算法对上述第三步得到的匹配结果进行误匹配的剔除,具体方法如下:Use the shape context algorithm to eliminate the mismatching results obtained in the third step above. The specific method is as follows:
(1)生成形状上下文描述子:(1) Generate shape context descriptor:
将上述第三步中得到的匹配集中属于待匹配图像和模板图像的特征点分别作为两幅图像的采样点,对每个采样点计算并记录所有本图中其它采样点到它的距离、与它所成的角度,然后将距离归一化后分为6个区间,且将角度[0,2π]分为12个区间,这6个距离区间和12个角度区间组成了72个区块,统计落在各个区块中的采样点数目,就生成了72维的形状上下文描述子;Use the feature points in the matching set obtained in the third step above that belong to the image to be matched and the template image as the sampling points of the two images, and calculate and record the distance from all other sampling points in the image to it, and The angle it forms is then divided into 6 intervals after normalizing the distance, and the angle [0,2π] is divided into 12 intervals. These 6 distance intervals and 12 angle intervals form 72 blocks. By counting the number of sampling points falling in each block, a 72-dimensional shape context descriptor is generated;
(2)剔除误匹配,完成人脸图像匹配:(2) Eliminate false matches and complete face image matching:
计算第三步中得到的匹配集中每对匹配点间形状上下文描述子的欧氏距离dsc,求出欧氏距离均值w和标准差f,然后将sc不满足公式(8)的匹配对当作误匹配剔除掉,剩余的匹配集则为最终的匹配集,Calculate the Euclidean distance d sc of the shape context descriptor between each pair of matching points in the matching set obtained in the third step, find the mean value w and standard deviation f of the Euclidean distance, and then treat the matching pairs sc that do not satisfy the formula (8) as Eliminate false matches, and the remaining matching set is the final matching set.
dsc≤w+f(8),d sc ≤ w+f(8),
至此完成人脸图像匹配。At this point, the face image matching is completed.
上述人脸图像匹配方法,所述式子(3)中的放大系数magn=10。In the face image matching method described above, the magnification factor magn=10 in the formula (3).
上述人脸图像匹配方法,所述SURF算法粗匹配中,预先设定的阈值:th1=0.6,th2=0.3。In the face image matching method described above, in the rough matching of the SURF algorithm, the preset thresholds are: th1=0.6, th2=0.3.
上述人脸图像匹配方法,所述SURF算法精确匹配中,在重做上述(2)步SURF算法粗匹配步骤时取th1=0.7,th2=0.4。In the face image matching method above, in the precise matching of the SURF algorithm, th1=0.7 and th2=0.4 are taken when redoing the rough matching step of the SURF algorithm in the above (2) step.
本发明的有益效果是:与现有技术相比,本发明的突出的实质性特点和显著进步如下:The beneficial effects of the present invention are: compared with the prior art, the outstanding substantive features and remarkable progress of the present invention are as follows:
(1)本发明方法是基于SURF算法和形状上下文的人脸图像匹配方法,利用SURF算法粗匹配得到尺度差和方向差信息,再利用这些信息进行SURF算法精确匹配,对得到的匹配结果用形状上下文算法去除误匹配,克服了现有的人脸图像匹配方法中存在特征点少、匹配点少且正确率不高的缺陷。(1) The method of the present invention is a face image matching method based on SURF algorithm and shape context, utilizes SURF algorithm rough matching to obtain scale difference and direction difference information, then utilizes these information to carry out SURF algorithm accurate matching, uses shape to the matching result obtained The context algorithm removes false matches, and overcomes the defects of few feature points, few matching points and low accuracy in the existing face image matching methods.
(2)本发明方法设置人脸区域为感兴趣区域,只针对人脸区域进行匹配可节约大量时间,提高了匹配效率。(2) The method of the present invention sets the face area as the area of interest, and only matching the face area can save a lot of time and improve the matching efficiency.
(3)本发明方法在生成积分图像时对图像进行了重构变换,使眼睛、眉毛、鼻子、嘴包含大量人脸特征的部位更加突出、有更多特征点,从而增加了有效特征点数量。(3) The method of the present invention carries out reconstruction transformation to image when generating integral image, makes eyes, eyebrows, nose, mouth contain the position of a large amount of facial features more prominent, has more feature points, thereby increased effective feature point quantity .
(4)本发明方法利用粗匹配得到的尺度差和方向差信息进行精确匹配,可以得到更多匹配点,并且正确率得到了提升。(4) The method of the present invention uses the scale difference and direction difference information obtained by rough matching to perform precise matching, so that more matching points can be obtained, and the accuracy rate is improved.
(5)本发明方法利用形状上下文算法对精确匹配得到的结果进行了误匹配剔除操作,进一步提高了准确率。(5) The method of the present invention uses the shape context algorithm to perform an operation of eliminating false matches on the results obtained by exact matching, thereby further improving the accuracy rate.
下面的实施例对本发明的突出的实质性特点和显著进步作了进一步的证明。The following examples further demonstrate the outstanding substantive features and remarkable progress of the present invention.
附图说明Description of drawings
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1为本发明方法的流程示意框图。Fig. 1 is a schematic block diagram of the process of the method of the present invention.
图2为本发明方法TSURF+SC方法与现有的人脸图像匹配方法在不同阈值下的匹配对数量曲线。Fig. 2 is the curves of the number of matching pairs between the TSURF+SC method of the present invention and the existing face image matching method under different thresholds.
图3为本发明方法TSURF+SC方法与现有的人脸图像匹配方法在不同阈值下的正确率曲线。Fig. 3 is the accuracy rate curve of the TSURF+SC method of the present invention and the existing face image matching method under different thresholds.
具体实施方式detailed description
图1所示实施例表明,本发明方法的流程是:确定人脸区域→生成重构的积分图像→两次SURF特征匹配→生成形状上下文描述子,去除误匹配,完成人脸图像匹配。The embodiment shown in FIG. 1 shows that the flow of the method of the present invention is: determine the face area → generate a reconstructed integral image → match SURF features twice → generate a shape context descriptor, remove mismatches, and complete face image matching.
图2所示实施例显示,在不同阈值th1且th2=0.4时,本发明方法TSURF+SC方法与现有的人脸图像匹配方法在不同阈值下的匹配对数量曲线,图中显示本发明方法TSURF+SC方法正确匹配对数量最多,说明其算法效果较现有的人脸图像匹配方法更好。The embodiment shown in Fig. 2 shows that when different thresholds th1 and th2=0.4, the matching pair number curves of the TSURF+SC method of the present invention method and the existing face image matching method under different thresholds, the method of the present invention is shown in the figure The TSURF+SC method has the largest number of correct matching pairs, indicating that its algorithm effect is better than the existing face image matching methods.
图3所示实施例显示,在不同阈值th1且th2=0.4时,本发明方法TSURF+SC方法与现有的人脸图像匹配方法在不同阈值下的正确率曲线,图中显示本发明方法TSURF+SC方法正确匹配的正确率最高,说明其算法效果较现有的人脸图像匹配方法更好。The embodiment shown in Fig. 3 shows that when different thresholds th1 and th2=0.4, the accuracy rate curves of the inventive method TSURF+SC method and the existing face image matching method under different thresholds, the figure shows the inventive method TSURF The +SC method has the highest correct matching rate, indicating that its algorithm is better than the existing face image matching methods.
实施例Example
本实施例的人脸图像匹配方法,是基于两次SURF和形状上下文的人脸图像匹配方法,具体步骤如下:The face image matching method of the present embodiment is a face image matching method based on twice SURF and shape context, and the specific steps are as follows:
第一步,确定人脸区域:The first step is to determine the face area:
输入两幅同一个人的相同大小的人脸图像,将其中一幅有表情、姿态和光照变化的图像作为待匹配图像,另一幅标准正面人脸图像作为模板图像,将待匹配图像和模板图像均进行缩放至模板图像的1/8,然后用一个20×20像素大小的人脸检测搜索框自左向右从上到下对上述两幅图像分别进行扫描,对每一个扫描到的子图像,用OpenCV自带的正面人脸检测器判定其是否为人脸图像,若是,则标记为人脸区域,每次对上述两幅图像分别扫描完一遍,将人脸检测搜索框放大10%,再重新扫描一遍,如此重复,直到人脸检测搜索框扩大到上述图像的一半大小时停止扫描,接着对所有被标记的人脸子图像从RGB转换到YCrCb颜色空间,对其中的每一个像素点的Cr、Cb分量进行肤色验证,验证所用肤色条件如公式(1)所示,Input two face images of the same size of the same person, one of the images with expression, posture and illumination changes is used as the image to be matched, and the other standard frontal face image is used as the template image, and the image to be matched and the template image are used Both are scaled to 1/8 of the template image, and then a face detection search box with a size of 20×20 pixels is used to scan the above two images from left to right and from top to bottom, and each scanned sub-image , Use the frontal face detector that comes with OpenCV to determine whether it is a face image, if so, mark it as a face area, scan the above two images each time, enlarge the face detection search box by 10%, and then start again Scan once and repeat until the face detection search box expands to half the size of the above image and stop scanning, then convert all marked face sub-images from RGB to YCrCb color space, and for each pixel in it Cr, The Cb component is used for skin color verification, and the skin color condition used for verification is shown in formula (1),
133≤Cr≤173∩77≤Cb≤127(1),133≤Cr≤173∩77≤Cb≤127(1),
式中Cr、Cb分别代表YCrCb颜色空间中图像的色调和饱和度,In the formula, Cr and Cb respectively represent the hue and saturation of the image in the YCrCb color space,
将上述扫描的图像中具有40%以上的像素点满足公式(1)的区域确定为人脸区域,即感兴趣区域,再将待匹配图像和模板图像中确定的人脸区域放大8倍,恢复到原始尺寸大小;In the above-mentioned scanned image, the area where more than 40% of the pixels satisfy the formula (1) is determined as the face area, that is, the area of interest, and then the face area determined in the image to be matched and the template image is enlarged by 8 times, and restored to original size;
第二步,生成重构的积分图像:In the second step, the reconstructed integral image is generated:
对上述第一步中确定的人脸区域再转换到RGB空间,然后利用公式(2)转换为灰度图像,Convert the face area determined in the first step above to RGB space, and then use formula (2) to convert it into a grayscale image,
X=0.299R+0.587G+0.114B(2),X=0.299R+0.587G+0.114B (2),
上式中,R、G和B分别是RGB空间的红色、绿色和蓝色通道,X表示灰度图像中的灰度值;In the above formula, R, G and B are the red, green and blue channels of the RGB space, respectively, and X represents the gray value in the gray image;
然后计算灰度图像中每个像素点的显著因子,得到显著因子图,如公式(3)所示,Then calculate the saliency factor of each pixel in the grayscale image to obtain the saliency factor map, as shown in formula (3),
σ(Xc)=magn×arctan(V/Xc)(3),σ(X c )=magn×arctan(V/X c ) (3),
上式中,magn为放大系数,放大系数magn=10,σ(Xc)为人脸图像中的像素点的显著因子,V为人脸图像中像素点Xc与以像素点Xc为中心的八邻域Xi(i=0,…,7)的灰度差分,计算方法如公式(4)所示,In the above formula, magn is the magnification factor, magnification factor magn=10, σ(X c ) is the salience factor of the pixel in the face image, V is the pixel point X c in the face image and the eighth centered on the pixel point X c The gray level difference of the neighborhood Xi ( i =0,...,7), the calculation method is shown in the formula (4),
将显著因子图左上角原点与该点所构成的矩形区域内所有点的像素值之和作为积分图上该点的像素值,生成重构的积分图像,如公式(5)所示,The sum of the pixel values of all points in the rectangular area formed by the origin of the upper left corner of the significant factor map and this point is used as the pixel value of the point on the integral map to generate a reconstructed integral image, as shown in formula (5),
上式中IN(Xc)为重构的积分图像中Xc处的像素值,Xc的坐标为(x,y),IN(Xc)的值等于显著因子图中(0,0)点、(x,0)点、(0,y)点与(x,y)点构成的矩形区域内所有像素值的和;In the above formula, IN(X c ) is the pixel value at X c in the reconstructed integral image, the coordinates of X c are (x, y), and the value of IN(X c ) is equal to (0,0) in the significant factor map The sum of all pixel values in the rectangular area formed by point, (x,0) point, (0,y) point and (x,y) point;
第三步,两次SURF特征匹配:The third step, two SURF feature matching:
匹配过程首先检测SURF特征并生成描述子,然后进行一次粗匹配得到尺度差和方向差信息,最后再利用这些信息进行一次精确匹配,具体步骤如下:The matching process first detects SURF features and generates descriptors, then performs a rough match to obtain scale difference and direction difference information, and finally uses this information to perform an accurate match. The specific steps are as follows:
(1)生成SURF描述子:(1) Generate SURF descriptor:
用不同尺寸的盒子滤波模板与上述第二步得到的重构的积分图像求取显著因子图的不同尺度的Hessian矩阵行列式响应图像,之后在这些响应图像上采用3D非极大值抑制进行检测,将具有响应极大值的点确定为特征点,该特征点的尺度为相应响应图像的尺度,设盒子滤波模板大小为L×L像素,初始尺寸L=9像素,其对应的响应图像尺度s=1.2,然后依次使用L=15像素、21像素、27像素的尺寸,分别对应的响应图像尺度s可由公式(6)算出,Use box filter templates of different sizes and the reconstructed integral image obtained in the second step above to obtain the Hessian matrix determinant response images of different scales of the saliency factor map, and then use 3D non-maximum value suppression on these response images for detection , determine the point with the maximum response value as the feature point, the scale of the feature point is the scale of the corresponding response image, set the size of the box filter template as L×L pixels, the initial size L=9 pixels, and the corresponding response image scale s=1.2, then use L=15 pixels, 21 pixels, and 27 pixels in turn, and the corresponding response image scale s can be calculated by formula (6),
s=1.2×L/9(6),s=1.2×L/9(6),
得到特征点的位置和尺度s后,对每个特征点,在以特征点为中心,6s为半径的圆形区域内对显著因子图用大小为4s×4s像素的Haar小波模板进行响应运算,这里s需四舍五入为整数,然后用一个以特征点为中心,张角为π/3的扇形滑动窗口,围绕特征点以步长0.2弧度进行旋转,每转到一处,统计滑动窗口内图像Haar小波水平方线和垂直方向响应值dx、dy的累加值∑dx+∑dy,具有最大响应累加值的方向作为特征点的主方向,得到主方向后,以特征点为中心沿主方向将20s×20s像素大小的图像划分成4×4个子块,每个子块利用大小为2s×2s像素的Haar模板进行响应值的计算,并对水平方向x和垂直方向y的响应值分别统计其累加和及绝对值累加和∑dx、∑|dx|、∑dy、∑|dy|,形成特征矢量,即SURF描述子,每个特征点共生成4×4×4=64维的SURF描述子;After obtaining the position and scale s of the feature points, for each feature point, in a circular area with the feature point as the center and a radius of 6s, the Haar wavelet template with a size of 4s×4s pixels is used to perform a response operation on the significant factor map. Here s needs to be rounded to an integer, and then use a fan-shaped sliding window with a feature point as the center and an opening angle of π/3 to rotate around the feature point with a step size of 0.2 radians. Every time it turns, the image Haar in the sliding window is counted. The cumulative value of wavelet horizontal square line and vertical direction response value dx, dy ∑dx+∑dy, the direction with the maximum response cumulative value is taken as the main direction of the feature point, after the main direction is obtained, take the feature point as the center and move 20s× The 20s pixel-sized image is divided into 4×4 sub-blocks, and each sub-block uses a Haar template with a size of 2s×2s pixels to calculate the response value, and the cumulative sum and sum of the response values in the horizontal direction x and vertical direction y are respectively counted Absolute value accumulation sums ∑dx, ∑|dx|, ∑dy, ∑|dy| to form a feature vector, that is, a SURF descriptor. Each feature point generates a total of 4×4×4=64-dimensional SURF descriptors;
(2)SURF算法粗匹配:(2) SURF algorithm rough matching:
对待匹配图像中的每一个特征点,计算它与模板图像中所有特征点SURF描述子之间的欧氏距离,记录最近邻距离d1和次近邻距离d2,当d1/d2<th1且d1<th2时,将该点与其最近邻记录为一对匹配点,存入初始匹配集,由此完成SURF算法粗匹配,上述th1和th2为预先设定的阈值,th1=0.6,th2=0.3;For each feature point in the matching image, calculate the Euclidean distance between it and all feature point SURF descriptors in the template image, record the nearest neighbor distance d1 and the second nearest neighbor distance d2, when d1/d2<th1 and d1<th2 , record the point and its nearest neighbor as a pair of matching points, and store them in the initial matching set, thus completing the rough matching of the SURF algorithm. The above-mentioned th1 and th2 are preset thresholds, th1=0.6, th2=0.3;
(3)SURF算法精确匹配:(3) SURF algorithm exact match:
计算并统计上述(2)步得到的初始匹配集中匹配点对之间的尺度差和角度差,这里所说的尺度为特征点的尺度,角度为特征点主方向,然后计算所有匹配点对尺度差的均值ds和标准差dc,计算角度差的均值dO,将初始匹配集清空,对待匹配图像中每一个特征点计算它与模板图像中所有特征点间的尺度差tds、角度差tdO,待匹配图像与模板图像各部分之间的尺度差和角度差应保持一致,匹配对之间的尺度差和角度差应该落在一定范围内,若tds和tdO满足公式(7)条件,Calculate and count the scale difference and angle difference between the matching point pairs in the initial matching set obtained in step (2) above. The scale mentioned here is the scale of the feature point, and the angle is the main direction of the feature point, and then calculate the scale of all matching point pairs The mean value ds and standard deviation dc of the difference, calculate the mean value dO of the angle difference, clear the initial matching set, and calculate the scale difference tds and angle difference tdO between it and all the feature points in the template image for each feature point in the image to be matched. The scale difference and angle difference between each part of the matching image and the template image should be consistent, and the scale difference and angle difference between the matching pairs should fall within a certain range. If tds and tdO satisfy the conditions of formula (7),
(ds-1.5dc)<tds<(ds+1.5dc)∩(dO-π/6)<tdO<(dO+π/6)(7),(ds-1.5dc)<tds<(ds+1.5dc)∩(dO-π/6)<tdO<(dO+π/6)(7),
则计算两匹配点之间的欧氏距离,重做上述(2)步SURF算法粗匹配步骤,其中th1=0.7,th2=0.4,将得到的匹配点存入匹配集中,如果不满足公式(7),则跳过该对匹配点,不再计算它们的欧氏距离;Then calculate the Euclidean distance between the two matching points, redo the rough matching step of the above (2) step SURF algorithm, wherein th1=0.7, th2=0.4, the matching point obtained is stored in the matching set, if the formula (7 ), then skip the pair of matching points and no longer calculate their Euclidean distance;
第四步,去除误匹配:The fourth step is to remove the mismatch:
利用形状上下文算法对上述第三步得到的匹配结果进行误匹配的剔除,具体方法如下:Use the shape context algorithm to eliminate the mismatching results obtained in the third step above. The specific method is as follows:
(1)生成形状上下文描述子:(1) Generate shape context descriptor:
将上述第三步中得到的匹配集中属于待匹配图像和模板图像的特征点分别作为两幅图像的采样点,对每个采样点计算并记录所有本图中其它采样点到它的距离、与它所成的角度,然后将距离归一化后分为6个区间,且将角度[0,2π]分为12个区间,这6个距离区间和12个角度区间组成了72个区块,统计落在各个区块中的采样点数目,就生成了72维的形状上下文描述子;Use the feature points in the matching set obtained in the third step above that belong to the image to be matched and the template image as the sampling points of the two images, and calculate and record the distance from all other sampling points in the image to it, and The angle it forms is then divided into 6 intervals after normalizing the distance, and the angle [0,2π] is divided into 12 intervals. These 6 distance intervals and 12 angle intervals form 72 blocks. By counting the number of sampling points falling in each block, a 72-dimensional shape context descriptor is generated;
(2)剔除误匹配,完成人脸图像匹配:(2) Eliminate false matches and complete face image matching:
计算第三步中得到的匹配集中每对匹配点间形状上下文描述子的欧氏距离dsc,求出欧氏距离均值w和标准差f,然后将sc不满足公式(8)的匹配对当作误匹配剔除掉,剩余的匹配集则为最终的匹配集,Calculate the Euclidean distance d sc of the shape context descriptor between each pair of matching points in the matching set obtained in the third step, find the mean value w and standard deviation f of the Euclidean distance, and then treat the matching pairs sc that do not satisfy the formula (8) as Eliminate false matches, and the remaining matching set is the final matching set.
dsc≤w+f(8),d sc ≤ w+f(8),
至此完成人脸图像匹配。At this point, the face image matching is completed.
本实施例利用VS2005和OPENCV2.0平台实现,并分别对丹麦技术大学IMM和GeorgiaTech人脸数据库中有表情变化、姿态变化、光照变化、表情和姿态同时变化的图像进行匹配实验。其中,IMM数据库包含40人,每人6幅图像,图像大小为640×480,GeorgiaTech人脸数据库中包含50人,每人15幅图像,图像大小为640×480,实验所用处理器是英特尔酷睿I3,4G内存。为了验证本发明方法在特征点数量和正确率上的优势,本实施例选取经典匹配算法SURF算法、SURF算法结合RANSAC算法、改进的SURF算法结合RANSAC算法与本方法TSURF+SC进行对比,记录每一组实验图片分别在不同门限值th1、th2时得到的匹配点数目与错误匹配的数目,实验数据表明本实施例方法在匹配点数目上平均超出对比算法80%以上,错误匹配占匹配点数目的比率也都低于对比算法,但是算法的运行时间要比原始SURF算法高出80%,算法效率需要在以后的研究中进行改进。表1列出的是一组IMM数据库图像中姿态有变化的人脸图像在经验阈值th1=0.7,th2=0.4时的匹配数据,表2为一组GeorgiaTech数据库中有光照变化的人脸图像在经验阈值th1=0.7,th2=0.4时的匹配数据。This embodiment is implemented using VS2005 and OPENCV2.0 platforms, and the matching experiments are carried out on images with expression changes, posture changes, illumination changes, and simultaneous changes in expression and posture in the IMM of the Technical University of Denmark and the GeorgiaTech face database. Among them, the IMM database contains 40 people, 6 images per person, and the image size is 640×480. The GeorgiaTech face database contains 50 people, 15 images per person, and the image size is 640×480. The processor used in the experiment is Intel Core I3, 4G memory. In order to verify the advantages of the method of the present invention in terms of the number of feature points and the accuracy rate, this embodiment selects the classic matching algorithm SURF algorithm, the SURF algorithm combined with the RANSAC algorithm, the improved SURF algorithm combined with the RANSAC algorithm and this method TSURF+SC for comparison, and records each The number of matching points and the number of wrong matches obtained by a group of experimental pictures at different thresholds th1 and th2 respectively, the experimental data shows that the method of this embodiment exceeds the comparison algorithm by more than 80% on average in the number of matching points, and the number of wrong matches accounts for the number of matching points The objective ratios are also lower than the comparison algorithm, but the running time of the algorithm is 80% higher than the original SURF algorithm, and the algorithm efficiency needs to be improved in future research. Table 1 lists the matching data of face images with posture changes in a group of IMM database images at empirical thresholds th1=0.7, th2=0.4, and Table 2 shows a group of face images with illumination changes in the GeorgiaTech database. Matching data when empirical thresholds th1=0.7, th2=0.4.
表1姿态变化匹配效果Table 1 Attitude change matching effect
表2光照变化匹配效果Table 2 Lighting change matching effect
表中的TSURF+SC为本实施例所采用的本发明方法。TSURF+SC in the table is the method of the present invention adopted in this embodiment.
结果表明,本实施例方法得到匹配对数目、正确率均优于三种对比算法,虽然匹配时间高于前两种算法,但比前两种算法提供了更多的正确匹配,算法效率需要在以后的研究中继续改善。The results show that the number of matching pairs and correct rate obtained by the method of this embodiment are better than those of the three comparison algorithms. Although the matching time is higher than the previous two algorithms, it provides more correct matches than the previous two algorithms, and the algorithm efficiency needs to be within Continue to improve in future research.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510820897.7A CN105354558B (en) | 2015-11-23 | 2015-11-23 | Humanface image matching method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510820897.7A CN105354558B (en) | 2015-11-23 | 2015-11-23 | Humanface image matching method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105354558A true CN105354558A (en) | 2016-02-24 |
CN105354558B CN105354558B (en) | 2018-09-28 |
Family
ID=55330525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510820897.7A Expired - Fee Related CN105354558B (en) | 2015-11-23 | 2015-11-23 | Humanface image matching method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105354558B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106023187A (en) * | 2016-05-17 | 2016-10-12 | 西北工业大学 | Image registration method based on SIFT feature and angle relative distance |
CN106971164A (en) * | 2017-03-28 | 2017-07-21 | 北京小米移动软件有限公司 | Shape of face matching process and device |
CN107301718A (en) * | 2017-06-20 | 2017-10-27 | 深圳怡化电脑股份有限公司 | A kind of image matching method and device |
CN108171846A (en) * | 2017-12-30 | 2018-06-15 | 南京陶特思软件科技有限公司 | There is the access control system of fast verification |
CN109084898A (en) * | 2018-07-02 | 2018-12-25 | 北京印刷学院 | A method of it establishing observer and bores Cellular spectroscopic receptance function |
CN109086718A (en) * | 2018-08-02 | 2018-12-25 | 深圳市华付信息技术有限公司 | Biopsy method, device, computer equipment and storage medium |
CN109165657A (en) * | 2018-08-20 | 2019-01-08 | 贵州宜行智通科技有限公司 | A kind of image feature detection method and device based on improvement SIFT |
CN110210341A (en) * | 2019-05-20 | 2019-09-06 | 深圳供电局有限公司 | Identity card authentication method based on face recognition, system thereof and readable storage medium |
CN110852319A (en) * | 2019-11-08 | 2020-02-28 | 深圳市深视创新科技有限公司 | Rapid universal roi matching method |
CN110941989A (en) * | 2019-10-18 | 2020-03-31 | 北京达佳互联信息技术有限公司 | Image verification method, image verification device, video verification method, video verification device, equipment and storage medium |
CN111598176A (en) * | 2020-05-19 | 2020-08-28 | 北京明略软件系统有限公司 | Image matching processing method and device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070076922A1 (en) * | 2005-09-30 | 2007-04-05 | Sony United Kingdom Limited | Object detection |
CN104809731A (en) * | 2015-05-05 | 2015-07-29 | 北京工业大学 | Gradient binaryzation based rotation-invariant and scale-invariant scene matching method |
CN104851095A (en) * | 2015-05-14 | 2015-08-19 | 江南大学 | Workpiece image sparse stereo matching method based on improved-type shape context |
-
2015
- 2015-11-23 CN CN201510820897.7A patent/CN105354558B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070076922A1 (en) * | 2005-09-30 | 2007-04-05 | Sony United Kingdom Limited | Object detection |
CN104809731A (en) * | 2015-05-05 | 2015-07-29 | 北京工业大学 | Gradient binaryzation based rotation-invariant and scale-invariant scene matching method |
CN104851095A (en) * | 2015-05-14 | 2015-08-19 | 江南大学 | Workpiece image sparse stereo matching method based on improved-type shape context |
Non-Patent Citations (2)
Title |
---|
YANG GUI等: "Point-pattern matching method using SURF and Shape Context", 《OPTIK》 * |
庄萱怡: "基于形状上下文和SURF兴趣点的行为识别", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106023187A (en) * | 2016-05-17 | 2016-10-12 | 西北工业大学 | Image registration method based on SIFT feature and angle relative distance |
CN106971164B (en) * | 2017-03-28 | 2020-02-04 | 北京小米移动软件有限公司 | Face shape matching method and device |
CN106971164A (en) * | 2017-03-28 | 2017-07-21 | 北京小米移动软件有限公司 | Shape of face matching process and device |
CN107301718A (en) * | 2017-06-20 | 2017-10-27 | 深圳怡化电脑股份有限公司 | A kind of image matching method and device |
CN107301718B (en) * | 2017-06-20 | 2019-07-26 | 深圳怡化电脑股份有限公司 | A kind of image matching method and device |
CN108171846A (en) * | 2017-12-30 | 2018-06-15 | 南京陶特思软件科技有限公司 | There is the access control system of fast verification |
CN109084898A (en) * | 2018-07-02 | 2018-12-25 | 北京印刷学院 | A method of it establishing observer and bores Cellular spectroscopic receptance function |
CN109086718A (en) * | 2018-08-02 | 2018-12-25 | 深圳市华付信息技术有限公司 | Biopsy method, device, computer equipment and storage medium |
CN109165657A (en) * | 2018-08-20 | 2019-01-08 | 贵州宜行智通科技有限公司 | A kind of image feature detection method and device based on improvement SIFT |
CN110210341A (en) * | 2019-05-20 | 2019-09-06 | 深圳供电局有限公司 | Identity card authentication method based on face recognition, system thereof and readable storage medium |
CN110210341B (en) * | 2019-05-20 | 2022-12-06 | 深圳供电局有限公司 | ID card authentication method and system based on face recognition, and readable storage medium |
CN110941989A (en) * | 2019-10-18 | 2020-03-31 | 北京达佳互联信息技术有限公司 | Image verification method, image verification device, video verification method, video verification device, equipment and storage medium |
US11625819B2 (en) | 2019-10-18 | 2023-04-11 | Beijing Dajia Internet Information Technology Co., Ltd. | Method and device for verifying image and video |
CN110852319A (en) * | 2019-11-08 | 2020-02-28 | 深圳市深视创新科技有限公司 | Rapid universal roi matching method |
CN111598176A (en) * | 2020-05-19 | 2020-08-28 | 北京明略软件系统有限公司 | Image matching processing method and device |
CN111598176B (en) * | 2020-05-19 | 2023-11-17 | 北京明略软件系统有限公司 | Image matching processing method and device |
Also Published As
Publication number | Publication date |
---|---|
CN105354558B (en) | 2018-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105354558B (en) | Humanface image matching method | |
US11830230B2 (en) | Living body detection method based on facial recognition, and electronic device and storage medium | |
CN103116763B (en) | A kind of living body faces detection method based on hsv color Spatial Statistical Character | |
TW569148B (en) | Method for locating facial features in an image | |
CN105893946B (en) | A detection method for frontal face images | |
CN109543606A (en) | A kind of face identification method that attention mechanism is added | |
CN109740572B (en) | Human face living body detection method based on local color texture features | |
CN111126240B (en) | Three-channel feature fusion face recognition method | |
Rouhi et al. | A review on feature extraction techniques in face recognition | |
CN104794449B (en) | Gait energy diagram based on human body HOG features obtains and personal identification method | |
CN112541434B (en) | Face recognition method based on central point tracking model | |
CN104636749A (en) | Target object detection method and device | |
CN107742094A (en) | Improve the image processing method of testimony of a witness comparison result | |
CN105787427A (en) | Lip area positioning method | |
CN111709305B (en) | A Face Age Recognition Method Based on Partial Image Blocks | |
CN109522865A (en) | A kind of characteristic weighing fusion face identification method based on deep neural network | |
Devadethan et al. | Face detection and facial feature extraction based on a fusion of knowledge based method and morphological image processing | |
CN109165551B (en) | An expression recognition method based on adaptive weighted fusion of saliency structure tensor and LBP features | |
Chen et al. | Face deduplication in video surveillance | |
Al-Shehri | A simple and novel method for skin detection and face locating and tracking | |
Simha et al. | Recognition of numbers and position using image processing techniques for solving sudoku puzzles | |
Chowdhury et al. | Fuzzy rule based approach for face and facial feature extraction in biometric authentication | |
CN109766860A (en) | Face Detection Method Based on Improved Adaboost Algorithm | |
CN115439930A (en) | Multi-feature fusion gait recognition method based on space-time dimension screening | |
CN103886317B (en) | Local feature characterization method based on face expression image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180928 |