CN105353790A - Tethered space robot complex stable control method after target capture - Google Patents

Tethered space robot complex stable control method after target capture Download PDF

Info

Publication number
CN105353790A
CN105353790A CN201510794393.2A CN201510794393A CN105353790A CN 105353790 A CN105353790 A CN 105353790A CN 201510794393 A CN201510794393 A CN 201510794393A CN 105353790 A CN105353790 A CN 105353790A
Authority
CN
China
Prior art keywords
complex
space
target
robot
calculate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510794393.2A
Other languages
Chinese (zh)
Other versions
CN105353790B (en
Inventor
黄攀峰
王东科
鲁迎波
孟中杰
刘正雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201510794393.2A priority Critical patent/CN105353790B/en
Publication of CN105353790A publication Critical patent/CN105353790A/en
Application granted granted Critical
Publication of CN105353790B publication Critical patent/CN105353790B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明公开了一种空间绳系机器人目标抓捕后复合体稳定控制方法,包括以下步骤:1)建立空间绳系机器人目标抓捕后复合体动力学方程;2)计算虚拟控制输入ξ2c;3)计算得到期望系统状态量ξ2d;4)估计抓捕后复合体模型不确定性;5)计算抓捕后复合体稳定控制力和控制力矩Q。本发明考虑了系绳放绳速度限制情况下,利用指令滤波方法,进行控制器设计,保证了控制器的稳定性。本发明设计了自适应律,对复合体不确定性进行估计,并在控制器中进行补偿,提高了控制精度。本发明通过滤波器对控制输入进行限制,从而提高控制器的稳定性。

The invention discloses a method for stabilizing a complex after a space tethered robot captures a target, comprising the following steps: 1) establishing a complex dynamic equation after a space tethered robot captures a target; 2) calculating a virtual control input ξ2c ; 3) Calculate the expected system state quantity ξ 2d ; 4) Estimate the uncertainty of the post-capture complex model ; 5) Calculate the stable control force and control torque Q of the complex after capture. The invention considers the limit of the speed of the tethered rope, and uses the instruction filtering method to design the controller, so as to ensure the stability of the controller. The invention designs an adaptive law, estimates the uncertainty of the complex, and compensates in the controller, thereby improving the control precision. The invention limits the control input through the filter, thereby improving the stability of the controller.

Description

一种空间绳系机器人目标抓捕后复合体稳定控制方法A stability control method for the complex after target capture by a space tethered robot

【技术领域】【Technical field】

本发明属于航天器控制技术研究领域,具体涉及一种空间绳系机器人目标抓捕后复合体稳定控制方法。The invention belongs to the research field of spacecraft control technology, and in particular relates to a method for stabilizing a complex after a space tether robot captures a target.

【背景技术】【Background technique】

空间绳系机器人由于其灵活、安全、燃料消耗低等特点,在空间在轨服务中有着广泛的作用,可以进行失效卫星救助、太空垃圾清理、辅助变轨等操作。Due to its flexibility, safety, and low fuel consumption, space tethered robots have a wide range of roles in space on-orbit services, and can perform operations such as rescue of failed satellites, space junk cleaning, and auxiliary orbit changes.

根据空间绳系机器人的任务流程,可以分为释放、逼近目标、目标抓捕、目标抓捕后稳定和目标捕获后操作五个阶段,其中目标抓捕后复合体稳定控制是空间绳系机器人的主要研究之一。According to the task flow of the space tethered robot, it can be divided into five stages: release, approaching the target, target capture, target capture post-capture stabilization, and target post-capture operation. One of the main studies.

空间绳系机器人对目标抓捕后,由于碰撞和目标的自旋,导致抓捕后复合体的姿态不稳定,不施加控制会发生系绳缠绕等不利情况,系绳拉力对平台本身产生巨大干扰,因此,需要对抓捕后复合体的姿态进行控制。由于空间机器人自身的控制力矩较有限,抓捕后复合体进行稳定控制时,会出现推力器输入饱和受限情况,对复合体控制性能会产生较大的影响。此外,由于放绳机构的限制和安全因素的考虑,系绳的收放速度受到限制,因此,需要设计合适的控制策略,保证系绳收放速度受限情况下复合体姿态控制的稳定性。After the space tethered robot captures the target, due to the collision and the spin of the target, the attitude of the captured complex is unstable. If no control is applied, unfavorable situations such as tether entanglement will occur, and the tension of the tether will greatly interfere with the platform itself. , therefore, the posture control of the post-capture complex is required. Due to the limited control torque of the space robot itself, when the complex is stably controlled after capture, the input saturation of the thruster will be limited, which will have a great impact on the control performance of the complex. In addition, due to the limitation of the rope release mechanism and the consideration of safety factors, the tether retraction speed is limited. Therefore, it is necessary to design a suitable control strategy to ensure the stability of the attitude control of the complex when the tether retraction speed is limited.

目标抓捕后复合体稳定是空间绳系机器人的重要任务之一,目标抓捕后复合体稳定控制直接影响后续拖曳变轨或者回收操作任务的顺利进行,它成为空间绳系机器人领域的研究重点。The stability of the complex after target capture is one of the important tasks of the space tethered robot. The stability control of the complex after the target capture directly affects the smooth progress of the subsequent dragging orbit change or recovery operation tasks, and it has become the research focus in the field of space tethered robots. .

申请号为:201310018221.7的中国专利提出了一种空间绳系机器人抓捕后复合体控制方法,利用推力器和系绳实现复合体的稳定控制;申请号为:201410341562.2的中国专利提出利用系绳拉力结合空间绳系机械臂的构型变化产生所需的控制力矩,从而实现复合体的姿态稳定。以上专利均仅仅考虑了复合体姿态的稳定控制,而复合体稳定控制还需要对位置进行稳定控制,因此一定程度限制了这两种控制方法的使用。The Chinese patent application number: 201310018221.7 proposes a method for controlling the complex after the space tethered robot captures, using thrusters and tethers to achieve stable control of the complex; the Chinese patent application number: 201410341562.2 proposes using the tether tension Combined with the configuration change of the space tethered manipulator, the required control moment is generated, so as to achieve the attitude stability of the complex. The above patents only consider the stable control of the attitude of the complex, and the stable control of the complex also requires the stable control of the position, which limits the use of these two control methods to a certain extent.

【发明内容】【Content of invention】

本发明的目的在于解决上述问题,提供一种空间绳系机器人目标抓捕后复合体稳定控制方法,该方法可实现目标抓捕后复合体位姿的稳定控制。The purpose of the present invention is to solve the above problems and provide a method for stabilizing the complex after the target is captured by the space tethered robot. The method can realize the stable control of the pose of the complex after the target is captured.

为达到上述目的,本发明采用以下技术方案予以实现:In order to achieve the above object, the present invention adopts the following technical solutions to achieve:

一种空间绳系机器人目标抓捕后复合体稳定控制方法,包括以下步骤:A method for controlling the stability of a complex after a space tether robot target is captured, comprising the following steps:

1)建立空间绳系机器人目标抓捕后复合体动力学方程;1) Establish the dynamic equation of the complex after the space tethered robot captures the target;

2)计算虚拟控制输入ξ2c2) Calculate the virtual control input ξ 2c ;

3)计算得到期望系统状态量ξ2d3) Calculate the expected system state quantity ξ 2d ;

4)估计抓捕后复合体模型不确定性 4) Estimating Post-Catch Complex Model Uncertainties

5)计算抓捕后复合体稳定控制力和控制力矩Q。5) Calculate the stable control force and control torque Q of the complex after capture.

本发明进一步的改进在于:The further improvement of the present invention is:

所述的步骤1)中,空间绳系机器人目标抓捕动力学方程为:In the described step 1), the space tether robot target capture dynamics equation is:

Mm (( ξξ )) ξξ ···· ++ NN (( ξξ ,, ξξ ·&Center Dot; )) ξξ ·&Center Dot; ++ GG (( ξξ )) == QQ

其中:l为空间系绳长度;α为空间系绳面内角;β为空间系绳面外角;θ和ψ为复合体姿态角;M为系统惯量矩阵;N非线性速度相关项;G重力相关项;Q为空间绳系机器人控制力与控制力矩。in: l is the length of the space tether; α is the interior angle of the space tether; β is the exterior angle of the space tether; θ and ψ are the attitude angles of the complex; M is the system inertia matrix; N is the nonlinear velocity related item; G is the gravity related item; Q is the space tethered robot control force and control torque.

所述的步骤2)中,根据计算虚拟控制输入ξ2c,其中K1为设计的正定矩阵;ξ1e=ξ11d,其中ξ1=ξ,ξ1d为ξ1的期望值,为ξ1e对时间的导数。In the described step 2), according to Calculate the virtual control input ξ 2c , where K 1 is the designed positive definite matrix; ξ 1e = ξ 11d , where ξ 1 = ξ, ξ 1d is the expected value of ξ 1 , is the derivative of ξ 1e with respect to time.

所述的步骤3)中,计算出期望系统状态量ξ2d的方法为:通过一阶滤波 ϵ ξ · 2 d + ξ 2 d = ξ 2 c , ξ 2 d ( 0 ) = ξ 2 c ( 0 ) 实现,其中ε>0。In the described step 3), the method for calculating the expected system state quantity ξ 2d is: through the first-order filter ϵ ξ · 2 d + ξ 2 d = ξ 2 c , ξ 2 d ( 0 ) = ξ 2 c ( 0 ) Realization, where ε>0.

所述的步骤4)中,复合体模型不确定性通过以下方法得到:其中,a和ελ为正数,η·η=(η1η1η2η2η3η3)T,Proj(·)投影算子;η=ξ2e-χ,χ通过滤波器得到;K2和P为正定矩阵。In the step 4), the complex model uncertainty Obtained by: Among them, a and ε λ are positive numbers, η·η=(η 1 η 1 η 2 η 2 η 3 η 3 ) T , Proj(·) projection operator; η=ξ 2e -χ, χ passes through the filter Get; K 2 and P are positive definite matrices.

所述的步骤5)中,计算抓捕后复合体稳定控制力和控制力矩Q: Q 0 = M 0 ξ · 2 d + N 0 ξ 2 d + G 0 + ( N 0 - K 2 ) χ - Pξ 1 e - λ ^ L · η | η | + ϵ λ , 其中Q为Q0通过饱和环节得到,M0为系统名义惯量矩阵;N0名义非线性速度相关项;G0名义重力相关项。In the described step 5), the stable control force and control torque Q of the complex after the calculation are captured: Q 0 = m 0 ξ · 2 d + N 0 ξ 2 d + G 0 + ( N 0 - K 2 ) χ - Pξ 1 e - λ ^ L &Center Dot; η | η | + ϵ λ , Among them, Q is Q 0 obtained through the saturation link, M 0 is the nominal inertia matrix of the system; N 0 is the nominal nonlinear velocity related item; G 0 is the nominal gravity related item.

与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

本发明空间绳系机器人目标抓捕后复合体稳定控制方法,从整体上考虑了系绳放绳速度限制情况下,利用指令滤波方法,进行控制器设计,保证了控制器的稳定性。本发明设计了自适应律,对复合体不确定性进行估计,并在控制器中进行补偿,提高了控制精度。本发明通过滤波器对控制输入进行限制,从而提高控制器的稳定性。The method for controlling the stability of the complex after the target capture of the space tethered robot of the present invention considers the limitation of the speed of the tethered rope as a whole, and uses the command filtering method to design the controller to ensure the stability of the controller. The invention designs an adaptive law, estimates the uncertainty of the complex, and compensates in the controller, thereby improving the control precision. The invention limits the control input through the filter, thereby improving the stability of the controller.

【附图说明】【Description of drawings】

图1为空间绳系机器人目标抓捕示意图。Figure 1 is a schematic diagram of target capture by a space tethered robot.

图中:1.抓捕目标;2.空间绳系机器人;3.空间系绳;4.空间平台;5.地球;6.抓捕后复合体。In the figure: 1. capture target; 2. space tethered robot; 3. space tether; 4. space platform; 5. earth; 6. post-capture complex.

【具体实施方式】【detailed description】

以下结合附图对本发明进行详细的描述。应当指出的是,所描述的实施例仅旨在便于对本发明的理解,而对其不起任何限定作用。The present invention will be described in detail below in conjunction with the accompanying drawings. It should be noted that the described embodiments are only intended to facilitate the understanding of the present invention, and do not limit it in any way.

参见图1,本发明空间绳系机器人目标抓捕后复合体稳定控制方法,包括以下步骤:Referring to Fig. 1, the complex stability control method after the space tether robot target capture of the present invention comprises the following steps:

1)建立空间绳系机器人目标抓捕后复合体动力学方程1) Establish the dynamic equation of the complex after the space tethered robot captures the target

Mm (( ξξ )) ξξ ···· ++ NN (( ξξ ,, ξξ ·&Center Dot; )) ξξ ·&Center Dot; ++ GG (( ξξ )) == QQ

其中,系统状态其中l、α和β分别为空间系绳长度、空间系绳面内角和空间系绳面外角,θ和ψ为抓捕后复合体姿态角;为广义控制力。Among them, the system state where l, α and β are the length of the space tether, the interior angle of the space tether plane and the exterior angle of the space tether plane, respectively, θ and ψ are the attitude angles of the complex after capture; for generalized control.

2)计算虚拟控制输入ξ2c 2) Calculate the virtual control input ξ 2c

ξ1=ξ,取ξ1d为ξ1的期望值,则跟踪误差可以表示为:ξ 1 = ξ, Taking ξ1d as the expected value of ξ1 , the tracking error can be expressed as:

ξ1e=ξ11d ξ 1e = ξ 11d

对ξ1e两边求导可以得到:Deriving both sides of ξ 1e can get:

ξξ ·· 11 ee == ξξ ·&Center Dot; 11 -- ξξ ·· 11 dd == ξξ 22 -- ξξ ·· 11 dd

设ξ2c为ξ2的虚拟输入,设计为:Let ξ 2c be the dummy input of ξ 2 , designed as:

ξξ 22 cc == -- KK 11 ξξ 11 ee ++ ξξ ·· 11 dd

其中,K1为正定矩阵。Among them, K 1 is a positive definite matrix.

3)计算得到期望系统状态量ξ2d 3) Calculate the expected system state quantity ξ 2d

考虑到系绳放绳速度受限,因此,采用指令滤波的方法对系统状态ξ2进行限制,具体方法为:Considering that the tether release speed is limited, the system state ξ2 is limited by command filtering method, the specific method is as follows:

ϵϵ ξξ ·&Center Dot; 22 dd ++ ξξ 22 dd == ξξ 22 cc ,, ξξ 22 dd (( 00 )) == ξξ 22 cc (( 00 ))

其中ε>0.Where ε>0.

4)估计抓捕后复合体模型不确定性 4) Estimating Post-Catch Complex Model Uncertainties

ξ2e误差动力学方程可以表示为:The ξ 2e error dynamics equation can be expressed as:

Mm 00 ξξ ·· 22 ee == QQ -- NN 00 ξξ 22 ee -- NN 00 ξξ 22 dd -- GG 00 -- ρρ -- Mm 00 ξξ ·· 22 dd

其中,为系统不确定性,其主要由复合体质量、转动惯量和系绳连接点位置等参数的误差产生。假设系统不确定性受限,存在上限λL,即||ρ(ΔM0,ΔN0,ΔG)||≤||λL||.设计自适应律对λL进行估计,得到其估计值 in, is the system uncertainty, which is mainly produced by the errors of parameters such as the mass of the complex, the moment of inertia, and the position of the tether connection point. Assuming that the system uncertainty is limited, there is an upper limit λ L , that is, ||ρ(ΔM 0 ,ΔN 0 ,ΔG)||≤||λ L ||. Design an adaptive law to estimate λ L and get its estimated value

λλ ^^ ·&Center Dot; LL == PrPR oo jj (( aa ηη ·&Center Dot; ηη || ηη || ++ ϵϵ λλ ))

其中,a和ελ为正数;η·η=(η1η1η2η2η3η3)T;Proj(·)投影算子;η为修正跟踪误差,并且满足η=ξ2e-χ,其中χ通过以下一阶滤波器得到:Among them, a and ε λ are positive numbers; η·η=(η 1 η 1 η 2 η 2 η 3 η 3 ) T ; Proj(·) projection operator; η is the corrected tracking error, and satisfies η=ξ 2e -χ, where χ is obtained by the following first-order filter:

Mm 00 χχ ·· == -- KK 22 χχ ++ QQ -- QQ 00

其中,K2为正定矩阵。Among them, K 2 is a positive definite matrix.

5)计算抓捕后复合体稳定控制力和控制力矩Q5) Calculate the stable control force and control torque Q of the complex after capture

根据 Q 0 = M 0 ξ · 2 d + N 0 ξ 2 d + G 0 + ( N 0 - K 2 ) χ - Pξ 1 e - λ ^ L · η | η | + ϵ λ 得到Q0,然后将Q0输入饱和环节得到Q,Q为实际的输入控制力和控制力矩;M0为系统名义惯量矩阵;N0名义非线性速度相关项;G0名义重力相关项。according to Q 0 = m 0 ξ · 2 d + N 0 ξ 2 d + G 0 + ( N 0 - K 2 ) χ - Pξ 1 e - λ ^ L · η | η | + ϵ λ Get Q 0 , and then input Q 0 into the saturation link to get Q, Q is the actual input control force and control torque; M 0 is the system nominal inertia matrix; N 0 is the nominal nonlinear velocity related item; G 0 is the nominal gravity related item.

以上内容仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明权利要求书的保护范围之内。The above content is only to illustrate the technical idea of the present invention, and cannot limit the protection scope of the present invention. Any changes made on the basis of the technical solution according to the technical idea proposed in the present invention, all fall into the scope of the claims of the present invention. within the scope of protection.

Claims (6)

1.一种空间绳系机器人目标抓捕后复合体稳定控制方法,其特征在于,包括以下步骤:1. A method for stabilizing the complex after a space tether robot target is captured, is characterized in that, comprises the following steps: 1)建立空间绳系机器人目标抓捕后复合体动力学方程;1) Establish the dynamic equation of the complex after the space tethered robot captures the target; 2)计算虚拟控制输入ξ2c2) Calculate the virtual control input ξ 2c ; 3)计算得到期望系统状态量ξ2d3) Calculate the expected system state quantity ξ 2d ; 4)估计抓捕后复合体模型不确定性 4) Estimating Post-Catch Complex Model Uncertainties 5)计算抓捕后复合体稳定控制力和控制力矩Q。5) Calculate the stable control force and control torque Q of the complex after capture. 2.根据权利要求1所述的空间绳系机器人目标抓捕后复合体稳定控制方法,其特征在于,所述的步骤1)中,空间绳系机器人目标抓捕动力学方程为:2. the complex stability control method after the space tethered robot target captures according to claim 1, it is characterized in that, in described step 1), the dynamic equation of the space tethered robot target capture is: Mm (( ξξ )) ξξ ···· ++ NN (( ξξ ,, ξξ ·· )) ξξ ·&Center Dot; ++ GG (( ξξ )) == QQ 其中:l为空间系绳长度;α为空间系绳面内角;β为空间系绳面外角;θ和ψ为复合体姿态角;M为系统惯量矩阵;N非线性速度相关项;G重力相关项;Q为空间绳系机器人控制力与控制力矩。in: l is the length of the space tether; α is the interior angle of the space tether; β is the exterior angle of the space tether; θ and ψ are the attitude angles of the complex; M is the system inertia matrix; N is the nonlinear velocity related item; G is the gravity related item; Q is the space tethered robot control force and control torque. 3.根据权利要求1所述的空间绳系机器人目标抓捕后复合体稳定控制方法,其特征在于,所述的步骤2)中,根据计算虚拟控制输入ξ2c,其中K1为设计的正定矩阵;ξ1e=ξ11d,其中ξ1=ξ,ξ1d为ξ1的期望值,为ξ1e对时间的导数。3. the space tether robot target according to claim 1 captures complex body stability control method, it is characterized in that, in described step 2), according to Calculate the virtual control input ξ 2c , where K 1 is the designed positive definite matrix; ξ 1e = ξ 11d , where ξ 1 = ξ, ξ 1d is the expected value of ξ 1 , is the derivative of ξ 1e with respect to time. 4.根据权利要求1所述的空间绳系机器人目标抓捕后复合体稳定控制方法,其特征在于,所述的步骤3)中,计算出期望系统状态量ξ2d的方法为:通过一阶滤波 ϵ ξ · 2 d + ξ 2 d = ξ 2 c , ξ 2 d ( 0 ) = ξ 2 c ( 0 ) 实现,其中ε>0。4. space tether robot object according to claim 1 captures complex body stability control method, it is characterized in that, in described step 3), calculate the method for expecting system state quantity ξ 2d to be: through first-order filtering ϵ ξ &Center Dot; 2 d + ξ 2 d = ξ 2 c , ξ 2 d ( 0 ) = ξ 2 c ( 0 ) Realization, where ε>0. 5.根据权利要求1所述的空间绳系机器人目标抓捕后复合体稳定控制方法,其特征在于,所述的步骤4)中,复合体模型不确定性通过以下方法得到:其中,a和ελ为正数,η·η=(η1η1η2η2η3η3)T,Proj(·)投影算子;η=ξ2e-χ,χ通过滤波器得到;K2和P为正定矩阵。5. the complex stability control method after the space tether robot target captures according to claim 1, is characterized in that, in described step 4), the complex model uncertainty Obtained by: Among them, a and ε λ are positive numbers, η·η=(η 1 η 1 η 2 η 2 η 3 η 3 ) T , Proj(·) projection operator; η=ξ 2e -χ, χ passes through the filter Get; K 2 and P are positive definite matrices. 6.根据权利要求1所述的空间绳系机器人目标抓捕后复合体稳定控制方法,其特征在于,所述的步骤5)中,计算抓捕后复合体稳定控制力和控制力矩Q: Q 0 = M 0 ξ · 2 d + N 0 ξ 2 d + G 0 + ( N 0 - K 2 ) χ - Pξ 1 e - λ ^ L · η | η | + ϵ λ , 其中Q为Q0通过饱和环节得到,M0为系统名义惯量矩阵;N0名义非线性速度相关项;G0名义重力相关项。6. the space tether robot object according to claim 1 captures complex body stability control method, is characterized in that, in described step 5), calculates the complex body stability control force and control torque Q after capture: Q 0 = m 0 ξ · 2 d + N 0 ξ 2 d + G 0 + ( N 0 - K 2 ) χ - Pξ 1 e - λ ^ L &Center Dot; η | η | + ϵ λ , Among them, Q is Q 0 obtained through the saturation link, M 0 is the nominal inertia matrix of the system; N 0 is the nominal nonlinear velocity related item; G 0 is the nominal gravity related item.
CN201510794393.2A 2015-11-17 2015-11-17 A kind of space rope system robot target arrests rear complex stable control method Active CN105353790B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510794393.2A CN105353790B (en) 2015-11-17 2015-11-17 A kind of space rope system robot target arrests rear complex stable control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510794393.2A CN105353790B (en) 2015-11-17 2015-11-17 A kind of space rope system robot target arrests rear complex stable control method

Publications (2)

Publication Number Publication Date
CN105353790A true CN105353790A (en) 2016-02-24
CN105353790B CN105353790B (en) 2017-11-28

Family

ID=55329777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510794393.2A Active CN105353790B (en) 2015-11-17 2015-11-17 A kind of space rope system robot target arrests rear complex stable control method

Country Status (1)

Country Link
CN (1) CN105353790B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105912005A (en) * 2016-05-16 2016-08-31 西北工业大学 Space non-cooperative target attitude joint takeover control method utilizing tether thruster
CN106363646A (en) * 2016-05-25 2017-02-01 上海铸天智能科技有限公司 Multi-rotor and airborne mechanical arm combined position and posture control method based on visual servo control
CN106502260A (en) * 2016-12-01 2017-03-15 西北工业大学 Robot of space rope system arrests the attitude adapter control method after flexibility target satellite
CN106502101A (en) * 2016-12-23 2017-03-15 西北工业大学 The quick racemization stable control method of assembly model-free after spacecraft capture target
CN106855690A (en) * 2016-11-24 2017-06-16 西北工业大学 Robot of space rope system reclaims the self-adaptation control method of target after closely arresting
CN107220601A (en) * 2017-05-18 2017-09-29 西北工业大学 A kind of target based on online Confidence arrests point prediction method
CN109284768A (en) * 2018-07-25 2019-01-29 西北工业大学 A Method for Uncertainty Reconstruction and Prediction of Space Capture Process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100193640A1 (en) * 2009-01-30 2010-08-05 The Boeing Company Method and apparatus for satellite orbital change using space debris
CN103116358A (en) * 2013-01-15 2013-05-22 南京航空航天大学 Method of controlling stable collecting and releasing of spacecraft rope
CN103135552A (en) * 2013-01-18 2013-06-05 西北工业大学 Coordination control method of spatial rope-tying robot compounded body postures after target catching
US20140107865A1 (en) * 2012-10-12 2014-04-17 National Aeronautics And Space Administration System, apparatus, and method for active debris removal
CN104252574A (en) * 2014-07-17 2014-12-31 西北工业大学 Space tethered capturing system based non-cooperative target quality identification method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100193640A1 (en) * 2009-01-30 2010-08-05 The Boeing Company Method and apparatus for satellite orbital change using space debris
US20140107865A1 (en) * 2012-10-12 2014-04-17 National Aeronautics And Space Administration System, apparatus, and method for active debris removal
CN103116358A (en) * 2013-01-15 2013-05-22 南京航空航天大学 Method of controlling stable collecting and releasing of spacecraft rope
CN103135552A (en) * 2013-01-18 2013-06-05 西北工业大学 Coordination control method of spatial rope-tying robot compounded body postures after target catching
CN104252574A (en) * 2014-07-17 2014-12-31 西北工业大学 Space tethered capturing system based non-cooperative target quality identification method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄静 等: "欠驱动直连式三体绳系卫星非线性姿态跟踪控制", 《航空学报》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105912005A (en) * 2016-05-16 2016-08-31 西北工业大学 Space non-cooperative target attitude joint takeover control method utilizing tether thruster
CN105912005B (en) * 2016-05-16 2018-10-19 西北工业大学 Combine take over control method using the space non-cooperative target posture of tether thruster
CN106363646A (en) * 2016-05-25 2017-02-01 上海铸天智能科技有限公司 Multi-rotor and airborne mechanical arm combined position and posture control method based on visual servo control
CN106363646B (en) * 2016-05-25 2019-04-09 上海铸天智能科技有限公司 A kind of multi-rotor aerocraft and airborne mechanical arm joint Pose Control of view-based access control model servo
CN106855690A (en) * 2016-11-24 2017-06-16 西北工业大学 Robot of space rope system reclaims the self-adaptation control method of target after closely arresting
CN106502260A (en) * 2016-12-01 2017-03-15 西北工业大学 Robot of space rope system arrests the attitude adapter control method after flexibility target satellite
CN106502260B (en) * 2016-12-01 2019-05-10 西北工业大学 Attitude takeover control method for space tethered robot after capturing flexible target satellite
CN106502101A (en) * 2016-12-23 2017-03-15 西北工业大学 The quick racemization stable control method of assembly model-free after spacecraft capture target
CN107220601A (en) * 2017-05-18 2017-09-29 西北工业大学 A kind of target based on online Confidence arrests point prediction method
CN109284768A (en) * 2018-07-25 2019-01-29 西北工业大学 A Method for Uncertainty Reconstruction and Prediction of Space Capture Process

Also Published As

Publication number Publication date
CN105353790B (en) 2017-11-28

Similar Documents

Publication Publication Date Title
CN105353790B (en) A kind of space rope system robot target arrests rear complex stable control method
CN104142687B (en) Method for stably controlling posture of complex after target is caught by space tethered system mechanical arm
CN105182748B (en) A kind of space rope system robot target arrests stable control method
CN105867401B (en) The spacecraft attitude fault tolerant control method of single-gimbal control moment gyros
CN103135552B (en) A Coordinated Attitude Control Method for Complex Objects After Target Capture by Space Tethered Robot
CN105159309B (en) It is a kind of to utilize the spacecraft Attitude stable control method for biasing tether
CN105388902B (en) A kind of unusual bypassing method of control-moment gyro based on instruction Torque vector control
De Crousaz et al. Unified motion control for dynamic quadrotor maneuvers demonstrated on slung load and rotor failure tasks
CN102298326A (en) Underactuated autonomous underwater vehicle (AUV) adaptive trajectory tracking control device and control method
CN106647693A (en) Rigid spacecraft performer multi-fault diagnosis and fault tolerance control method
CN107065910B (en) Method for stably controlling inner surface outer angle of tether surface in maintaining stage of space tether capturing system
CN103955225B (en) Fuel optimal pose coordination method suitable for space tether robot in target approaching process
CN104020778A (en) Flexible satellite attitude maneuvering control method based on tracking of time-energy consumption optimal trajectory
CN110850887A (en) A composite dynamic inverse anti-jamming attitude control method for quadrotor UAV
CN106502101A (en) The quick racemization stable control method of assembly model-free after spacecraft capture target
CN103760900A (en) Ship motion control system with control input restraints considered
CN103112603A (en) Method for building normal gestures of under-actuated high-speed spinning satellite
CN111045440B (en) A fast roll control method for a hypersonic vehicle in the dive segment
CN108927803A (en) One kind arresting antihunt means in continuous impact conditions down space robot target
CN104290925B (en) A kind of spacecraft angular momentum control method in inertial system
CN106054613A (en) Trajectory planning method for autonomous and safe approaching to rolling fault satellite
CN109240343A (en) A kind of Sheng Xi robot approaches object pose integrated control method
CN106774360A (en) Using the target satellite attitude stabilization method of tether/connecting rod in a kind of towing change rail
CN106020217B (en) A kind of towing using spool control becomes the antiwind collision-proof method of rail
CN104635495B (en) A kind of warp-wise skew hierarchical control method of the satellite of stratosphere containing model parameter uncertainty

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant