CN105347795A - High-quality factor lithium-magnesium-niobium-series microwave dielectric ceramic - Google Patents
High-quality factor lithium-magnesium-niobium-series microwave dielectric ceramic Download PDFInfo
- Publication number
- CN105347795A CN105347795A CN201510728848.0A CN201510728848A CN105347795A CN 105347795 A CN105347795 A CN 105347795A CN 201510728848 A CN201510728848 A CN 201510728848A CN 105347795 A CN105347795 A CN 105347795A
- Authority
- CN
- China
- Prior art keywords
- microwave dielectric
- dielectric ceramic
- hours
- powder
- ball
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 46
- 239000000843 powder Substances 0.000 claims abstract description 42
- 238000001035 drying Methods 0.000 claims abstract description 12
- 238000005469 granulation Methods 0.000 claims abstract description 10
- 230000003179 granulation Effects 0.000 claims abstract description 10
- 238000000498 ball milling Methods 0.000 claims abstract description 8
- 238000001354 calcination Methods 0.000 claims abstract description 3
- RMORUKBSBQILPR-UHFFFAOYSA-N [Nb].[Mg].[Li] Chemical class [Nb].[Mg].[Li] RMORUKBSBQILPR-UHFFFAOYSA-N 0.000 claims description 23
- 239000011777 magnesium Substances 0.000 claims description 23
- 229920000728 polyester Polymers 0.000 claims description 19
- 239000002994 raw material Substances 0.000 claims description 19
- 239000008367 deionised water Substances 0.000 claims description 13
- 229910021641 deionized water Inorganic materials 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000012188 paraffin wax Substances 0.000 claims description 10
- 101100513612 Microdochium nivale MnCO gene Proteins 0.000 claims description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 238000005245 sintering Methods 0.000 claims description 5
- 239000010955 niobium Substances 0.000 claims 2
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 4
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 abstract description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 abstract description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 abstract 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 abstract 2
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 abstract 2
- 235000010216 calcium carbonate Nutrition 0.000 abstract 1
- 229910000019 calcium carbonate Inorganic materials 0.000 abstract 1
- 239000008187 granular material Substances 0.000 abstract 1
- 239000011656 manganese carbonate Substances 0.000 abstract 1
- 235000006748 manganese carbonate Nutrition 0.000 abstract 1
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 abstract 1
- 229910000008 nickel(II) carbonate Inorganic materials 0.000 abstract 1
- 238000007873 sieving Methods 0.000 abstract 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 abstract 1
- 239000011230 binding agent Substances 0.000 description 9
- 239000011812 mixed powder Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 7
- 229910010293 ceramic material Inorganic materials 0.000 description 7
- 239000004615 ingredient Substances 0.000 description 7
- 229910052726 zirconium Inorganic materials 0.000 description 7
- 238000012360 testing method Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910001425 magnesium ion Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007603 infrared drying Methods 0.000 description 1
- GCICAPWZNUIIDV-UHFFFAOYSA-N lithium magnesium Chemical compound [Li].[Mg] GCICAPWZNUIIDV-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 150000002821 niobium Chemical class 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
技术领域technical field
本发明属于一种以成分为特征的陶瓷组合物,特别涉及一种高品质因数锂镁铌系微波介质陶瓷及其制备方法。The invention belongs to a ceramic composition characterized by components, in particular to a lithium-magnesium-niobium series microwave dielectric ceramic with high quality factor and a preparation method thereof.
背景技术Background technique
随着微波通信技术的发展,微波介质陶瓷材料引起了人们越来越多的关注,而具有适宜的介电常数、高的品质因数以及良好的谐振频率温度系数是微波介质陶瓷材料能够应用于微波器件中的三个必然要求,这三个参数与材料所做成器件的尺寸、工作频率和热稳定性相对应。在现在应用方面,微波介质陶瓷材料越来越多的被运用于谐振器、滤波器和介质天线等高性能微波元器件中,且其作用越来越重要。因此对新型微波介质陶瓷材料的功能性的研究已急待进行。With the development of microwave communication technology, microwave dielectric ceramic materials have attracted more and more attention, and suitable dielectric constant, high quality factor and good resonant frequency temperature coefficient are microwave dielectric ceramic materials that can be used in microwave There are three necessary requirements in the device, and these three parameters correspond to the size, operating frequency and thermal stability of the device made of the material. In terms of current applications, microwave dielectric ceramic materials are increasingly used in high-performance microwave components such as resonators, filters and dielectric antennas, and their role is becoming more and more important. Therefore, research on the functionality of new microwave dielectric ceramic materials is urgently needed.
具有岩盐矿结构的Li3Mg2NbO6系微波介质陶瓷是近来刚开发的新型微波介质陶瓷,其具有良好的微波介电性能,介电常数为16.8,品质因数为796430GHz,谐振频率温度系数为-27.2ppm/℃。The Li 3 Mg 2 NbO 6 -series microwave dielectric ceramics with a rock-salt structure is a new type of microwave dielectric ceramic that has just been developed recently. It has good microwave dielectric properties, with a dielectric constant of 16.8, a quality factor of 796430GHz, and a resonance frequency temperature coefficient of -27.2ppm/°C.
但目前对其制备方法和改性的研究的报道较少。本发明采用传统固相法,采用不同的二价金属离子(Ca2+,Ni2+,Zn2+,Mn2+)分别对Li3Mg2NbO6陶瓷中Mg离子进行置换,保证其介电常数基本保持不变的基础上,较大提高了铌酸钕陶瓷的品质因数,同时一定程度改善了其谐振频率温度系数,使其成为一种理想的微波介质陶瓷材料。But there are few reports on its preparation method and modification. The present invention adopts the traditional solid phase method, and uses different divalent metal ions (Ca 2+ , Ni 2+ , Zn 2+ , Mn 2+ ) to replace the Mg ions in Li 3 Mg 2 NbO 6 ceramics respectively, so as to ensure the On the basis of keeping the electrical constant basically unchanged, the quality factor of neodymium niobate ceramics is greatly improved, and at the same time, its resonant frequency temperature coefficient is improved to a certain extent, making it an ideal microwave dielectric ceramic material.
发明内容Contents of the invention
本发明的目的,是为在现有技术的基础上,保证其介电常数基本不变,较大提高其品质因数,同时一定程度改善其谐振频率温度系数,提供一种以Li2CO3、MgO、Nb2O5为主要原料,并以适量二价金属离子(Ca2+,Ni2+,Zn2+,Mn2+)取代镁离子,以制备出高品质因数Q×f的锂镁铌系微波介质陶瓷。The object of the present invention is to ensure that its dielectric constant remains basically unchanged, greatly improve its quality factor, and at the same time improve its resonance frequency temperature coefficient to a certain extent on the basis of the prior art, and provide a kind of Li2CO3 , MgO and Nb 2 O 5 are the main raw materials, and magnesium ions are replaced by appropriate amount of divalent metal ions (Ca 2+ , Ni 2+ , Zn 2+ , Mn 2+ ) to prepare lithium magnesium with high quality factor Q×f Niobium series microwave dielectric ceramics.
本发明通过如下技术方案予以实现。The present invention is realized through the following technical solutions.
1.一种高品质因数锂镁铌系微波介质陶瓷,其组成为Li3(Mg0.95A0.05)2NbO6,其中A=Ca2+,Ni2+,Zn2+,Mn2+;1. A lithium-magnesium-niobium series microwave dielectric ceramic with a high quality factor, its composition is Li 3 (Mg 0.95 A 0.05 ) 2 NbO 6 , where A=Ca 2+ , Ni 2+ , Zn 2+ , Mn 2+ ;
上述锂镁铌系微波介质陶瓷的制备方法,具有以下步骤:The preparation method of the above-mentioned lithium-magnesium-niobium series microwave dielectric ceramics has the following steps:
(1)将Li2CO3、MgO、CaCO3、NiCO3、ZnO、MnCO3、Nb2O5原料,Li3(Mg0.95A0.05)2NbO6进行配料,其中A=Ca2+,Ni2+,Zn2+,Mn2+;按原料:去离子水:磨球质量比为2:16:15的比例加入聚酯罐中,在球磨机上球磨6小时;(1) Mix Li 2 CO 3 , MgO, CaCO 3 , NiCO 3 , ZnO, MnCO 3 , Nb 2 O 5 raw materials, Li 3 (Mg 0.95 A 0.05 ) 2 NbO 6 , where A=Ca 2+ , Ni 2+ , Zn 2+ , Mn 2+ ; according to the ratio of raw materials: deionized water: ball mass ratio of 2:16:15, add it into the polyester tank, and mill it on the ball mill for 6 hours;
(2)将步骤(1)球磨后的原料置于干燥箱中于120℃烘干,烘干后过40目筛,获得颗粒均匀的粉料;(2) Place the ball-milled raw materials in step (1) in a drying oven to dry at 120° C., and pass through a 40-mesh sieve after drying to obtain a powder with uniform particles;
(3)将步骤(2)混合均匀的粉料于1050℃煅烧4小时;(3) Calcining the homogeneously mixed powder in step (2) at 1050° C. for 4 hours;
(4)将步骤(3)煅烧后的陶瓷粉料放入聚酯罐中,加入去离子水和氧化锆球后,在球磨机上球磨6小时;烘干后在陶瓷粉料中外加重量百分比为6~8%的石蜡作为粘合剂进行造粒,过80目筛,再用粉末压片机成型为坯体;(4) the ceramic powder after step (3) is calcined is put into polyester pot, after adding deionized water and zirconia ball, ball mills on the ball mill for 6 hours; Add weight percentage in ceramic powder after drying: 6-8% paraffin is used as a binder for granulation, passed through an 80-mesh sieve, and then formed into a green body with a powder tablet press;
(5)再将将步(4)的生坯于1120~1180℃烧结,保温4小时,制得微波介质陶瓷。(5) Sintering the green body in step (4) at 1120-1180° C. and keeping it warm for 4 hours to obtain microwave dielectric ceramics.
所述步骤(1)的原料Li2CO3、MgO、CaCO3、NiCO3、ZnO、MnCO3、Nb2O5的纯度大于99%。The purity of the raw materials Li 2 CO 3 , MgO, CaCO 3 , NiCO 3 , ZnO, MnCO 3 and Nb 2 O 5 in the step (1) is greater than 99%.
所述步骤(1)和步骤⑷的球磨机为行星式球磨机。The ball mill in the step (1) and step (4) is a planetary ball mill.
所述步骤(4)的压片机的工作压强为7MPa。The working pressure of the tablet press of described step (4) is 7MPa.
所述步骤(4)的生坯规格为Φ10mm×5mm的圆柱体。The specification of the green body in the step (4) is a cylinder of Φ10mm×5mm.
所述步骤(5)的烧结温度为1140℃,保温4小时。The sintering temperature of the step (5) is 1140° C., and the temperature is kept for 4 hours.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
由于采用不同二价金属离子(Ca2+,Ni2+,Zn2+,Mn2+)部分取代Li3Mg2NbO6中Mg离子,制备出Li3(Mg0.95A0.05)2NbO6(其中A=Ca2+,Ni2+,Zn2+,Mn2+)微波介质陶瓷。当烧结温度为1140℃,保温时间4h,一次球磨,二次球磨时间均为6h,A为Ca2+离子时,介电常数为15.62,谐振频率温度系数达到-18.47ppm/℃,而品质因数达到最大值为96160GHz。由于部分离子取代后促进了其晶粒的生长,减少了其气孔,因此提高了品质因数。此外,该制备工艺简单,过程环保,制备简单,是一种很有前途的微波介质材料。 Li 3 ( Mg 0.95 A 0.05 ) 2 NbO 6 ( Where A=Ca 2+ , Ni 2+ , Zn 2+ , Mn 2+ ) microwave dielectric ceramics. When the sintering temperature is 1140°C, the holding time is 4h, the first ball milling time and the second ball milling time are both 6h, and A is Ca 2+ ions, the dielectric constant is 15.62, the temperature coefficient of resonance frequency reaches -18.47ppm/°C, and the quality factor The maximum value reached is 96160GHz. Since partial ion substitution promotes the growth of its crystal grains and reduces its pores, the quality factor is improved. In addition, the preparation process is simple, the process is environmentally friendly, and the preparation is simple, which is a promising microwave dielectric material.
具体实施方式detailed description
本发明采用纯度大于99%的化学原料Li2CO3、MgO、CaCO3、NiCO3、ZnO、MnCO3、Nb2O5制备新型的低损耗微波介质陶瓷材料Li3Mg2NbO6。The invention adopts chemical raw materials Li 2 CO 3 , MgO, CaCO 3 , NiCO 3 , ZnO, MnCO 3 and Nb 2 O 5 with a purity greater than 99% to prepare a novel low-loss microwave dielectric ceramic material Li 3 Mg 2 NbO 6 .
本发明将Li2CO3、MgO、CaCO3、NiCO3、ZnO、MnCO3、Nb2O5原料按化学式Li3(Mg0.95A0.05)2NbO6(其中A=Ca2+,Ni2+,Zn2+,Mn2+)进行配料,用料:去离子水:磨球=2:16:15的比例加入聚酯罐中,球磨6小时;将球磨后的原料置于红外干燥箱中于120℃烘干,过40目筛,再于1050℃煅烧4小时;再将煅烧后的陶瓷粉料放入球磨罐中,加入氧化锆球和去离子水球磨6小时后烘干;再在烘干后的陶瓷粉料中外加重量百分比为6~8%的石蜡粘合剂进行造粒,过80目筛后,用粉末压片机于7MPa的压力下将粉末压成直径为10mm,厚度为5mm的生坯;将生坯在1120~1180℃烧结,保温4小时,制得锂镁铌系微波介质陶瓷;最后通过网络分析仪测试制品的微波介电性能。In the present invention, Li 2 CO 3 , MgO, CaCO 3 , NiCO 3 , ZnO, MnCO 3 , and Nb 2 O 5 raw materials are formulated according to the chemical formula Li 3 (Mg 0.95 A 0.05 ) 2 NbO 6 (wherein A=Ca 2+ , Ni 2+ , Zn 2+ , Mn 2+ ) for batching, materials: deionized water: grinding ball = 2:16:15 ratio into polyester tank, ball milling for 6 hours; the raw material after ball milling is placed in an infrared drying box Dry at 120°C, pass through a 40-mesh sieve, and then calcined at 1050°C for 4 hours; then put the calcined ceramic powder into a ball mill jar, add zirconia balls and deionized water ball mill for 6 hours, and then dry; The dried ceramic powder is granulated by adding a paraffin wax binder with a weight percentage of 6-8%. After passing through an 80-mesh sieve, use a powder tablet machine to press the powder into a diameter of 10mm and a thickness of 10mm under a pressure of 7MPa. It is a 5mm green body; the green body is sintered at 1120-1180°C and held for 4 hours to obtain a lithium-magnesium-niobium-based microwave dielectric ceramic; finally, the microwave dielectric properties of the product are tested by a network analyzer.
本发明具体实施例如下。Specific examples of the present invention are as follows.
实施例1:Example 1:
1.依照锂镁铌系微波介质陶瓷组分Li3(Mg0.95A0.05)2NbO6(其中A=Ca2+),称Li2CO3-6.7107g、MgO-4.6365g、CaCO3-0.6060g、Nb2O5-8.0468g配料,共20g;混合粉料加入聚酯罐中,加入160ml去离子水和150g锆球后,在行星式球磨机上球磨6小时,球磨机转速为1000转/分;1. According to Li 2 CO 3 -6.7107g, MgO-4.6365g, CaCO 3 -0.6060 according to Li 3 (Mg 0.95 A 0.05 ) 2 NbO 6 (wherein A=Ca 2+ ) components of lithium-magnesium-niobium microwave dielectric ceramics g, Nb 2 O 5 -8.0468g ingredients, a total of 20g; the mixed powder was added to the polyester tank, after adding 160ml deionized water and 150g zirconium balls, ball milled on a planetary ball mill for 6 hours, and the speed of the ball mill was 1000 rpm ;
2.将球磨后的原料置于干燥箱中,于120℃烘干并过40目筛,获得颗粒均匀的粉料;2. Put the ball-milled raw material in a drying oven, dry at 120°C and pass through a 40-mesh sieve to obtain a powder with uniform particles;
3.将粉料于1050℃煅烧4小时;3. Calcinate the powder at 1050°C for 4 hours;
4.将煅烧后的粉料放入聚酯罐中,二次球磨6小时,出料后烘干,过40目筛;然后加入重量百分比为6%的石蜡作为粘合剂进行造粒,并过80目筛;再用粉末压片机以7MPa的压力压成直径为10mm,厚度为5mm的坯体;4. Put the calcined powder into a polyester tank, ball mill it for 6 hours for the second time, dry it after discharge, and pass through a 40 mesh sieve; then add 6% paraffin wax as a binder for granulation, and Pass through an 80-mesh sieve; use a powder tablet press to press into a green body with a diameter of 10mm and a thickness of 5mm with a pressure of 7MPa;
5.将坯体于1140℃烧结,保温4小时,制得锂镁铌系Li3(Mg0.95Ca0.05)2NbO6微波介质陶瓷;5. Sinter the green body at 1140°C and keep it warm for 4 hours to prepare lithium magnesium niobium series Li 3 (Mg 0.95 Ca 0.05 ) 2 NbO 6 microwave dielectric ceramics;
最后,通过网络分析仪测试所得样品微波特性。Finally, the microwave characteristics of the obtained samples were tested by a network analyzer.
实施例2:Example 2:
1.依照锂镁铌系微波介质陶瓷组分Li3(Mg0.95A0.05)2NbO6(其中A=Ni2+),称Li2CO3-6.6731g、MgO-4.6105g、NiCO3-0.7147g、Nb2O5-8.0017g配料,共20g;混合粉料加入聚酯罐中,加入160ml去离子水和150g锆球后,在行星式球磨机上球磨6小时,球磨机转速为1000转/分;1. According to Li 2 CO 3 -6.6731g, MgO-4.6105g, NiCO 3 -0.7147 according to Li 3 (Mg 0.95 A 0.05 ) 2 NbO 6 (wherein A=Ni 2+ ) components of lithium-magnesium-niobium microwave dielectric ceramics g, Nb 2 O 5 -8.0017g ingredients, a total of 20g; the mixed powder was added to the polyester tank, after adding 160ml deionized water and 150g zirconium balls, ball milled on a planetary ball mill for 6 hours, and the speed of the ball mill was 1000 rpm ;
2.将球磨后的原料置于干燥箱中,于120℃烘干并过40目筛,获得颗粒均匀的粉料;2. Put the ball-milled raw material in a drying oven, dry at 120°C and pass through a 40-mesh sieve to obtain a powder with uniform particles;
3.将粉料于1050℃煅烧4小时;3. Calcinate the powder at 1050°C for 4 hours;
4.将煅烧后的粉料放入聚酯罐中,二次球磨6小时,出料后烘干,过40目筛;然后加入重量百分比为6%的石蜡作为粘合剂进行造粒,并过80目筛;再用粉末压片机以7MPa的压力压成直径为10mm,厚度为5mm的坯体;4. Put the calcined powder into a polyester tank, ball mill it for 6 hours for the second time, dry it after discharge, and pass through a 40 mesh sieve; then add 6% paraffin wax as a binder for granulation, and Pass through an 80-mesh sieve; use a powder tablet press to press into a green body with a diameter of 10mm and a thickness of 5mm with a pressure of 7MPa;
5.将坯体于1140℃烧结,保温4小时,制得锂镁铌系Li3(Mg0.95Ni0.05)2NbO6微波介质陶瓷;5. Sinter the green body at 1140°C and keep it warm for 4 hours to obtain lithium magnesium niobium series Li 3 (Mg 0.95 Ni 0.05 ) 2 NbO 6 microwave dielectric ceramics;
最后,通过网络分析仪测试所得样品微波特性。Finally, the microwave characteristics of the obtained samples were tested by a network analyzer.
实施例3:Embodiment 3:
1.依照锂镁铌系微波介质陶瓷组分Li3(Mg0.95A0.05)2NbO6(其中A=Zn2+),称Li2CO3-6.7489g、MgO-4.6629g、ZnO-0.4956g、Nb2O5-8.0926g配料,共20g;混合粉料加入聚酯罐中,加入160ml去离子水和150g锆球后,在行星式球磨机上球磨6小时,球磨机转速为1000转/分;1. According to Li 2 CO 3 -6.7489g, MgO-4.6629g, ZnO-0.4956g according to Li 3 (Mg 0.95 A 0.05 ) 2 NbO 6 (wherein A=Zn 2+ ) components of lithium-magnesium-niobium microwave dielectric ceramics , Nb 2 O 5 -8.0926g ingredients, 20g in total; the mixed powder was added to the polyester tank, after adding 160ml deionized water and 150g zirconium balls, ball milled on a planetary ball mill for 6 hours, and the speed of the ball mill was 1000 rpm;
2.将球磨后的原料置于干燥箱中,于120℃烘干并过40目筛,获得颗粒均匀的粉料;2. Put the ball-milled raw material in a drying oven, dry at 120°C and pass through a 40-mesh sieve to obtain a powder with uniform particles;
3.将粉料于1050℃煅烧4小时;3. Calcinate the powder at 1050°C for 4 hours;
4.将煅烧后的粉料放入聚酯罐中,二次球磨6小时,出料后烘干,过40目筛;然后加入重量百分比为6%的石蜡作为粘合剂进行造粒,并过80目筛;再用粉末压片机以7MPa的压力压成直径为10mm,厚度为5mm的坯体;4. Put the calcined powder into a polyester tank, ball mill it for 6 hours for the second time, dry it after discharge, and pass through a 40 mesh sieve; then add 6% paraffin wax as a binder for granulation, and Pass through an 80-mesh sieve; use a powder tablet press to press into a green body with a diameter of 10mm and a thickness of 5mm with a pressure of 7MPa;
5.将坯体于1140℃烧结,保温4小时,制得锂镁铌系Li3(Mg0.95Zn0.05)2NbO6微波介质陶瓷;5. Sinter the green body at 1140°C and keep it warm for 4 hours to prepare Li 3 (Mg 0.95 Zn 0.05 ) 2 NbO 6 microwave dielectric ceramics;
最后,通过网络分析仪测试所得样品微波特性。Finally, the microwave characteristics of the obtained samples were tested by a network analyzer.
实施例4:Embodiment 4:
1.依照锂镁铌系微波介质陶瓷组分Li3(Mg0.95A0.05)2NbO6(其中A=Mn2+),称Li2CO3-6.6806g、MgO-4.6157g、MnCO3-0.6928g、Nb2O5-8.00108g配料,共20g;混合粉料加入聚酯罐中,加入160ml去离子水和150g锆球后,在行星式球磨机上球磨6小时,球磨机转速为1000转/分;1. According to Li 2 CO 3 -6.6806g, MgO-4.6157g, MnCO 3 -0.6928 according to Li 3 (Mg 0.95 A 0.05 ) 2 NbO 6 (wherein A=Mn 2+ ) components of lithium-magnesium-niobium microwave dielectric ceramics g, Nb 2 O 5 -8.00108g ingredients, a total of 20g; the mixed powder was added to the polyester tank, after adding 160ml deionized water and 150g zirconium balls, ball milled on a planetary ball mill for 6 hours, and the speed of the ball mill was 1000 rpm ;
2.将球磨后的原料置于干燥箱中,于120℃烘干并过40目筛,获得颗粒均匀的粉料;2. Put the ball-milled raw material in a drying oven, dry at 120°C and pass through a 40-mesh sieve to obtain a powder with uniform particles;
3.将粉料于1050℃煅烧4小时;3. Calcinate the powder at 1050°C for 4 hours;
4.将煅烧后的粉料放入聚酯罐中,二次球磨6小时,出料后烘干,过40目筛;然后加入重量百分比为6%的石蜡作为粘合剂进行造粒,并过80目筛;再用粉末压片机以7MPa的压力压成直径为10mm,厚度为5mm的坯体;4. Put the calcined powder into a polyester tank, ball mill it for 6 hours for the second time, dry it after discharge, and pass through a 40 mesh sieve; then add 6% paraffin wax as a binder for granulation, and Pass through an 80-mesh sieve; use a powder tablet press to press into a green body with a diameter of 10mm and a thickness of 5mm with a pressure of 7MPa;
5.将坯体于1140℃烧结,保温4小时,制得锂镁铌系Li3(Mg0.95Mn0.05)2NbO6微波介质陶瓷;5. Sinter the green body at 1140°C and keep it warm for 4 hours to prepare Li 3 (Mg 0.95 Mn 0.05 ) 2 NbO 6 microwave dielectric ceramics;
最后,通过网络分析仪测试所得样品微波特性。Finally, the microwave characteristics of the obtained samples were tested by a network analyzer.
实施例5:Embodiment 5:
1.依照锂镁铌系微波介质陶瓷组分Li3(Mg0.95A0.05)2NbO6(其中A=Ca2+),称Li2CO3-6.7107g、MgO-4.6365g、CaCO3-0.6060g、Nb2O5-8.0468g配料,共20g;混合粉料加入聚酯罐中,加入160ml去离子水和150g锆球后,在行星式球磨机上球磨6小时,球磨机转速为1000转/分;1. According to Li 2 CO 3 -6.7107g, MgO-4.6365g, CaCO 3 -0.6060 according to Li 3 (Mg 0.95 A 0.05 ) 2 NbO 6 (wherein A=Ca 2+ ) components of lithium-magnesium-niobium microwave dielectric ceramics g, Nb 2 O 5 -8.0468g ingredients, a total of 20g; the mixed powder was added to the polyester tank, after adding 160ml deionized water and 150g zirconium balls, ball milled on a planetary ball mill for 6 hours, and the speed of the ball mill was 1000 rpm ;
2.将球磨后的原料置于干燥箱中,于120℃烘干并过40目筛,获得颗粒均匀的粉料;2. Put the ball-milled raw material in a drying oven, dry at 120°C and pass through a 40-mesh sieve to obtain a powder with uniform particles;
3.将粉料于1050℃煅烧4小时;3. Calcinate the powder at 1050°C for 4 hours;
4.将煅烧后的粉料放入聚酯罐中,二次球磨6小时,出料后烘干,过40目筛;然后加入重量百分比为6%的石蜡作为粘合剂进行造粒,并过80目筛;再用粉末压片机以7MPa的压力压成直径为10mm,厚度为5mm的坯体;4. Put the calcined powder into a polyester tank, ball mill it for 6 hours for the second time, dry it after discharge, and pass through a 40 mesh sieve; then add 6% paraffin wax as a binder for granulation, and Pass through an 80-mesh sieve; use a powder tablet press to press into a green body with a diameter of 10mm and a thickness of 5mm with a pressure of 7MPa;
5.将坯体于1120℃烧结,保温4小时,制得锂镁铌系Li3(Mg0.95Ca0.05)2NbO6微波介质陶瓷;5. Sinter the green body at 1120°C and keep it warm for 4 hours to prepare lithium magnesium niobium series Li 3 (Mg 0.95 Ca 0.05 ) 2 NbO 6 microwave dielectric ceramics;
最后,通过网络分析仪测试所得样品微波特性。Finally, the microwave characteristics of the obtained samples were tested by a network analyzer.
实施例6:Embodiment 6:
1.依照锂镁铌系微波介质陶瓷组分Li3(Mg0.95A0.05)2NbO6(其中A=Ca2+),称Li2CO3-6.7107g、MgO-4.6365g、CaCO3-0.6060g、Nb2O5-8.0468g配料,共20g;混合粉料加入聚酯罐中,加入160ml去离子水和150g锆球后,在行星式球磨机上球磨6小时,球磨机转速为1000转/分;1. According to Li 2 CO 3 -6.7107g, MgO-4.6365g, CaCO 3 -0.6060 according to Li 3 (Mg 0.95 A 0.05 ) 2 NbO 6 (wherein A=Ca 2+ ) components of lithium-magnesium-niobium microwave dielectric ceramics g, Nb 2 O 5 -8.0468g ingredients, a total of 20g; the mixed powder was added to the polyester tank, after adding 160ml deionized water and 150g zirconium balls, ball milled on a planetary ball mill for 6 hours, and the speed of the ball mill was 1000 rpm ;
2.将球磨后的原料置于干燥箱中,于120℃烘干并过40目筛,获得颗粒均匀的粉料;2. Put the ball-milled raw material in a drying oven, dry at 120°C and pass through a 40-mesh sieve to obtain a powder with uniform particles;
3.将粉料于1050℃煅烧4小时;3. Calcinate the powder at 1050°C for 4 hours;
4.将煅烧后的粉料放入聚酯罐中,二次球磨6小时,出料后烘干,过40目筛;然后加入重量百分比为6%的石蜡作为粘合剂进行造粒,并过80目筛;再用粉末压片机以7MPa的压力压成直径为10mm,厚度为5mm的坯体;4. Put the calcined powder into a polyester tank, ball mill it for 6 hours for the second time, dry it after discharge, and pass through a 40 mesh sieve; then add 6% paraffin wax as a binder for granulation, and Pass through an 80-mesh sieve; use a powder tablet press to press into a green body with a diameter of 10mm and a thickness of 5mm with a pressure of 7MPa;
5.将坯体于1160℃烧结,保温4小时,制得锂镁铌系Li3(Mg0.95Ca0.05)2NbO6微波介质陶瓷;5. Sinter the green body at 1160°C and keep it warm for 4 hours to prepare lithium magnesium niobium series Li 3 (Mg 0.95 Ca 0.05 ) 2 NbO 6 microwave dielectric ceramics;
最后,通过网络分析仪测试所得样品微波特性。Finally, the microwave characteristics of the obtained samples were tested by a network analyzer.
实施例7:Embodiment 7:
1.依照锂镁铌系微波介质陶瓷组分Li3(Mg0.95A0.05)2NbO6(其中A=Ca2+),称Li2CO3-6.7107g、MgO-4.6365g、CaCO3-0.6060g、Nb2O5-8.0468g配料,共20g;混合粉料加入聚酯罐中,加入160ml去离子水和150g锆球后,在行星式球磨机上球磨6小时,球磨机转速为1000转/分;1. According to Li 2 CO 3 -6.7107g, MgO-4.6365g, CaCO 3 -0.6060 according to Li 3 (Mg 0.95 A 0.05 ) 2 NbO 6 (wherein A=Ca 2+ ) components of lithium-magnesium-niobium microwave dielectric ceramics g, Nb 2 O 5 -8.0468g ingredients, a total of 20g; the mixed powder was added to the polyester tank, after adding 160ml deionized water and 150g zirconium balls, ball milled on a planetary ball mill for 6 hours, and the speed of the ball mill was 1000 rpm ;
2.将球磨后的原料置于干燥箱中,于120℃烘干并过40目筛,获得颗粒均匀的粉料;2. Put the ball-milled raw material in a drying oven, dry at 120°C and pass through a 40-mesh sieve to obtain a powder with uniform particles;
3.将粉料于1050℃煅烧4小时;3. Calcinate the powder at 1050°C for 4 hours;
4.将煅烧后的粉料放入聚酯罐中,二次球磨6小时,出料后烘干,过40目筛;然后加入重量百分比为6%的石蜡作为粘合剂进行造粒,并过80目筛;再用粉末压片机以7MPa的压力压成直径为10mm,厚度为5mm的坯体;4. Put the calcined powder into a polyester tank, ball mill it for 6 hours for the second time, dry it after discharge, and pass through a 40 mesh sieve; then add 6% paraffin wax as a binder for granulation, and Pass through an 80-mesh sieve; then use a powder tablet press with a pressure of 7MPa to press into a green body with a diameter of 10mm and a thickness of 5mm;
5.将坯体于1180℃烧结,保温4小时,制得锂镁铌系Li3(Mg0.95Ca0.05)2NbO6微波介质陶瓷;5. Sinter the green body at 1180°C and keep it warm for 4 hours to prepare lithium magnesium niobium series Li 3 (Mg 0.95 Ca 0.05 ) 2 NbO 6 microwave dielectric ceramics;
最后,通过网络分析仪测试所得样品微波特性。Finally, the microwave characteristics of the obtained samples were tested by a network analyzer.
本发明具体实施例的各项关键参数及其介电性能的检测结果详见表1。See Table 1 for details of the key parameters and the detection results of the dielectric properties of the specific embodiments of the present invention.
表1Table 1
本发明实施例的检测方法如下:The detection method of the embodiment of the present invention is as follows:
1.样品的直径和厚度使用千分尺进行测量。1. The diameter and thickness of the sample are measured using a micrometer.
2.借助Agilent8720ES网络分析仪,采用开始抢平行板法测量所制备圆柱形陶瓷材料的节电常数,将测试夹具放入ESPECMC-710F型高低温循环温箱进行谐振频率温度系数的测量,温度范围为25-85℃测试频率在8-12GHz范围内。2. With the help of Agilent8720ES network analyzer, use the parallel plate method to measure the power saving constant of the prepared cylindrical ceramic material, put the test fixture into the ESPECMC-710F high and low temperature cycle incubator to measure the temperature coefficient of resonant frequency, the temperature range The test frequency is in the range of 8-12GHz for 25-85°C.
3.采用闭式腔法测量所制备圆柱形陶瓷样品的品质因数,测试频率在6-10GHz范围内。3. The quality factor of the prepared cylindrical ceramic samples is measured by the closed cavity method, and the test frequency is in the range of 6-10 GHz.
本发明不局限于上述实施例,很多细节的变化是可能的,但这并不因此违背本发明的范围和精神。The present invention is not limited to the above-described embodiments, and changes in many details are possible without thereby departing from the scope and spirit of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510728848.0A CN105347795A (en) | 2015-10-30 | 2015-10-30 | High-quality factor lithium-magnesium-niobium-series microwave dielectric ceramic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510728848.0A CN105347795A (en) | 2015-10-30 | 2015-10-30 | High-quality factor lithium-magnesium-niobium-series microwave dielectric ceramic |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105347795A true CN105347795A (en) | 2016-02-24 |
Family
ID=55323890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510728848.0A Pending CN105347795A (en) | 2015-10-30 | 2015-10-30 | High-quality factor lithium-magnesium-niobium-series microwave dielectric ceramic |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105347795A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105859289A (en) * | 2016-06-13 | 2016-08-17 | 天津大学 | Low-temperature sintering low-loss magnesium-lithium-niobate-series microwave dielectric ceramic |
CN106083034A (en) * | 2016-06-13 | 2016-11-09 | 天津大学 | A kind of low-loss lithium magnesium titanium series microwave dielectric ceramic |
CN106116574A (en) * | 2016-06-13 | 2016-11-16 | 天津大学 | A kind of preparation method of low temperature sintering lithium magnesium niobium series microwave dielectric ceramic |
CN106348756A (en) * | 2016-10-21 | 2017-01-25 | 天津大学 | High-Q-value lithium-magnesium-niobium microwave dielectric ceramic |
CN106348755A (en) * | 2016-10-21 | 2017-01-25 | 天津大学 | Method of effectively reducing sintering temperature of lithium-magnesium-niobium microwave dielectric ceramics |
CN106810209A (en) * | 2017-01-12 | 2017-06-09 | 天津大学 | A kind of high q-factor lithium magnesium titanium series microwave dielectric ceramic |
CN106830933A (en) * | 2017-01-12 | 2017-06-13 | 天津大学 | A kind of thermally-stabilised high q-factor lithium magnesium niobium series microwave dielectric ceramic |
CN109251028A (en) * | 2018-10-26 | 2019-01-22 | 天津大学 | A kind of low high Q lithium magnesium niobium series microwave dielectric ceramic and preparation method thereof that is situated between |
CN111302796A (en) * | 2020-02-07 | 2020-06-19 | 天津大学 | Low-dielectric-coefficient low-loss dielectric material and preparation method thereof |
CN111943671A (en) * | 2020-08-18 | 2020-11-17 | 西安邮电大学 | A low-loss microwave dielectric ceramic with a wide sintering temperature zone and a preparation method thereof |
CN112457010A (en) * | 2020-12-02 | 2021-03-09 | 电子科技大学 | Rock salt type reconstructed superlattice structure microwave dielectric ceramic material and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000260432A (en) * | 1999-03-09 | 2000-09-22 | Mitsubishi Electric Corp | Positive electrode active material, manufacture thereof, and lithium ion secondary battery using it |
-
2015
- 2015-10-30 CN CN201510728848.0A patent/CN105347795A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000260432A (en) * | 1999-03-09 | 2000-09-22 | Mitsubishi Electric Corp | Positive electrode active material, manufacture thereof, and lithium ion secondary battery using it |
Non-Patent Citations (2)
Title |
---|
PING ZHANG ET AL.: "Effects of structural characteristics on microwave dielectric properties of Li2Mg(Ti1-xMnx)3O8 ceramics", 《JOURNAL OF ALLOYS AND COMPOUNDS》 * |
TIANWEN ZHANG ET AL.: "Effect of Li2O–V2O5 addition on the sintering behavior and microwave dielectric properties of Li3(Mg1-xZnx)2NbO6 ceramics", 《CERAMICS INTERNATIONAL》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105859289A (en) * | 2016-06-13 | 2016-08-17 | 天津大学 | Low-temperature sintering low-loss magnesium-lithium-niobate-series microwave dielectric ceramic |
CN106083034A (en) * | 2016-06-13 | 2016-11-09 | 天津大学 | A kind of low-loss lithium magnesium titanium series microwave dielectric ceramic |
CN106116574A (en) * | 2016-06-13 | 2016-11-16 | 天津大学 | A kind of preparation method of low temperature sintering lithium magnesium niobium series microwave dielectric ceramic |
CN106348756A (en) * | 2016-10-21 | 2017-01-25 | 天津大学 | High-Q-value lithium-magnesium-niobium microwave dielectric ceramic |
CN106348755A (en) * | 2016-10-21 | 2017-01-25 | 天津大学 | Method of effectively reducing sintering temperature of lithium-magnesium-niobium microwave dielectric ceramics |
CN106810209A (en) * | 2017-01-12 | 2017-06-09 | 天津大学 | A kind of high q-factor lithium magnesium titanium series microwave dielectric ceramic |
CN106830933A (en) * | 2017-01-12 | 2017-06-13 | 天津大学 | A kind of thermally-stabilised high q-factor lithium magnesium niobium series microwave dielectric ceramic |
CN109251028A (en) * | 2018-10-26 | 2019-01-22 | 天津大学 | A kind of low high Q lithium magnesium niobium series microwave dielectric ceramic and preparation method thereof that is situated between |
CN111302796A (en) * | 2020-02-07 | 2020-06-19 | 天津大学 | Low-dielectric-coefficient low-loss dielectric material and preparation method thereof |
CN111943671A (en) * | 2020-08-18 | 2020-11-17 | 西安邮电大学 | A low-loss microwave dielectric ceramic with a wide sintering temperature zone and a preparation method thereof |
CN112457010A (en) * | 2020-12-02 | 2021-03-09 | 电子科技大学 | Rock salt type reconstructed superlattice structure microwave dielectric ceramic material and preparation method thereof |
CN112457010B (en) * | 2020-12-02 | 2022-03-29 | 电子科技大学 | Rock-salt type reconstituted superlattice structure microwave dielectric ceramic material and preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105347795A (en) | High-quality factor lithium-magnesium-niobium-series microwave dielectric ceramic | |
CN102603296B (en) | Neodymium niobic acid microwave dielectric ceramic with high quality factor and method for preparing neodymium niobic acid microwave dielectric ceramic | |
CN105272245B (en) | One kind prepares low-loss zinc zirconium niobium series microwave dielectric ceramic using reaction sintering | |
CN105174949A (en) | Low-loss zinc-zirconium-niobium microwave dielectric ceramic | |
CN102153343A (en) | Method for preparing high Q-value magnesium titanate base microwave medium ceramics by adopting reactive sintering method | |
CN102219500A (en) | Medium-temperature sintered magnesium titanate-based microwave dielectric ceramics with high quality factor | |
CN105254299A (en) | Low-temperature sintered magnesium lithium niobate system microwave dielectric ceramic | |
CN106810209A (en) | A kind of high q-factor lithium magnesium titanium series microwave dielectric ceramic | |
CN106116574A (en) | A kind of preparation method of low temperature sintering lithium magnesium niobium series microwave dielectric ceramic | |
CN106478083A (en) | A kind of low sintering preparation method of strontium silicate copper system microwave-medium ceramics | |
CN106083034A (en) | A kind of low-loss lithium magnesium titanium series microwave dielectric ceramic | |
CN107879739A (en) | A kind of magnesium cobalt zirconium niobium series microwave dielectric ceramic and preparation method thereof | |
CN107188563A (en) | A kind of magnesium zirconium niobium tantalum series microwave dielectric ceramic with high quality factor | |
CN107382317A (en) | A magnesium-nickel-zirconium-niobium series microwave dielectric ceramic | |
CN105000881A (en) | Niobate medium-dielectric constant microwave dielectric ceramic material and preparation method thereof | |
CN105859289A (en) | Low-temperature sintering low-loss magnesium-lithium-niobate-series microwave dielectric ceramic | |
CN104649673A (en) | Neodymium niobate ceramic having improved microwave dielectric characteristic by substituting neodymium ions with lanthanum ions | |
CN106348756A (en) | High-Q-value lithium-magnesium-niobium microwave dielectric ceramic | |
CN109721359A (en) | A kind of lithium titanium is co-doped with high q-factor lithium magnesium niobium system dielectric material and preparation method thereof | |
CN105060888B (en) | A kind of stable niobic acid neodymium ceramics of alumina doped preparation low-loss | |
CN104803681A (en) | Novel low temperature sintering low dielectric constant microwave dielectric ceramic material | |
CN109251028A (en) | A kind of low high Q lithium magnesium niobium series microwave dielectric ceramic and preparation method thereof that is situated between | |
CN104788100B (en) | A kind of antimony ion replaces niobium ion to prepare the niobic acid neodymium pottery of high quality factor | |
CN103951428B (en) | A kind of intermediate sintering temperature temperature-stable ceramics as low-loss microwave medium material | |
CN107382314A (en) | A kind of microwave-medium ceramics of barium base complex perovskite structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160224 |
|
WD01 | Invention patent application deemed withdrawn after publication |