CN105340199A - 利用波长可调滤波器的光接收器 - Google Patents

利用波长可调滤波器的光接收器 Download PDF

Info

Publication number
CN105340199A
CN105340199A CN201480030261.6A CN201480030261A CN105340199A CN 105340199 A CN105340199 A CN 105340199A CN 201480030261 A CN201480030261 A CN 201480030261A CN 105340199 A CN105340199 A CN 105340199A
Authority
CN
China
Prior art keywords
tunable filter
wavelength tunable
wavelength
optical
electrode pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480030261.6A
Other languages
English (en)
Inventor
金定洙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phovel Co Ltd
Original Assignee
Phovel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130094626A external-priority patent/KR101950733B1/ko
Priority claimed from KR20130118621A external-priority patent/KR20150040067A/ko
Application filed by Phovel Co Ltd filed Critical Phovel Co Ltd
Priority to CN201910409713.6A priority Critical patent/CN110266395B/zh
Priority claimed from PCT/KR2014/004245 external-priority patent/WO2014208892A1/ko
Publication of CN105340199A publication Critical patent/CN105340199A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13458Terminal pads
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • H01L27/1244Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits for preventing breakage, peeling or short circuiting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal
    • H04B10/675Optical arrangements in the receiver for controlling the input optical signal for controlling the optical bandwidth of the input signal, e.g. spectral filtering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/13629Multilayer wirings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/213Fabry-Perot type
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0408Integration of the drivers onto the display substrate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0223Compensation for problems related to R-C delay and attenuation in electrodes of matrix panels, e.g. in gate electrodes or on-substrate video signal electrodes

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明涉及利用具有多个透过波长特性的波长可调滤波器而能够改变被选择的波长的光接收器。根据本发明的光接收器,包括:可调滤波器(100),使得由光纤维发散的激光透过;光电二极管(300),接收透过所述波长可调滤波器(100)的激光;所述波长可调滤波器(100)为具有多个透过波长的Fabry-Perot(法布里-珀罗)形标准具滤波器,从特定波长通道移动到其他波长通道时,使得选择全通道的FP标准具滤波器的透过峰值和其他峰值选择光通道,能够减少波长可变过滤器的温度变化。并且,根据本发明的光接收器,在管座(stem)基底的上部布置热电元件,在所述热电元件的上部布置受光用光电二极管芯片,在所述光电二极管芯片的上部布置透过的波长根据热电元件的温度而改变的波长可变过滤器,从而采取选择的波长根据热电元件改变的方法,能够获得较快的波长可变特性,提高信号传送质量。

Description

利用波长可调滤波器的光接收器
技术领域
本发明涉及光接收器,尤其涉及利用波长可调滤波器的光接收器,其利用具有多个透过波长特性的波长可调滤波器而能够改变被选择的波长。
背景技术
近来,包括智能手机等视频服务,出现了通信容量非常大的通信服务。因此,有必要大幅增加以往的通信容量,作为这种通信容量增加方法而采用的一种是利用以往铺设的光纤维的DWDM(DenseWavelengthDivisionMultiplexing-密集波分复用)通信方式。所述DWDM利用了因波长互不相同的激光不会相互干涉,即使通过一个光纤维同时传送多种波长的光信号,信号之间也无干涉的现象,是指以一个光纤维同时传送多个波长的光的方式。
目前,世界上正在合议的是NG-PON2(NextGeneration-PassiveOpticalNetworkversion2:新一代-无源光网络版本2)规格,这种NG-PON2规格,为电话局向加入者的向下光信号而设定了4通道的波长。这种4通道的波长间隔为100GHz或200GHz的波长间隔。
这种NG-PON2规格中,一个加入者需选择一个波长而接收光,这种波长的分离,通过分离波长的固定装置而将特定波长的通道光信号输入光接收器,从而实现接收向下光信号的方法。但是,将这种固定的波长分离成特定的光纤维,与结合到特定光纤维的波长的种类无关地进行光接收形态的光接收器无法实现动态的光线路分配,光线路的管理上存在困难。
为了解决这种问题,开发了光接收器中能够动态决定接收波长的波长可变光接收器。用于这种波长可变光接收器的波长可调滤波器一般使用了在玻璃材质的基板上交替蒸镀非晶质硅及SiO2等而仅使特定波长透过的过滤器。
图1呈现适用于美国专利US6,985,281号的波长可调滤波器,所述美国专利的波长可调滤波器在以往使用的玻璃材质的基板上交替蒸镀非晶质硅与SiO2等而使特定的波长透过。这种美国专利中作为垫片(spacer)使用的非晶质硅的根据温度的折射率变化为10-4左右的值,若将波长选择性过滤器的温度改变1℃左右,通过波长选择性过滤器的光的频率将改变约10GHz左右。这种波长可调滤波器在数十nm的波长带域仅具有一个透过峰值,为了将这种过滤器与预先设订的4波长的通道相对应,用为图1的垫片(spacer)层的非晶质硅的厚度需非常精确。但是,因这种非晶质硅的厚度很难调整,波长可调滤波器的制作上存在困难,如制作成从波长可调滤波器所需的波长相差数nm的情况频繁发生。
另外,NG-PON2的规格中,作为接收通过波长可调滤波器的波长的光信号的光接收元件而提示了APD(avalanchphotodiode-雪崩光电二极管)。并且,波长可变光接收器需接收10Gbps级的高速信号,因此需制作成不发生信号的歪曲。为了很好地接收10Gbps级的信号,封装的信号传送线很好地接收10Gbps级的信号,需要很好地匹配信号传送线路的RF阻抗(impedance)。这种波长可调滤波器具有透过的波长根据温度变化而改变的特性,为了改变特定的波长而接收,需要更换波长可调滤波器的温度的方法。
所述图1的美国专利中,波长可调滤波器中利用以薄膜的形态制造的加热器(heater)而调整波长可调滤波器的温度。但是,若使用加热器(heater),则虽然容易实现温度的上升,但需通过散热而手动实现温度的下降,具有难以调整温度下降时间的缺点。
并且,为了使用加热器(heater)改变波长可调滤波器的温度而维持一定的温度,需要在高于外部环境温度的温度条件下,调整波长可调滤波器的温度。因此,若外部环境温度变化到85℃,波长可调滤波器的温度至少为85℃以上,优选地,在105℃以上的温度条件下改变温度而调整波长可调滤波器的透过波长。NG-PON2中要求改变2.4nm的波长,据此,至少在105℃~130℃区间内运用波长可调滤波器。但是,这种温度是非常高的温度,环氧等高分子系列粘合剂的温度稳定性容易产生问题,导致组装波长可调滤波器时无法使用环氧的问题。
NG-PON2的通信系统要求低价光元件,TO(transistoroutline-晶体管轮廓)型封装使用低价光元件组件。TO型封装(package)包括:管座,制作成向具有钻孔多个贯通孔的金属板材插入以玻璃绝缘及密封的电极销的结构;盖子,盖住布置在管座上部的光部件。
[在先技术文献]
[专利文献]
美国专利US6,985,281号(2006.01.10)
发明内容
(要解决的技术问题)
本发明为了解决所述以往技术的问题点而提出,本发明的目的在于提供一种波长可变光接收器,利用标准具滤波器而具有多个透过峰值特性。
尤其,本发明的目的在于提供一种波长可变光接收器,使用低价TO型封装且能够制作成安装到以往规格化的SFP收发器箱的大小。
并且,本发明的目的在于提供一种TO型的波长可变光接收器,容易调整波长可调滤波器的温度,可进行超高速通信,能够以低价进行制作。(解决问题的手段)
用于达成所述目的的根据本发明的光接收器,作为一种波长可变光接收器,具备:波长可调滤波器,使得由光纤维发散的激光透过;光电二极管,接收透过所述波长可调滤波器的激光,所述波长可调滤波器由具有多个透过波长的Fabry-Perot(法布里-珀罗)形标准具滤波器构成。
所述波长可调滤波器的剖面反射率优选80~99%,更优选85~95%。
并且,优选地,光通道数为n时,将所述波长可调滤波器的频率间隔决定为(n/(n+1)×光通道频率间隔)或((n+2)/(n+1)×光通道频率间隔),但该波长可调滤波器的频率间隔在所述决定的频率间隔中会产生±10%的误差。并且,光通道数为n时,所述波长可调滤波器的频率间隔可根据((n+1)×光通道频率间隔/2)而决定,这种光通道数n优选4或8。
另外,所述波长可调滤波器的温度可通过加热器或热电元件而调整。
并且,还可具备透镜,使所述透过波长可调滤波器的光集中到光电二极管的受光部。
所述波长可调滤波器,在包括硅、InP、GaAs中的任意一个材质的半导体基板的两面上层叠折射率有高有低的电介质薄膜而形成反射膜。
另外,所述激光入射的波长可调滤波器剖面的垂线与入射的激光形成0.2~2°的夹角,所述夹角优选为0.4~1°。
在所述光纤维与波长可调滤波器之间,还可具备隔离器,使得光只向一个方向通过。
另外,所述波长可调滤波器粘贴到桥型(桥墩)支架的上部,所述桥型支架的下部可布置光电二极管。并且,所述桥型支架的下部,可粘贴透镜,用于将所述透过波长可调滤波器的光集中到光电二极管的受光部。
而且,所述桥型支架上部,可粘贴用于调整所述波长可调滤波器的温度的薄膜型加热器薄膜,该桥型支架的上部一侧,还可粘贴用于测定所述波长可调滤波器的温度的热敏电阻。
另外,用于所述目的的根据本发明的光接收器,作为一种波长可变光接收器,具备:波长可调滤波器,由光纤维发散的激光透过于此;APD(avalanchphotodiode)芯片及TIA(Transimpedance-跨阻抗)芯片,具有用于接收透过所述波长可调滤波器的激光的10Gbps级的高速运转速度;热电元件;热敏电阻,用于测定热电元件的温度,通过热电元件调整所述波长可调滤波器的温度。
所述波长可调滤波器,在包括硅、InP、GaAs中的任意一个材质的半导体基板的两面上层叠折射率有高有低的电介质薄膜而形成反射膜。
所述波长可调滤波器及APD芯片、热电元件通过利用具有以至少五个以上的玻璃材质密封的7销(pin)以上的绝缘电极销的TO型封装而制作,至少两个以上的电极销单独通过玻璃密封材而与TO型封装的管座结合,至少两个以上的电极销具有以50ohm阻抗匹配(impedancematching)的结构。
向所述以50ohm阻抗匹配的电极销的TOcan形组件内部突出的电极销被金属支架围住而形成50ohm阻抗匹配。
所述APD芯片及波长可调滤波器布置在热电元件上,TIA芯片布置在金属支架上。
(发明的效果)
根据本发明的适用于光接收器的波长可调滤波器,非常精确地调整硅等半导体基板的厚度后,在基板的两面镀上反射膜而制作,因此具有容易调整波长的效果。即,图1所图示的美国专利,适用于具有200GHz的频率间隔的4通道的光通信时,需要至少600GHz的透过频率调整,对4通道中任意一个通道调整透过频率的状态下,至少具有60℃的温度变化,才能调谐对应其他的通道。与此相比,根据本发明的波长可调滤波器,调谐到任意一个通道时,通过150GHz的透过频率调整而调谐到其余三个光通道种的任意通道,仅通过15℃的温度变化,也能获得与所述美国专利相同的效果。
并且,根据所述美国专利,图1的垫片(spacer)层的厚度调整非常困难,与所需的频率相差1,000~2,000GHz左右的情况非常频繁,但本发明中,任何情况下,也不会产生100GHz以上的频率差距,具有过滤器的制作及过滤器的运用非常容易的优点。
不仅如此,根据本发明的光接收器,根据温度调整的波长可调滤波器的温度通过热电元件而调整,因此具有快速的波长可变特性,对于TO型封装信号线的阻抗,除了以玻璃密封到TO管座的部分之外,向TO组件的内部突出的电极销部分的阻抗也阻抗匹配为50ohm,因此信号传递特性良好,TIA芯片布置在金属支架上,与布置在热电元件上的APD芯片之间的距离变成最短距离,具有信号传送特性优秀的效果。
附图说明
图1是适用于以往光接收器的波长可调滤波器的一例,
图2是呈现以往利用波长可调滤波器的光接收器中选定所需的光通道的过程的概念图,
图3是呈现根据本发明的利用波长可调滤波器的光接收器中选定所需的光通道的过程的概念图,
图4是呈现根据本发明的另一实施例而利用波长可调滤波器的光接收器中选定所需的光通道的过程的概念图,
图5是呈现具备根据本发明的波长可调滤波器的光接收器中接收激光的过程的概念图,
图6是根据本发明的实施例的利用波长可调滤波器的光接收器封装的立体结构图,
图7是根据本发明的实施例的具有多个电极销的管座结构,
图8是根据本发明的实施例的内置热电元件的波长可变光接收器的结构图,
图9是以各自的玻璃密封材密封八个电极销时的管座结构,
图10是呈现为了匹配根据本发明的实施例的信号电极销的露出部分的阻抗而向内部具有钻孔贯通孔的金属支架的贯通孔插入信号传送用电极销的过程的概念图。
符号说明
100:波长可调滤波器
200:透镜
300:光电二极管
400:桥型(桥墩)支架
500:热敏电阻
600:薄膜型加热器薄膜
1000:管座
1100:管座基底
1200:玻璃密封材
1300:电极销
1350:TIA芯片数据(data)用电极销
1350:TIA芯片数据条(databar)用电极销
2000:热电元件
2100:热敏电阻
3000:APD(avalanchphotodiode)芯片
4000:TIA(Transimpedanceamplifier)芯片
5000:内部具有贯通孔的金属支架
6000:透过的波长根据温度而产生变化的波长可调滤波器
9000:透过波长可调滤波器的光
9100:波长可调滤波器中反射的光
具体实施方式
下面,参照附图详细说明本发明的未受限制的优选实施例。
图2是呈现以往利用波长可调滤波器的光接收器中选定所需的光通道的过程的概念图。图2中,为了有助于理解本发明,适用具有4通道的波长的光通道,将各个通道频率间隔例示为200GHz,将四个光通道分别命名为a、b、c、d而进行说明。
图2(a)呈现以200GHz的频率间隔布置四个光通道a、b、c、d的样态。图2(b)例示以往的波长可调滤波器的透过特性,以往的波长可调滤波器具有以实线(左侧)表示的频率的透过特性时,被选择的光通道为图2(c)的a通道。这时,若通过改变波长可调滤波器的温度而使其具有如图2(b)的虚线(右侧)的透过特性,被旋转的光通道为图2(c)的b通道。
这时,光通道之间的间隔为200GHz,这种以往的波长可调滤波器的频率变化为10GHz/℃时,需将波长可调滤波器的温度改变20℃,从通道a向通道b变更选择光波长。
图3是呈现根据本发明的利用具有多个透过频率特性的Fabry-Perot形的标准具滤波器的光接收器的运转原理的概念图。
图3的(a)呈现具有200GHz的频率间隔的4通道的光信号频率分布。
另外,若适用于根据本发明的光接收器的Fabry-Perot形的标准具滤波器的频率间隔为160GHz,如图3(b)的实线所示,标准具滤波器的透过频率与通道a调谐时,标准具滤波器的其他透过频率与光通道的其他通道的频率不一致,不管存在多个透过频率带域,FP形的标准具滤波器使得其他光通道不透过FP形的标准具滤波器。
改变具有如这种图3(b)的实线的透过特性的FP形标准具滤波器的温度而使FP形的波长可调滤波器的透过频率移动40GHz,使其具有如图3(b)的虚线的FP形的透过频率特性,则会选择通道b的光通道。即,波长可调滤波器的频率变化如图2为10GHz/℃,本发明中为了选择邻接通道,只需改变4℃的温度。因此,以往的波长可调滤波器需要至少改变60℃的温度才能选择全通道,但本发明中,只需改变至少12℃的温度,也可选择全通道,因此能够提高能源效率。
为了更详细地说明,作为本发明的实施例,假设图3的(a)中设定的光通道a、b、c、d的频率分别为0GHz、200GHz、400GHz、600GHz。并且,假设由FP形标准具滤波器构成的波长可调滤波器的透过频率构成为...-160GHz、0GHz、160GHz、320GHz、480GHz,...的频率。
这种情况下,选定光通道与波长可调滤波器的透过频率一致的a通道(0GHz)。若将这种波长可调滤波器的温度增加4℃,则波长可调滤波器的透过频率产生40GHz的变化而成为-120GHz、40GHz、200GHz、360GHz、520GHz,据此,波长可调滤波器的透过频率成为b通道(200GHz)。这时,未被选择的其他通道与相邻的波长可调滤波器的透过频率相差至少40GHz而光的透过被隔绝。
这时,若再次将波长可调滤波器的温度增加4℃,则波长可调滤波器的透过频率变为-80GHz、80GHz、240GHz、400GHz、560GHz而波长可调滤波器的透过频率成为c通道(400GHz)。这时,未被选择的其他通道与相邻的波长可调滤波器的透过频率也相差至少40GHz而光的透过被隔绝。
作为本发明的另一实施例,假设已设定的光通道的频率a、b、c、d通道分别为0GHz,200GHz,400GHz,600GHz。并且,由FP形标准具滤波器构成的波长可调滤波器的透过频率构成为...-240GHz、0GHz、240GHz、480GHz、720GHz、...的频率。
这种情况下,选定光通道与波长可调滤波器的透过频率一致的a通道(0GHz)。若将这种波长可调滤波器的温度减少4℃,则波长可调滤波器的透过频率变为-280GHz、-40GHz、200GHz、440GHz、680GHz,据此,波长可调滤波器的透过频率成为b通道(200GHz)。这时,未被选择的其他通道与相邻的波长可调滤波器的透过频率相差至少40GHz而光的透过被隔绝。
这时,若再次将波长可调滤波器的温度减少4℃,则波长可调滤波器的透过频率变为-320GHz、-80GHz、160GHz、400GHz、640GHz而波长可调滤波器的透过频率成为c通道(400GHz)。这时,未被选择的其他通道与相邻的波长可调滤波器的透过频率也相差至少40GHz而光的透过被隔绝。
如所述,若适用根据本发明的FP形标准具滤波器的波长可调滤波器中考虑的光波长的通道数为n,考虑的光通信通道的频率间隔为dLGHz,设定所述波长可调滤波器的频率间隔为如下数学式1或数学式2,则能够极大化不应透过的光通道与波长可调滤波器的其他透过频率之间的波长间隔。
数学式1
n ( n + 1 ) × d L G H z
数学式2
( n + 2 ) ( n + 1 ) × d L G H z
但是,并不是必须将波长可调滤波器的频率间隔限定为所述式,即使存在通过所述式获得的频率间隔的10%左右的差距,选择本发明所要求得的特性即特定通道时,也具有隔绝其他通道的效果。
并且,适用于图2的以往的波长可调滤波器根据图1的垫片(spacer)层的厚度而透过频率的位置在非常广的范围内产生变化,因此存在难以接近特定频率地调整透过波长的问题。但是,本发明中因无限连续的FP形标准具滤波器的透过特性,制作的波长可调滤波器的透过频率与特定光通道不会相差至少100GHz以上。因此利用根据本发明的波长可调滤波器的光接收器的制作变得容易。
通过所述图3而说明用入射的光信号的通道间隔与通道数设定能够选择波长间隔为200GHz的光信号中的特定波长而接收的波长可调滤波器的入射通道间隔的方法。但是,也可通过图3的方法之外的其他方法设定所述波长可调滤波器的通道间隔,图4是呈现根据本发明的另一实施例而利用波长可调滤波器的光接收器中选定所需的光通道的过程的概念图。
假设适用根据本发明的FP形标准具滤波器的波长可调滤波器中考虑的光波长的通道数为n,考虑的光通信通道的频率间隔为dLGHz,可通过如下数学式3设定所述波长可调滤波器的频率间隔。
数学式3
( n + 1 ) × d L 2 G H z
图4呈现考虑的光通信通道数为四个、光通信频率间隔为100GHz,波长可调滤波器的频率间隔按照所述数学式3时的运转特性。即,光通信通道数(n)为四个,光通信频率间隔(dL)为100GHz时,图4的波长可调滤波器的频率间隔按照如下数学式4计算。
数学式4
( n + 1 ) × d L 2 G H z = ( 4 + 1 ) × 100 2 G H z = 250 G H z
利用根据所述数学式4决定的波长可调滤波器的频率间隔250GHz而选定100GHz4通道的光通信频率中的特定频率的方法如下。特定温度(T=Tref)中波长可调滤波器选定通道2(ch2)的频率时,波长可调滤波器的邻接透过频率带域与光通信频率带域具有50GHz的频率差。因此,除了通道2之外的其他光通信通道不会透过波长可调滤波器。若将波长可调滤波器的温度调整为T=Tref-5℃,波长可调滤波器的透过频率移动50GHz左右而不透过通道2,透过通道4频率。将波长可调滤波器的温度调整为T=Tref+10℃时,波长可调滤波器的透过频率由通道3频率透过。将波长可调滤波器的温度调整为T=Tref-10℃时,波长可调滤波器的透过频率由通道1频率透过。因此,通过波长可调滤波器的20℃的温度变化,100GHz间隔4通道的频率中选择任意的一个频率而使其透过。相比为了利用具有单一透过频率特征的波长可调滤波器而调谐选100GHz频率间隔4通道,需要至少30℃的波长可调滤波器温度变化,具有温度的变化幅度少而减少能源消耗量的效果。
另外,标准具滤波器因透过频率特性根据光的入射角度而改变,为了获得较高的信号-噪音比率,优选地,调准化向由标准具滤波器构成的波长可调滤波器入射的激光。通过光纤维传递的光信号会脱离光纤维而发散,为了调准化这样发散的激光,优选地,将GradedIndexlens(梯折透镜)粘贴到光纤维终端而使用。
尤其,被调准化而通过波长可调滤波器的激光的情况为,相比一般直径数百um左右,因高速通信用光接收器中接收光的光电二极管的受光区域不过数十um,如图5,优选使用透镜200而使得透过波长可调滤波器100的激光集中到光电二极管300的受光区域。
另外,图3及图4中选定任一通道时,应隔绝其他通道的光信号,这种隔绝率由FP形标准具滤波器的透过频率特性的锐度(sharpness)决定。即,通过在硅、InP、GaAs等半导体基板两面层叠折射率有高有低的电介质薄膜而制作根据本发明的实施例的FP形标准具滤波器,这样制作的FP形标准具滤波器在激光入射的剖面形成反射膜,形成于该FP形标准具滤波器的剖面的反射膜根据其反射率而决定透过频率特性。本发明的实施例中,所述FP形标准具滤波器的剖面反射率优选80~99%的反射率,更优选85~95%的反射率。这时因为反射率低时,波长可调滤波器的透过频率特性不会产生剧烈的变化,不应透过的邻接通道中产生串扰,与此相反,若波长可调滤波器的剖面反射率太高,则波长可调滤波器的插入损失会变大。这种FP形标准具滤波器的反射膜通过在硅、InP、GaAs等半导体基板两面层叠折射率有高有低的电介质薄膜而形成。
并且,优选地,FP形的标准具滤波器与入射到标准具滤波器的光轴相垂直地布置。这是因为光的入射角近乎垂直时,会减少根据入射激光的发散角的透过波长误差,提高信噪比。但是,若激光正好垂直入射到FP形标准具滤波器,则会产生入射的激光中反射的成分重新返回光纤维的问题,因此,优选地,将FP形的标准具滤波器剖面的垂线与激光的入射角调整为0.2~2°左右,更优选地,将标准具滤波器剖面的垂线与激光的入射角调整为0.4~1.0°左右。
另外,激光与以往的波长可调滤波器会产生透过波长的峰值从脱离设计范围数nm的情况,为了用温度进行补偿,还需进行数十度的温度调整。因此,曾出现过不适用这种大的温度差而变换以往波长可调滤波器的布置而通过角度调整透过波长的情况。但是,本发明中,若FP形标准具滤波器的周期为160GHz,任何情况下,在特定波长的±80GHz以内,会存在多个标准具透过峰值中的其中一个,因此能够通过±8℃的温度调整而调整标准具滤波器的波长。进而,可通过追加16℃的温度调整而调谐透过所有通道,因此通过最大24℃的温度调整而使FP形标准具滤波器调谐到所有通道。
并且,为了防止从光纤维中射出的激光被FP形的标准具滤波器反射而重新入射到光纤维,还可在光纤维与FP形的标准具滤波器之间具备激光隔离器。所述隔离器是指利用光的偏光而使光只向一个方向通过的设备。
另外,作为根据本发明的改变波长可调滤波器的温度的方案,可采取多种温度调整工具,例如向波长可调滤波器安装加热器的方法及将波长可调滤波器布置到热电元件上部的方法等。
并且,根据本发明的包括波长可调滤波器的光接收器,优选安装到具有TOcan形的组件外形的组件,这时因为TOcan形组件价格低,能够降低制作费用。
图5是呈现光电二极管从根据本发明的实施例的光纤维接收光的光路径的概念图。如图5所图示,从光纤维发散的激光垂直透过波长可调滤波器100。透过所述波长可调滤波器100的平行光在透镜200聚焦(Focusing)而由光电二极管300受光。
图6呈现具有根据本发明的实施例的利用波长可调滤波器的光接收器的功能的TO(Transistoroutline;TO)形组件的内部立体结构图。
根据本发明的具有光接收器功能的TO型封装在TO形管座基底(stembase)的上部粘贴光电二极管300,该光电二极管300的上侧设有透镜200及波长可调滤波器100。本发明的实施例中,为了将所述透镜200及波长可调滤波器100向光电二极管300上部排成一列,利用桥型支架400,该桥型支架400可由桥墩或桌腿等形态构成,包括玻璃(glass)、陶瓷(ceramic)等热传导率低的任意一个材质。具有所述构成的桥型支架400的上部面上部布置波长可调滤波器100,桥型支架400的上部面底面布置透镜200。
所述Bridge(桥墩)模样的支架400的中心部形成贯通孔(Hole),能够使得从光纤维发出的激光被光电二极管300受光部受光,该Bridge(桥墩)模样的支架400的上部粘贴薄膜型加热器薄膜600,可向波长可调滤波器100加热,该薄膜型加热器薄膜600可通过热敏电阻500调整温度。
如所述,本发明的实施例中,使粘贴到所述桥型支架400的上部的波长可调滤波器100及粘贴到下部的透镜200的布置形成为一个砌块,设计成从光纤维发出的激光能够稳定地被光电二极管300的受光部接收。
另外,如所述图6的TO型封装的管座基底上形成多个电极销,图7呈现根据本发明的实施例的TOcan形组件的管座结构。
如图7所图示,在由铁或芯棒等圆形板材金属构成的管座基底1100上形成多个贯通孔后,通过玻璃密封材1200将电极销1300密封结合到贯通孔的形态制作管座1000。图7中,附图编号1350表示之后要说明的TIA芯片data用电极销,附图编号1360表示TIA芯片databar用电极销。
这种电极销1300的个数根据内置于TOcan形组件的电元件的数字及所需电极的个数决定。但是,目前通常使用的光接收器具有直径6mm以下的规格,可安装电极销1300的面积受到限制,电极销1300的规格通常具有直径0.2~0.4mm左右,使电极销1300与管座基底1100之间结合的玻璃材质的玻璃密封材1200的幅度也需具有0.3mm以上的厚度才能确保玻璃密封材1200的稳定性。
因这种外形上的限制条件,若要在TO型封装的管座基底1100布置多个电极销1300,因电极销1300的数与电极销1300应具备的特性,需要特定排列的电极销排列。
图8呈现根据本发明的实施例的布置在TO型封装的管座基底上部的内置热电元件的波长可变光接收器的结构图。
如图8所图示,热电元件2000布置于管座基底1100的上部一侧,热电元件2000上部一侧粘贴能够测定APD芯片3000及热电元件2000的温度的热敏电阻2100。通过与所述热电元件2000热性接触、能够支撑波长可调滤波器6000的附图中未图示的支架而支撑的波长可调滤波器6000布置于APD(AvalanchPhotoDiode)芯片3000上部。热电元件2000的侧面布置TIA(TransImpedanceAmplifier)芯片4000,该TIA芯片4000的内部具有贯通孔,布置到具有收容附图中未图示的电极销的结构的金属支架5000上部。所述金属支架5000粘贴到管座基底1100上部。
为了如所述的本发明的构成,需要1)热电元件+、2)热电元件-、3)热敏电阻、4)APD芯片偏压电极、5)TIA芯片VCC、6)TIA芯片data、7)TIA芯片databar、8)TIA芯片Vmon等八个与电极的管座基底1100电性绝缘的电极销。根据情况,可省略TIA芯片Vmon。所述“热电元件+”及“热电元件-”是向热电元件2000施加电而加热或冷却热电元件2000所需的电极,热敏电阻电极销是用于接收测定热电元件2000的上部板的温度的元件即热敏电阻2100的信号的电极销。并且,APD芯片3000的情况下,需要施加数十伏特的电压,元件才能运转,APD芯片偏压电极是用于此的电极销,Vcc是用于向内置于组件的TIA芯片4000施加电力的电极销。TIA芯片4000通常以data信号即+电压与该电压的逆电压即-电压的差动电压形态输出数据,因此需要APD芯片data电极销及APD芯片databar电极销。Vmon是监视向APD芯片3000流动的电流的电极销。
这种七个或八个电极销中,TIA芯片data、TIA芯片databar电极销优选以50ohm阻抗匹配,为了消除噪音,优选地,单独通过玻璃密封材1200而结合到管座基底1100。
如前述,目前限制NG-PON2用的光元件的大小为直径6mm以内。优选地,电极销以管座基底1100的中心轴为基准,布置成圆形。玻璃密封材1200与玻璃密封材1200之间的管座基底1100肉身厚度优选为0.5mm以上。这起到有效释放热电元件2000中产生的热的作用。
图9呈现通过八个玻璃密封材独立密封这种八个电极销的布置例。这种情况下,八个玻璃密封材1200之间需要存在八个管座基底1100肉身,因此玻璃密封材1200之间的间隔变窄,无法有效地散发热电元件2000等TO组件内部元件中释放的热量。因此,在这种小型组件上布置以一定大小以上的玻璃材质密封的7销以上,进而8销的电极销1300,需要通过玻璃密封材1200独立密封至少两个电极销1300并减少玻璃密封材1200的数的电极销1300,能够以TO封装的中心点为基准而布置成圆形的特殊布置方法。
上述的图7中呈现能够满足本发明中所需的特性的电极销布置。通过五个的玻璃密封材1200密封八个电极销1300,至少两个以上的电极销1350、1360被独立的玻璃密封材1200密封,6个电极销1300分散到3个玻璃密封材1200而布置,在各个玻璃密封材1200,具有两个电极销1300同时通过一个玻璃密封材1200密封的结构。这种布置能够使玻璃密封材1200与玻璃密封材1200之间的距离最大,易于散热,电极销1300布置以管座1000中心点为基准而布置成圆形,从而具有与角元件之间的电极销1300连接优秀的特征,两个电极销1350、1360通过独立的玻璃密封材1200密封而使用为需要优秀传送品质的TIAdata及TIAdatabar用电极销。本发明的实施例中,所述管座基底1100上还可具备安装到管座基底1100的箱电极销。
如所述,本发明的实施例中,作为本发明的最优效果的应用方法,提出了通过热电元件2000调整温度的方法,也可通过本发明中提出的电极销结构而实现通过加热器(heater)调整波长可调滤波器6000的温度的方法。若使用加热器(heater),能够以共同接地线同时适用于一个电极销1300与多个元件进行驱动,这时需要7销的电极销1300布置。这时,使用五个玻璃密封材1200,通过各自玻璃密封材1200独立密封三个电极销1300,四个电极销1300具有各捆绑两个而由一个玻璃密封材1200密封的结构。
所述图7中,TIAdata电极销1350及TIAdatabar电极销1360分为通过玻璃密封材1200密封的部分及向TO型封装的内部突出的部分的电极销区域。这时,TIAdata电极销1350部分中通过玻璃密封材1200密封的部分的阻抗为50ohm,易于匹配,向TO封装内部突出的电极销部分的阻抗较难匹配。向TO组件内部突出的电极销部分的阻抗如图10,通过粘贴内部具有贯通孔的金属支架5000而将信号传送用电极销即TIAdata电极销1350与向TIAdatabar电极销1360的TO封装内部突出的电极销部分的阻抗有效地匹配到50ohm,从而实现10Gbps级的高速运转。
呈现包括上述的热电元件的波长可变光接收器的一例的图8中为了简略说明,未图示管座基底1100的贯通孔及玻璃密封材、电极销、金属支架5000的贯通孔等。但管座基底1100具有贯通孔,还具有通过玻璃密封材密封结合的电极销是显而易见的,而且金属支架5000也具有贯通孔且电极销通过贯通孔内部也是显而易见的。
所述图8中,在管座基底1100上部一侧布置热电元件2000,在热电元件2000的上部一侧布置APD芯片3000,在所述APD芯片3000上部通过附图中未图示的波长可调滤波器支架而布置波长可调滤波器6000。透过所述波长可调滤波器6000的波长的光9000入射到位于波长可调滤波器6000下部的APD芯片3000的光受光部位而向TIA芯片4000传递相当于接收光的电信号。另外,从波长可调滤波器6000反射的波长的光9100通过波长可调滤波器6000反射而不会入射到APD芯片3000。
通常,热电元件2000的高度为1mm左右,因APD芯片3000布置在热电元件2000上部,APD芯片3000的高度为1.2mm左右。若TIA芯片4000接合到管座基底1100上部面,APD芯片3000与TIA芯片4000之间存在较大的高度差,据此,通过Auwire将APD芯片3000的电信号连接到TIA芯片4000的过程中,会产生严重的信号损失。TIA芯片3000的发热量较多,约300mW,若布置在热电元件2000上部,因热电元件2000无法承受热负荷,导致热电元件2000的功能丧失。可将TIA芯片4000布置到金属支架5000上而解决这种问题。以与布置在热电元件2000上的APD芯片3000相类似的高度,将TIA芯片4000布置在金属支架5000,可使得APD芯片3000与TIA芯片4000以最靠近的距离邻接,从而减少信号损失。因布置在热传递性良好的金属材质的金属支架5000上,能够有效地通过管座基底1100而向外部释放从TIA芯片4000释放的热。因金属支架5000的内部具有贯通孔,能够匹配TIA传送信号电极销1350、1360的阻抗,使高速信号传送通畅。
因此,如本发明的实施例,在具有五个贯通孔的管座基底1100上形成7销或8销的电极销1300,布置热电元件2000及透过的波长根据温度而改变的波长选择性过滤器3000及APD芯片3000及TIA芯片4000,TIA芯片4000布置在金属支架5000上,使得APD芯片3000与TIA芯片4000的隔离距离最小,改善信号品质,因金属支架5000上具有贯通孔,向这种金属支架5000的贯通孔插入的电极销1350、1360的阻抗匹配为预先设定的值,提高向电极销1350、1360传送的信号品质。
另外,上述的本发明的实施例中说明为金属支架5000在一个金属支架上形成两个贯通孔而匹配两个电极销1350、1360的阻抗,也可适用分别具有一个贯通孔的两个金属支架插入信号传送电极销1350、1360的方法。并且,本发明的实施例中举例说明利用APD芯片3000接收光的情况,对此,也可使用具有PIN结构的光电二极管而替代APD芯片3000而发挥该功能。
本发明的实施例中说明为波长可调滤波器6000利用支架而固定粘贴到热电元件2000上部,但这种波长可调滤波器固定用支架根据温度而膨胀少,热传递率良好的物质是适当的,作为这种物质,可适用硅或AlN基板等。
本发明并不限定于上述实施例,在本发明所属技术领域具有一般知识的人,能够在本发明的技术思想及以下专利权利要求范围的均等范围内,可进行多种修改及变形。

Claims (26)

1.一种波长可变光接收器,其特征在于,包括:
波长可调滤波器(100),使得由光纤维发散的激光透过;
光电二极管(300),接收透过所述波长可调滤波器(100)的激光,
所述波长可调滤波器(100)为具有多个透过波长的法布里-珀罗形标准具滤波器。
2.根据权利要求1所述的光接收器,其特征在于,
所述波长可调滤波器(100)的剖面反射率为80~99%。
3.根据权利要求1所述的光接收器,其特征在于,
所述波长可调滤波器(100)的剖面反射率为85~95%。
4.根据权利要求1所述的光接收器,其特征在于,
假设光通道数为n时,将所述波长可调滤波器(100)的频率间隔根据(n/(n+1)×光通道频率间隔)或((n+2)/(n+1)×光通道频率间隔)而决定。
5.根据权利要求1所述的光接收器,其特征在于,
假设光通道数为n时,所述波长可调滤波器(100)的频率间隔决定为(n/(n+1)×光通道频率间隔)或((n+2)/(n+1)×光通道频率间隔)的±10%以内。
6.根据权利要求1所述的光接收器,其特征在于,
假设光通道数为n时,所述波长可调滤波器(100)的频率间隔根据((n+1)×光通道频率间隔/2)而决定。
7.根据权利要求4至6任一所述的光接收器,其特征在于,
所述光通道数n为4或8。
8.根据权利要求1所述的光接收器,其特征在于,
所述波长可调滤波器(100)的温度通过加热器或热电元件而调整。
9.根据权利要求1所述的光接收器,其特征在于,
还可具备透镜(200),使所述透过波长可调滤波器(100)的光集中到光电二极管(300)的受光部。
10.根据权利要求1所述的光接收器,其特征在于,
所述波长可调滤波器(100),在包括硅、InP、GaAs中的任意一个材质的半导体基板的两面上层叠折射率有高有低的电介质薄膜而形成反射膜。
11.根据权利要求1所述的光接收器,其特征在于,
所述激光入射的波长可调滤波器(100)剖面的垂线与入射的激光形成0.2~2°的夹角。
12.根据权利要求1所述的光接收器,其特征在于,
所述激光入射的波长可调滤波器(100)剖面的垂线与入射的激光形成0.4~1°的夹角。
13.根据权利要求1所述的光接收器,其特征在于,
在所述光纤维与波长可调滤波器(100)之间,还具备隔离器,使得光只向一个方向通过。
14.根据权利要求1所述的光接收器,其特征在于,
所述波长可调滤波器(100)粘贴到桥型支架(400)的上部,在所述桥型支架(400)的下部布置光电二极管(300)。
15.根据权利要求14所述的光接收器,其特征在于,
在所述桥型支架(400)的下部粘贴透镜(200),所述透镜(200)用于将透过所述波长可调滤波器(100)的光集中到光电二极管的受光部(300)。
16.根据权利要求14所述的光接收器,其特征在于,
在所述桥型支架400上部粘贴用于调整所述波长可调滤波器(100)的温度的薄膜型加热器薄膜(600)。
17.根据权利要求14所述的光接收器,其特征在于,
所述桥型支架(400)的上部一侧,粘贴用于测定所述波长可调滤波器(100)的温度的热敏电阻(500)。
18.一种TO型封装的光接收器,其特征在于,
在管座基底(1100)的上部布置热电元件(2000),在所述热电元件(2000)的上部布置受光用光电二极管芯片,在所述受光用光电二极管芯片的上部布置透过的波长根据热电元件(2000)的温度而改变的波长可调滤波器(6000)。
19.根据权利要求18所述的光接收器,其特征在于,
所述管座基底(1100)为具有至少7销以上的绝缘的电极销(1300)的TO型封装结构,以五个以上的玻璃密封材(1200)密封电极销(1300),分别通过另外的玻璃密封材(1200)个别密封至少两个以上的电极销(1300),对于至少两个以上的玻璃密封材(1200),通过一个玻璃密封材(1200)密封两个电极销(1300)。
20.根据权利要求18所述的光接收器,其特征在于,
所述管座基底(1100)上形成五个贯通孔,其中两个贯通孔,分别以玻璃密封材(1200)密封一个电极销(1300),三个贯通孔,分别以一个玻璃密封材(1200)密封两个电极销(1300)。
21.根据权利要求18所述的光接收器,其特征在于,
所述管座基底(1100)上形成五个贯通孔,其中三个贯通孔,分别以玻璃密封材(1200)密封一个电极销(1300),两个贯通孔,分别以一个玻璃密封材(1200)密封两个电极销(1300)。
22.根据权利要求18所述的光接收器,其特征在于,
将用于高速的信号传送线路的电极销,插入内部形成贯通孔的金属支架(5000)的贯通孔。
23.根据权利要求22所述的光接收器,其特征在于,
所述金属支架(5000)上形成两个贯通孔,向该两个贯通孔插入传递从TIA(TransImpedanceAmplifier,跨阻抗放大器)芯片(4000)产生的高速信号的电极销(1350)、(1360)。
24.根据权利要求22所述的光接收器,其特征在于,
在所述金属支架(5000)的上部布置TIA(TransImpedanceAmplifier)芯片(4000)。
25.根据权利要求18所述的光接收器,其特征在于,
所述光电二极管芯片为APD(AvalanchPhotoDiode,雪崩光电二极管)芯片(300)。
26.根据权利要求18所述的光接收器,其特征在于,
所述管座基底(1100)具有通过玻璃密封材(1200)密封的八个绝缘电极销(1300),各个绝缘销(1300)指定为热电元件(+)、热电元件(-),热敏电阻(thermistor)、APD(AvalanchPhotoDiode)芯片偏差、TIA(TransImpedanceAmplifier)芯片Vcc、TIA芯片数据、TIA芯片数据条、TIA芯片Vmon电极。
CN201480030261.6A 2013-06-26 2014-05-13 利用波长可调滤波器的光接收器 Pending CN105340199A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910409713.6A CN110266395B (zh) 2013-06-26 2014-05-13 利用波长可调滤波器的光接收器

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
KR10-2013-0073896 2013-06-26
KR20130073896 2013-06-26
KR10-2013-0094626 2013-08-09
KR1020130094626A KR101950733B1 (ko) 2013-06-26 2013-08-09 파장 가변 필터를 이용한 광 수신기
KR20130118621A KR20150040067A (ko) 2013-10-04 2013-10-04 파장 가변 필터를 이용한 광 수신기
KR10-2013-0118621 2013-10-04
PCT/KR2014/004245 WO2014208892A1 (ko) 2013-06-26 2014-05-13 파장 가변 필터를 이용한 광 수신기

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201910409713.6A Division CN110266395B (zh) 2013-06-26 2014-05-13 利用波长可调滤波器的光接收器

Publications (1)

Publication Number Publication Date
CN105340199A true CN105340199A (zh) 2016-02-17

Family

ID=55288978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480030261.6A Pending CN105340199A (zh) 2013-06-26 2014-05-13 利用波长可调滤波器的光接收器

Country Status (2)

Country Link
US (1) US10418386B2 (zh)
CN (1) CN105340199A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333695A (zh) * 2018-04-03 2018-07-27 大连藏龙光电子科技有限公司 基于ngpon2技术的可调谐接收端壳体及接收端组件
CN109891306A (zh) * 2016-11-01 2019-06-14 金定洙 波长可变滤波器、利用波长可变滤波器的光接收器及光接收方法
CN110456463A (zh) * 2018-05-07 2019-11-15 福州高意通讯有限公司 一种小型化光可调接收器
CN111865430A (zh) * 2019-04-30 2020-10-30 深圳市聚飞光电股份有限公司 光电接收器
CN116915334A (zh) * 2023-09-06 2023-10-20 成都观岩科技有限公司 一种用于光通信光接收组件的带宽自适应方法及架构

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160131306A (ko) * 2015-05-06 2016-11-16 주식회사 포벨 파장 가변 필터를 이용한 광 수신기의 채널 설정 방법
CN116610231A (zh) * 2016-10-28 2023-08-18 上海中航光电子有限公司 触控显示面板及触控显示装置
CN109814281B (zh) 2017-11-20 2023-10-27 菲尼萨公司 可调光滤波器及其制造方法以及可调光滤波器组件
GB201719996D0 (en) * 2017-11-30 2018-01-17 Purelifi Ltd Tuneable filter grating for OWC
TW201947894A (zh) * 2018-04-12 2019-12-16 美商雷神公司 整合式光學共振檢測器
WO2019199650A1 (en) 2018-04-12 2019-10-17 Raytheon Company Phase change detection in optical signals
CN110471197A (zh) * 2018-05-09 2019-11-19 福州高意通讯有限公司 一种带温度感知功能的热可调滤波器
DE102018221522A1 (de) 2018-12-12 2020-06-18 Robert Bosch Gmbh Spektrometervorrichtung und Verfahren zum Herstellen einer Spektrometervorrichtung
WO2021090963A1 (ko) * 2019-11-04 2021-05-14 엘지전자 주식회사 무선 광 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 송신 단말과 수신 단말
JP7350646B2 (ja) * 2019-12-17 2023-09-26 CIG Photonics Japan株式会社 光モジュール

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221672A (ja) * 1997-02-03 1998-08-21 Yazaki Corp 波長選択フィルタ、及びこれに用いられる共振波長の調整方法
US20030202799A1 (en) * 2002-04-29 2003-10-30 Zhou Dennis Chi Optical channel monitor using an angle-tuned fabry-perot optical filter
CN1610851A (zh) * 2001-11-28 2005-04-27 伊吉斯半导体公司 用于光电元件的封装
US20060220038A1 (en) * 2005-03-08 2006-10-05 Sumitomo Electric Industries, Ltd. Receiving optical subassembly with an improved high frequency performance
US20070201881A1 (en) * 2006-02-17 2007-08-30 Finisar Corporation Discrete bootstrapping in an optical receiver to prevent signal feedback
US20080205887A1 (en) * 2007-02-26 2008-08-28 Aegis Lightwave, Inc. Integrated Wavelength Selectable Photodiode Using Tunable Thin Film Filters
US20090116838A1 (en) * 2006-10-03 2009-05-07 Sumitomo Electric Industries, Ltd. Bi-directional optical module with a polarization independent optical isolator
US20090269067A1 (en) * 2008-04-28 2009-10-29 Sumitomo Electric Industries, Ltd. Bi-direction optical module installing light-emitting device and light-receiving device in signal package
CN101655578A (zh) * 2009-09-08 2010-02-24 华中科技大学 降低光纤法布里-珀罗滤波器插入损耗的方法
CN102650553A (zh) * 2011-02-25 2012-08-29 北京邮电大学 波长可调谐光电探测器、光波长探测系统及方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301058A (en) * 1990-12-31 1994-04-05 Gte Laboratories Incorporated Single sideband optical modulator for lightwave systems
US6262834B1 (en) * 2000-02-23 2001-07-17 The United States Of America As Represented By The Secretary Of The Navy Wideband single sideband modulation of optical carriers
US7265712B2 (en) * 2002-05-16 2007-09-04 Montana State University Method and apparatus for processing high time-bandwidth signals using a material with inhomogeneously broadened absorption spectrum
US7587144B2 (en) * 2004-01-12 2009-09-08 Oewaves, Inc. Tunable radio frequency and microwave photonic filters
US7425696B2 (en) * 2004-02-19 2008-09-16 National Institute Of Information And Communications Technology Incorporated Administrative Agency Photoelectric oscillator
US7369715B2 (en) * 2005-08-22 2008-05-06 University Of Victoria Innovation And Development Corporation Photonic link using angle modulation and method of use thereof
JP4696264B2 (ja) * 2005-08-24 2011-06-08 独立行政法人情報通信研究機構 強度バランス機能を有する光fsk/ssb変調器
WO2007134076A2 (en) 2006-05-08 2007-11-22 Jin Yu Optical receiver
US7974534B2 (en) * 2006-08-11 2011-07-05 Purdue Research Foundation Wideband microwave and millimeter wave filters using photonic spectral filtering
US7729582B2 (en) * 2006-12-08 2010-06-01 Wallac Oy Fibre optic cable and method for producing the same
EP1971036A1 (en) * 2007-03-14 2008-09-17 Dtu A method and a device for detection of a first signal superimposed on a second signal
CN101277155A (zh) * 2007-03-30 2008-10-01 华为技术有限公司 一种色散补偿信号的产生装置与方法
US8014676B2 (en) * 2008-02-22 2011-09-06 Alcatel Lucent CMOS-compatible tunable microwave photonic band-stop filter
CA2717650A1 (en) * 2008-03-11 2009-09-17 Oewaves, Inc. Optical locking based on optical resonators with high quality factors
TWI396033B (zh) * 2008-11-07 2013-05-11 Univ Nat Chiao Tung Multi - frequency electrical signal of the photoelectric device
KR20100030486A (ko) 2008-09-10 2010-03-18 김정수 파장 가변 필터
US8787768B2 (en) * 2010-06-03 2014-07-22 Raytheon Company Method and apparatus for synthesizing and correcting phase distortions in ultra-wide bandwidth optical waveforms
US8543009B2 (en) * 2010-12-03 2013-09-24 Raytheon Company Method and apparatus for synthesizing ultra-wide bandwidth waveforms

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221672A (ja) * 1997-02-03 1998-08-21 Yazaki Corp 波長選択フィルタ、及びこれに用いられる共振波長の調整方法
CN1610851A (zh) * 2001-11-28 2005-04-27 伊吉斯半导体公司 用于光电元件的封装
US20030202799A1 (en) * 2002-04-29 2003-10-30 Zhou Dennis Chi Optical channel monitor using an angle-tuned fabry-perot optical filter
US20060220038A1 (en) * 2005-03-08 2006-10-05 Sumitomo Electric Industries, Ltd. Receiving optical subassembly with an improved high frequency performance
US20070201881A1 (en) * 2006-02-17 2007-08-30 Finisar Corporation Discrete bootstrapping in an optical receiver to prevent signal feedback
US20090116838A1 (en) * 2006-10-03 2009-05-07 Sumitomo Electric Industries, Ltd. Bi-directional optical module with a polarization independent optical isolator
US20080205887A1 (en) * 2007-02-26 2008-08-28 Aegis Lightwave, Inc. Integrated Wavelength Selectable Photodiode Using Tunable Thin Film Filters
US20090269067A1 (en) * 2008-04-28 2009-10-29 Sumitomo Electric Industries, Ltd. Bi-direction optical module installing light-emitting device and light-receiving device in signal package
CN101655578A (zh) * 2009-09-08 2010-02-24 华中科技大学 降低光纤法布里-珀罗滤波器插入损耗的方法
CN102650553A (zh) * 2011-02-25 2012-08-29 北京邮电大学 波长可调谐光电探测器、光波长探测系统及方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109891306A (zh) * 2016-11-01 2019-06-14 金定洙 波长可变滤波器、利用波长可变滤波器的光接收器及光接收方法
CN108333695A (zh) * 2018-04-03 2018-07-27 大连藏龙光电子科技有限公司 基于ngpon2技术的可调谐接收端壳体及接收端组件
CN110456463A (zh) * 2018-05-07 2019-11-15 福州高意通讯有限公司 一种小型化光可调接收器
CN111865430A (zh) * 2019-04-30 2020-10-30 深圳市聚飞光电股份有限公司 光电接收器
CN116915334A (zh) * 2023-09-06 2023-10-20 成都观岩科技有限公司 一种用于光通信光接收组件的带宽自适应方法及架构
CN116915334B (zh) * 2023-09-06 2023-12-01 成都观岩科技有限公司 一种用于光通信光接收组件的带宽自适应方法及系统

Also Published As

Publication number Publication date
US20160112776A1 (en) 2016-04-21
US10418386B2 (en) 2019-09-17

Similar Documents

Publication Publication Date Title
CN105340199A (zh) 利用波长可调滤波器的光接收器
CN112925069B (zh) 集成光收发器、紧凑型光引擎以及多通道光引擎
CN111146683B (zh) 基于硅光子的可调谐激光装置和其封装结构
US8285151B2 (en) Method and system for hybrid integrated 1XN DWDM transmitter
KR100575969B1 (ko) 티오-캔 구조의 광 모듈
CN110365413A (zh) 一种基于相干光频梳的光载射频波束赋形系统
US10205298B2 (en) Packaging structure for four-channel integrated tunable laser array chip
US9020358B2 (en) Wavelength division multiplexing transmission equipment
CN109100838A (zh) 一种可控温的集成单纤双向器件
de Paula et al. Air-filled SIW remote antenna unit with true time delay optical beamforming for mmWave-over-fiber systems
CN110266395B (zh) 利用波长可调滤波器的光接收器
Zhao et al. Ultra-compact four-lane hybrid-integrated ROSA based on three-dimensional microwave circuit design
Shih et al. Low-cost TO-can header for coaxial laser modules in 25-Gbit/s transmission applications
Choi et al. System-on-packaging with electroabsorption modulator for a 60-GHz band radio-over-fiber link
Grosskopf Silica based optical beam former for 60 GHz array antennas
CN218448900U (zh) 一种可调谐激光器的封装结构
Bogoni et al. Photonics for 5G
Kanazawa et al. 8 x 50-Gb/s simultaneous operation of EADFB laser array using flip-chip interconnection technique
KR20150040067A (ko) 파장 가변 필터를 이용한 광 수신기
CN219435090U (zh) 一种光模块
WO2023105641A1 (ja) 光回路
CN105915290B (zh) 一种基于软滤波的超密集信道型光载无线接入方法
CN118295089A (zh) 一种光模块及其制备方法
Park et al. Compact Size and Low Cost Hermetic Sealed 100Gbps (25Gbps× 4Ch) Receiver Optical Sub-Assembly (ROSA) Design Using AlN Substrate and Si Optical Bench (SiOB) Cover
CN117937208A (zh) 一种可调谐激光器的封装结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160217