CN105339821A - 光学路由器 - Google Patents

光学路由器 Download PDF

Info

Publication number
CN105339821A
CN105339821A CN201480036307.5A CN201480036307A CN105339821A CN 105339821 A CN105339821 A CN 105339821A CN 201480036307 A CN201480036307 A CN 201480036307A CN 105339821 A CN105339821 A CN 105339821A
Authority
CN
China
Prior art keywords
micro
ring resonator
waveguide
input
output end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480036307.5A
Other languages
English (en)
Other versions
CN105339821B (zh
Inventor
张滨
刘晓颖
郝沁汾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luo Sanjie
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN105339821A publication Critical patent/CN105339821A/zh
Application granted granted Critical
Publication of CN105339821B publication Critical patent/CN105339821B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明公开了一种光学路由器。该光学路由器包括:第一波导(101)、第二波导(102)、第三波导(103)、第四波导(104);以及,第一微环谐振器(111)、第二微环谐振器(112)、第三微环谐振器(113)、第四微环谐振器(114)、第五微环谐振器(115)、第六微环谐振器(116)、第七微环谐振器(117)。通过上述直通波导以及微环谐振器,可以实现每个输入端到三个输出端的耦合。本发明实施例的光学路由器,采用较少的微环谐振器,并具有较少的波导交叉,能够提高光学路由器的性能。

Description

光学路由器 技术领域
本发明涉及信息技术领域, 并且更具体地, 涉及光学路由器。 背景技术
随着近年来半导体技术的迅猛发展, 芯片的集成度逐年提高, 在芯片中 集成上亿晶体管已经实现。 单个片上处理器核的数量不断提升, 多核及众核 将成为未来处理器发展的主要趋势。 核间互连, 数据传输效率成为制约整个 互连网络架构性能的关键因素之一。
传统的片上互连设计(如总线) 已经逐渐无法适应当前的性能需求。 电 子互连的成本将会超越光互连的成本, 光互连正在展现出越来越好的商业前 景。 光互连技术在降低系统功耗方面有着相当的优势, 且有着很小的传输损 耗及极高的通信带宽, 是比较理想的片上互连技术。
近年来, 硅基光子学发展迅猛, 特别是硅基激光器, 硅基光电调制器, 硅基光探测器等器件, 推动了片上光互连的发展。 微环谐振器结构在 1969 年由 Marcatili提出, 限于当时的工艺, 一直没有受到广泛的关注。 基于微环 谐振器的光器件具有功耗低, 面积小等优点, 随着半导体工艺的迅速发展, 基于微环谐振器的光学路由器得到了越来越广泛的关注。
光互连技术具有大带宽、 高速、 低时延、 无需大量引脚、 低传输损耗、 低串扰、 低功耗、 可与互补金属氧化物半导体(Complementary Metal Oxide Semiconductor, CMOS )工艺兼容等诸多优点, 对于解决通信瓶颈问题有着 显著的优势。 目前, 光互连技术正朝着更高速、 更短传输距离、 更高带宽密 度和集成度的方向发展。 而光学路由器是片上光网络的核心器件, 一个光学 路由器的性能很大程度上决定着整个光互连网络的性能。但是目前光学路由 器的结构比较复杂, 交叉节点和微环的数量较多, 导致生产成本高、 稳定性 差、 插入损耗高、 功耗大, 从而影响光学路由器的性能。 发明内容
本发明实施例提供了一种光学路由器, 能够提高光学路由器的性能。 第一方面, 本发明实施例提供了一种光学路由器, 包括: 第一波导 101、 第二波导 102、 第三波导 103、 第四波导 104;
第一微环谐振器 111、 第二微环谐振器 112、 第三微环谐振器 113、 第四 微环谐振器 114、 第五微环谐振器 115、 第六微环谐振器 116、 第七微环谐振 器 117;
第一波导 101的一端为第一输入端 121, 另一端为第二输出端 132; 第 二波导 102的一端为第二输入端 122, 另一端为第三输出端 133; 第三波导 103的一端为第三输入端 123, 另一端为第四输出端 134; 第四波导 104的一 端为第四输入端 124, 另一端为第一输出端 131;
第一输入端 121与第二输出端 132通过第一波导 101耦合, 第一输入端 121与第三输出端 133通过第三微环谐振器 113耦合, 第一输入端 121与第 四输出端 134通过第一微环谐振器 111耦合, 第二输入端 122与第一输出端 131通过第四微环谐振器 114耦合, 第二输入端 124与第三输出端 133通过 第四波导 104耦合, 第二输入端 122与第四输出端 134通过第五微环谐振器 115耦合,第三输入端 123与第一输出端 131通过第六微环谐振器 116耦合, 第三输入端 123与第二输出端 132通过第七微环谐振器 117耦合, 第三输入 端 123与第四输出端 134通过第三波导 103耦合, 第四输入端 124与第一输 出端 131通过第二波导 102耦合, 第四输入端 124与第二输出端 132通过第 二微环谐振器 112耦合, 第四输入端 124与第三输出端 133通过第四微环谐 振器 114耦合。
结合第一方面, 在第一种可能的实现方式中, 第一微环谐振器 111、 第 二微环谐振器 112、 第三微环谐振器 113、 第四微环谐振器 114、 第五微环谐 振器 115、 第六微环谐振器 116和第七微环谐振器 117为平行波导微环谐振 器。
结合第一方面或第一方面的第一种可能的实现方式,在第二种可能的实 现方式中, 第一微环谐振器 111连接第一波导 101和第三波导 103; 第二微 环谐振器 112连接第四波导 104和第一波导 101; 第三微环谐振器 111连接 第一波导 101和第二波导 102; 第四微环谐振器 111连接第二波导 102和第 四波导 104; 第五微环谐振器 115连接第二波导 102和第三波导 103; 第六 微环谐振器 116连接第三波导 103和第四波导 104; 第七微环谐振器 117连 接第三波导 103和第一波导 101。
结合第一方面或第一方面的上述任一种可能的实现方式,在第三种可能 的实现方式中, 第一微环谐振器 111、 第二微环谐振器 112、 第三微环谐振 器 113、 第四微环谐振器 114、 第五微环谐振器 115、 第六微环谐振器 116和 第七微环谐振器 117的半径相同。
结合第一方面或第一方面的上述任一种可能的实现方式,在第四种可能 的实现方式中, 第一微环谐振器 111、 第二微环谐振器 112、 第三微环谐振 器 113、 第四微环谐振器 114、 第五微环谐振器 115、 第六微环谐振器 116和 第七微环谐振器 117具有波分复用 WDM多波长开关功能。
结合第一方面或第一方面的上述任一种可能的实现方式,在第五种可能 的实现方式中, 第一微环谐振器 111、 第二微环谐振器 112、 第三微环谐振 器 113、 第四微环谐振器 114、 第五微环谐振器 115、 第六微环谐振器 116和 第七微环谐振器 117的谐振波长一致。
结合第一方面或第一方面的上述任一种可能的实现方式,在第六种可能 的实现方式中, 第一输入端 121、 第二输入端 122、 第三输入端 123、 第四输 入端 124与第一输出端 131、 第二输出端 132、 第三输出端 133、 第四输出端 134之间实现 4 x 4的无阻塞交换。
结合第一方面或第一方面的上述任一种可能的实现方式,在第七种可能 的实现方式中, 第一输入端 121和第一输出端 131相邻; 第二输入端 122和 第二输出端 132相邻; 第三输入端 123和第三输出端 133相邻; 第四输入端 124和第四输出端 134相邻。
结合第一方面或第一方面的上述任一种可能的实现方式,在第八种可能 的实现方式中,第一波导 101与第四波导 104有三个波导交叉,第二波导 102 与第三波导 103有三个波导交叉。
结合第一方面或第一方面的上述任一种可能的实现方式,在第九种可能 的实现方式中, 第一波导 101和第三波导 103各有五个波导弯曲, 第二波导 102和第四波导 104各有一个波导弯曲。
基于上述技术方案,本发明实施例的光学路由器,具有较少的波导交叉, 可以降低光链路的平均插入损耗及串扰, 并且, 釆用较少的微环谐振器, 可 以降低功耗、 器件尺寸和成本, 从而能够提高光学路由器的性能。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是根据本发明实施例的光学路由器的结构示意图。
图 2a是微环谐振器的 ON状态的示意图。
图 2b是微环谐振器的 OFF状态的示意图。
图 3是根据本发明实施例的光学路由器的一种工作状态的示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
图 1示出了根据本发明实施例的光学路由器 100的结构示意图。 如图 1 所示, 光学路由器 100包括:
第一波导 101、 第二波导 102、 第三波导 103、 第四波导 104; 以及, 第一微环谐振器 111、 第二微环谐振器 112、 第三微环谐振器 113、 第四 微环谐振器 114、 第五微环谐振器 115、 第六微环谐振器 116、 第七微环谐振 器 117。
第一波导 101、 第二波导 102、 第三波导 103和第四波导 104为直通波 导, 即波导的一端为输入端, 另一端为输出端。
第一波导 101的一端为第一输入端 121, 另一端为第二输出端 132; 第二波导 102的一端为第二输入端 122, 另一端为第三输出端 133; 第三波导 103的一端为第三输入端 123, 另一端为第四输出端 134; 第四波导 104的一端为第四输入端 124, 另一端为第一输出端 131。 四条波导间通过七个微环谐振器连接, 其中, 第一微环谐振器 111连接 第一波导 101和第三波导 103; 第二微环谐振器 112连接第四波导 104和第 一波导 101; 第三微环谐振器 111连接第一波导 101和第二波导 102; 第四 微环谐振器 111连接第二波导 102和第四波导 104; 第五微环谐振器 115连 接第二波导 102和第三波导 103; 第六微环谐振器 116连接第三波导 103和 第四波导 104; 第七微环谐振器 117连接第三波导 103和第一波导 101。 通过直通波导以及微环谐振器, 可以实现每个输入端到三个输出端的耦 合。
第一输入端 121与第二输出端 132通过第一波导 101耦合;
第一输入端 121与第三输出端 133通过第三微环谐振器 113耦合; 第一输入端 121与第四输出端 134通过第一微环谐振器 111耦合; 第二输入端 122与第一输出端 131通过第四微环谐振器 114耦合; 第二输入端 124与第三输出端 133通过第四波导 104耦合;
第二输入端 122与第四输出端 134通过第五微环谐振器 115耦合; 第三输入端 123与第一输出端 131通过第六微环谐振器 116耦合; 第三输入端 123与第二输出端 132通过第七微环谐振器 117耦合; 第三输入端 123与第四输出端 134通过第三波导 103耦合;
第四输入端 124与第一输出端 131通过第二波导 102耦合;
第四输入端 124与第二输出端 132通过第二微环谐振器 112耦合; 第四输入端 124与第三输出端 133通过第四微环谐振器 114耦合。
通过调节各个微环谐振器的开 ( ON )和关(OFF )状态, 每个输入端输 入的光信号可以被导向与其耦合的三个输出端中的任意一个, 并且可以实现 四个输入端输入的光信号互不阻塞。 也就是说, 本发明实施例的光学路由器 的四个输入端与四个输出端之间可以实现 4 x 4的无阻塞交换。
在本发明实施例中, 四条波导有六个波导交叉, 其中, 第一波导 101与 第四波导 104有三个波导交叉, 第二波导 102与第三波导 103有三个波导交 叉。 由于波导交叉会引入光学损耗和串扰, 本发明实施例的光学路由器具有 较少的波导交叉, 因而降低了光链路的平均插入损耗及串扰, 从而提高了光 交换网络的可扩展性。
在本发明实施例中, 四条波导有十二个波导弯曲, 其中, 第一波导 101 和第三波导 103各有五个波导弯曲, 第二波导 102和第四波导 104各有一个 波导弯曲。
在本发明实施例中, 利用微环谐振器的双向工作特性, 第四微环谐振器 114可以同时连接从第四输入端 124到第三输出端 133和从第二输入端 122 到第一输出端 131的光通路, 从而提高了器件的利用效率, 减小了所需微环 谐振器的数量, 减少了路由器的功耗。
本发明实施例的光学路由器一共有七个微环谐振器,微环谐振器数量较 少, 从而降低了光学路由器的功耗、 器件尺寸和成本。
因此, 本发明实施例的光学路由器, 具有较少的波导交叉, 可以降低光 链路的平均插入损耗及串扰,并且,釆用较少的微环谐振器,可以降低功耗、 器件尺寸和成本, 从而能够提高光学路由器的性能。
在本发明的一个实施例中, 第一微环谐振器 111、 第二微环谐振器 112、 第三微环谐振器 113、 第四微环谐振器 114、 第五微环谐振器 115、 第六微环 谐振器 116和第七微环谐振器 117为平行波导微环谐振器。
平行波导微环谐振器由微环连接两条平行的波导。 如图 2a所示, 当微 环谐振器的谐振波长 Aresnant与信号波长 勿合时, 即 。nant = ), 这一种状 态定义为 "ON", 信号通过微环从一个波导耦合到另一波导; 如图 2b所示, 当 4snant≠^时, 这一种状态定义为 "OFF" , 信号还是沿原路直通。 微环谐 振器的谐振波长可以由路由控制信号动态配置, 从而实现开关状态的切换。
在本发明的一个实施例中, 第一微环谐振器 111、 第二微环谐振器 112、 第三微环谐振器 113、 第四微环谐振器 114、 第五微环谐振器 115、 第六微环 谐振器 116和第七微环谐振器 117的半径相同。 也就是说, 七个微环谐振器 具有相同的半径。
在本发明的一个实施例中, 第一微环谐振器 111、 第二微环谐振器 112、 第三微环谐振器 113、 第四微环谐振器 114、 第五微环谐振器 115、 第六微环 谐振器 116 和第七微环谐振器 117 具有波分复用 (Wavelength Division Multiplexing, WDM ) 多波长开关功能。
具体而言, 各个微环谐振器除了可以工作在单波长状态下, 还可以工作 在 WDM多波长状态下。 也就是说, 对于各微环谐振器, 也可以釆用 WDM 光信号输入, 从而增加系统的带宽和吞吐量。 在 WDM情况下, 相邻谐振峰 的波长间隔称为自由谱宽(Free Spectral Range, FSR ), 通过电或者热调制, 可以使得这些谐振峰同时移动, 从而实现微环谐振器对多个波长的同时开 关。
在本发明的一个实施例中, 第一微环谐振器 111、 第二微环谐振器 112、 第三微环谐振器 113、 第四微环谐振器 114、 第五微环谐振器 115、 第六微环 谐振器 116和第七微环谐振器 117的谐振波长一致。
具体而言, 在单波长情况下, 各微环谐振器的谐振波长相同, 在 WDM 情况下, 各微环谐振器的多个谐振波长分别相同。 在本发明的一个实施例中,第一输入端口 121和第一输出端口 131相邻; 第二输入端口 122和第二输出端口 132相邻; 第三输入端口 123和第三输出 端口 133相邻; 第四输入端口 124和第四输出端口 134相邻。
对应的输入端和输出端相邻, 这样, 光学路由器的结构更紧凑, 更有利 于应用到光网络结构中去。 相邻的输入端和输出端可以作为一个双向端口, 即本发明实施例的光学路由器共有四个双向端口。
图 3示出了根据本发明实施例的光学路由器 100的一种工作状态的示意 图。 图 3中虚线表示的微环谐振器处于谐振状态 (即 ON状态), 即第一微 环谐振器 111、 第四微环谐振器 114和第七微环谐振器 117处于谐振状态, 形成第四输入端 124到第三输出端 133, 第二输入端 122到第一输出端 131, 第三输入端 123到第二输出端 132, 以及第一输入端 121到第四输出端 134 四条光链路。 第四输入端 124到第三输出端 133和第二输入端 122到第一输 出端 131这两条光链路共用第四微环谐振器 114而并不造成阻塞。 由于微环 谐振器的状态切换需要外加电压或者热调制, 两条链路共用同一个微环谐振 器能够降低功耗。本发明仅用七个微环谐振器完成了四个双向端口的无阻塞 路由交换。
本发明实施例的光学路由器共有十二条光通信链路,表 1给出了每条链 路与波导或处于 ON状态的微环谐振器的对应关系。 在表 1中, 各输入端、 输出端、 微环谐振器、 波导分别用相应的附图标记表示。 一个输入端到一个 输出端为一条链路。 每条链路最多由一个微环谐振器耦合。 同一时刻可以允 许输入端和输出端不相邻的通信链路同时工作(相邻的输入端和输出端不需 要通信), 从而緩解了光网络的拥堵。
表 1
光链路 波导 /ON状态的微环谐振器
121 132 101
121 133 113
121 134 111
122 131 114
122 133 104
122 134 115 123 131 116
123 132 117
123 134 103
124 131 102
124 132 112
124 133 114
本发明实施例的光学路由器总共有九种状态,每种状态可最多允许四条 链路同时工作。 表 2给出了每种状态与微环谐振器或波导的对应关系。 在表 2中, 九种状态分别用 1, 2, …, 9表示, 各输入端、 输出端、 微环谐振器、 波导分别用相应的附图标记表示。对应谐振器表示输入端和输出端需通过微 环谐振器耦合,对应波导表示输入端和输出端由波导连通而不需通过微环谐 振器耦合。
表 2
光链路
124 122 121 123 微环谐振器 /波导
1 133 134 132 131 114 115 101 116
2 133 131' 134 132 114 114 111 117
3 133 131' 132 134 114 114 101 103
4 132 134' 133 131 112 115 113 116
5 132 133' 134 131 112 104 111 116
6 132 131' 133 134 112 114 113 103
7 131 133' 132 134 102 104 101 103
8 131 133' 134 132 102 104 111 117
9 131 134' 133 132 102 115 113 117 本发明实施例的光学路由器,釆用七个微环谐振器实现四个双向端口的 无阻塞路由交换, 且具有较少的波导交叉, 既可以降低光链路的平均插入损 耗及串扰, 又可以降低功耗、 器件尺寸和成本, 从而能够提高光学路由器的 性能。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另夕卜, 所显示或讨论的相互之间的 耦合或直接辆合或通信连接可以是通过一些接口、装置或单元的间接辆合或 通信连接, 也可以是电的, 机械的或其它的形式连接。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本发明实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以是两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用软件 功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方 案的全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在 一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算 机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器 (ROM, Read-Only Memory )、 随机存取存 4诸器 ( RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到各种等效的修改或替换, 这些修改或替换都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 权利要求
    1. 一种光学路由器, 其特征在于, 包括:
    第一波导(101)、 第二波导(102)、 第三波导(103)、 第四波导(104); 第一微环谐振器( 111 )、第二微环谐振器( 112 )、第三微环谐振器( 113 )、 第四微环谐振器 ( 114 )、 第五微环谐振器( 115 )、 第六微环谐振器( 116 )、 第七微环谐振器 (117);
    所述第一波导 (101) 的一端为第一输入端 (121), 另一端为第二输出 端 (132); 所述第二波导 (102) 的一端为第二输入端 (122), 另一端为第 三输出端 (133); 所述第三波导 (103) 的一端为第三输入端 (123), 另一 端为第四输出端(134); 所述第四波导(104)的一端为第四输入端(124), 另一端为第一输出端 (131);
    所述第一输入端( 121 )与所述第二输出端( 132 )通过所述第一波导( 101 ) 耦合, 所述第一输入端(121)与所述第三输出端(133)通过所述第三微环 谐振器 (113)耦合, 所述第一输入端 (121) 与第四输出端 (134)通过所 述第一微环谐振器( 111 )耦合, 所述第二输入端 ( 122)与所述第一输出端
    (131)通过所述第四微环谐振器 (114)耦合, 所述第二输入端 (124) 与 所述第三输出端( 133)通过所述第四波导( 104)耦合,所述第二输入端( 122) 与所述第四输出端(134)通过所述第五微环谐振器(115)耦合, 所述第三 输入端 (123) 与所述第一输出端 (131)通过所述第六微环谐振器 (116) 耦合, 所述第三输入端(123)与所述第二输出端(132)通过所述第七微环 谐振器 (117)耦合, 所述第三输入端 (123) 与所述第四输出端 (134)通 过所述第三波导( 103 )耦合,所述第四输入端( 124)与所述第一输出端( 131 ) 通过所述第二波导(102)耦合, 所述第四输入端(124)与所述第二输出端
    (132)通过所述第二微环谐振器 (112)耦合, 所述第四输入端 (124) 与 所述第三输出端 ( 133 )通过所述第四微环谐振器( 114 )耦合。
  2. 2. 根据权利要求 1 所述的光学路由器, 其特征在于, 所述第一微环谐 振器(111)、 所述第二微环谐振器(112)、 所述第三微环谐振器(113)、 所 述第四微环谐振器( 114)、 所述第五微环谐振器( 115)、 所述第六微环谐振 器(116)和所述第七微环谐振器 (117) 为平行波导微环谐振器。
  3. 3. 根据权利要求 1或 2所述的光学路由器, 其特征在于, 所述第一微 环谐振器( 111 )连接所述第一波导( 101 )和所述第三波导( 103 ); 所述第 二微环谐振器( 112 )连接所述第四波导( 104 )和所述第一波导( 101 ); 所 述第三微环谐振器( 111 )连接所述第一波导( 101 )和所述第二波导( 102 ); 所述第四微环谐振器( 111 )连接所述第二波导( 102)和所述第四波导( 104 ); 所述第五微环谐振器( 115 )连接所述第二波导( 102 )和所述第三波导( 103 ); 所述第六微环谐振器( 116)连接所述第三波导( 103 )和所述第四波导( 104); 所述第七微环谐振器( 117 )连接所述第三波导( 103 )和所述第一波导( 101 )。
  4. 4. 根据权利要求 1至 3中任一项所述的光学路由器, 其特征在于, 所 述第一微环谐振器(111)、 所述第二微环谐振器(112)、 所述第三微环谐振 器(113)、 所述第四微环谐振器(114)、 所述第五微环谐振器(115)、 所述 第六微环谐振器 ( 116 )和所述第七微环谐振器 ( 117 ) 的半径相同。
  5. 5. 根据权利要求 1至 4中任一项所述的光学路由器, 其特征在于, 所 述第一微环谐振器(111)、 所述第二微环谐振器(112)、 所述第三微环谐振 器(113)、 所述第四微环谐振器(114)、 所述第五微环谐振器(115)、 所述 第六微环谐振器 (116)和所述第七微环谐振器 (117)具有波分复用 WDM 多波长开关功能。
  6. 6. 根据权利要求 1至 5中任一项所述的光学路由器, 其特征在于, 所 述第一微环谐振器(111)、 所述第二微环谐振器(112)、 所述第三微环谐振 器(113)、 所述第四微环谐振器(114)、 所述第五微环谐振器(115)、 所述 第六微环谐振器 (116)和所述第七微环谐振器 (117) 的谐振波长一致。
  7. 7. 根据权利要求 1至 6中任一项所述的光学路由器, 其特征在于, 所 述第一输入端(121)、 所述第二输入端(122)、 所述第三输入端 (123)、 所 述第四输入端 (124) 与所述第一输出端 (131)、 所述第二输出端 (132)、 所述第三输出端(133)、 所述第四输出端(134)之间实现 4x4的无阻塞交 换。
  8. 8. 根据权利要求 1至 7中任一项所述的光学路由器, 其特征在于, 所 述第一输入端 (121 )和第一输出端 (131)相邻; 所述第二输入端 (122) 和第二输出端( 132 )相邻; 所述第三输入端( 123 )和所述第三输出端( 133 ) 相邻; 所述第四输入端 (124)和所述第四输出端 (134)相邻。
  9. 9. 根据权利要求 1至 8中任一项所述的光学路由器, 其特征在于, 所 述第一波导( 101 )与所述第四波导( 104)有三个波导交叉, 所述第二波导 (102)与所述第三波导(103)有三个波导交叉。
  10. 10. 根据权利要求 1至 9中任一项所述的光学路由器, 其特征在于, 所 述第一波导(101)和所述第三波导(103)各有五个波导弯曲, 所述第二波 导(102)和所述第四波导(104)各有一个波导弯曲。
CN201480036307.5A 2014-05-09 2014-05-09 光学路由器 Active CN105339821B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/077101 WO2015168919A1 (zh) 2014-05-09 2014-05-09 光学路由器

Publications (2)

Publication Number Publication Date
CN105339821A true CN105339821A (zh) 2016-02-17
CN105339821B CN105339821B (zh) 2019-03-26

Family

ID=54392004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480036307.5A Active CN105339821B (zh) 2014-05-09 2014-05-09 光学路由器

Country Status (2)

Country Link
CN (1) CN105339821B (zh)
WO (1) WO2015168919A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106094105A (zh) * 2016-06-22 2016-11-09 哈尔滨工业大学 可调多通道滤波器构成的2×2波长路由器
CN114665968A (zh) * 2020-12-23 2022-06-24 中国科学院半导体研究所 片上光电收发引擎

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018006314A1 (zh) * 2016-07-07 2018-01-11 华为技术有限公司 光路由设备
FR3071932B1 (fr) 2017-10-02 2019-11-08 Stmicroelectronics (Crolles 2) Sas Commutateurs et reseau d'interconnexion photonique integre dans une puce optoelectronique

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872039A (zh) * 2010-05-12 2010-10-27 中国科学院半导体研究所 一种基于有源微环谐振器的4×4无阻塞光路由器
CN101917333A (zh) * 2010-07-06 2010-12-15 西安电子科技大学 基于区域的光电双层片上网络系统及路由方法
CN102281478A (zh) * 2011-09-13 2011-12-14 西安电子科技大学 用于混合交换的片上光路由器
US20120045167A1 (en) * 2010-08-23 2012-02-23 Telefonaktiebolaget L M Ericsson (Publ) Multi-Tier Micro-Ring Resonator Optical Interconnect System
CN102413039A (zh) * 2011-10-26 2012-04-11 西安电子科技大学 实现光片上网络的低阻塞通信路由器及通信方法
CN102540345A (zh) * 2012-03-20 2012-07-04 中国科学院半导体研究所 基于微环谐振器的低损耗低串扰四端口无阻塞光学路由器
CN103091784A (zh) * 2013-01-29 2013-05-08 浙江大学 基于微环谐振器的低损耗四端口非阻塞光学路由器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645706B (zh) * 2012-05-09 2013-10-30 中国科学院半导体研究所 基于微环谐振器的五端口无阻塞光学路由器
CN103308988B (zh) * 2013-04-28 2015-04-29 浙江大学 一种基于5个微环谐振器的4×4非阻塞光学交换网络

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872039A (zh) * 2010-05-12 2010-10-27 中国科学院半导体研究所 一种基于有源微环谐振器的4×4无阻塞光路由器
CN101917333A (zh) * 2010-07-06 2010-12-15 西安电子科技大学 基于区域的光电双层片上网络系统及路由方法
US20120045167A1 (en) * 2010-08-23 2012-02-23 Telefonaktiebolaget L M Ericsson (Publ) Multi-Tier Micro-Ring Resonator Optical Interconnect System
CN102281478A (zh) * 2011-09-13 2011-12-14 西安电子科技大学 用于混合交换的片上光路由器
CN102413039A (zh) * 2011-10-26 2012-04-11 西安电子科技大学 实现光片上网络的低阻塞通信路由器及通信方法
CN102540345A (zh) * 2012-03-20 2012-07-04 中国科学院半导体研究所 基于微环谐振器的低损耗低串扰四端口无阻塞光学路由器
CN103091784A (zh) * 2013-01-29 2013-05-08 浙江大学 基于微环谐振器的低损耗四端口非阻塞光学路由器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106094105A (zh) * 2016-06-22 2016-11-09 哈尔滨工业大学 可调多通道滤波器构成的2×2波长路由器
CN106094105B (zh) * 2016-06-22 2018-12-11 哈尔滨工业大学 可调多通道滤波器构成的2×2波长路由器
CN114665968A (zh) * 2020-12-23 2022-06-24 中国科学院半导体研究所 片上光电收发引擎
CN114665968B (zh) * 2020-12-23 2023-10-10 中国科学院半导体研究所 片上光电收发引擎

Also Published As

Publication number Publication date
CN105339821B (zh) 2019-03-26
WO2015168919A1 (zh) 2015-11-12

Similar Documents

Publication Publication Date Title
Biberman et al. Optical interconnection networks for high-performance computing systems
CN103091784B (zh) 基于微环谐振器的低损耗四端口非阻塞光学路由器
Taubenblatt Optical interconnects for high-performance computing
CN103308988B (zh) 一种基于5个微环谐振器的4×4非阻塞光学交换网络
US8320761B2 (en) Broadband and wavelength-selective bidirectional 3-way optical splitter
US10185085B2 (en) On-chip optical interconnection structure and network
CN105308495A (zh) 偏振控制器件和偏振控制的方法
CN101872039A (zh) 一种基于有源微环谐振器的4×4无阻塞光路由器
CN105531946A (zh) 一种光差分信号的发送和接收方法、装置和系统
CN105339821A (zh) 光学路由器
Luo et al. Performance and energy aware wavelength allocation on ring-based WDM 3D optical NoC
Kilper et al. Energy challenges in optical access and aggregation networks
Jadhav et al. Efficient non-blocking optical router for 3D optical network-on-chip
CN104317000B (zh) 模块化可扩展的波长和空间全光路由器
CN104503027B (zh) 基于微环谐振光开关的四端口光学路由器
CN204203497U (zh) 一种模块化可扩展的波长和空间全光路由器
CN103220063B (zh) 一种全光波长路由集成芯片
Wen et al. Silicon photonic memory interconnect for many-core architectures
CN105556356A (zh) 一种环形光移位器及光信号的移位方法
Abadal et al. Graphene-enabled hybrid architectures for multiprocessors: Bridging nanophotonics and nanoscale wireless communication
Do et al. Self-controlling photonic-on-chip networks with deep reinforcement learning
Sato Optical Switching will Innovate Intra Data Center Networks
Aleksic et al. The future of switching in data centers
CN106716891B (zh) 一种集成型全光交换节点
Aleksic et al. Limitations and perspectives of optically switched interconnects for large-scale data processing and storage systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210104

Address after: 518101 Baoan District Xin'an street, Shenzhen, Guangdong, No. 625, No. 625, Nuo platinum Plaza,

Patentee after: SHENZHEN SHANGGE INTELLECTUAL PROPERTY SERVICE Co.,Ltd.

Address before: 518129 Bantian HUAWEI headquarters office building, Longgang District, Guangdong, Shenzhen

Patentee before: HUAWEI TECHNOLOGIES Co.,Ltd.

Effective date of registration: 20210104

Address after: 313200 mubali, Yantang village, Luoshe Town, Deqing County, Huzhou City, Zhejiang Province (Deqing Kangxin Wood Industry Co., Ltd.)

Patentee after: Luo Sanjie

Address before: 518101 Baoan District Xin'an street, Shenzhen, Guangdong, No. 625, No. 625, Nuo platinum Plaza,

Patentee before: SHENZHEN SHANGGE INTELLECTUAL PROPERTY SERVICE Co.,Ltd.