CN105337908A - Channel estimation device and method and receiver - Google Patents
Channel estimation device and method and receiver Download PDFInfo
- Publication number
- CN105337908A CN105337908A CN201410371676.1A CN201410371676A CN105337908A CN 105337908 A CN105337908 A CN 105337908A CN 201410371676 A CN201410371676 A CN 201410371676A CN 105337908 A CN105337908 A CN 105337908A
- Authority
- CN
- China
- Prior art keywords
- time
- predetermined range
- domain signal
- unit
- channel estimation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 82
- 238000012545 processing Methods 0.000 claims abstract description 80
- 230000001629 suppression Effects 0.000 claims abstract description 57
- 230000009466 transformation Effects 0.000 claims abstract description 32
- 230000004044 response Effects 0.000 claims abstract description 22
- 239000013589 supplement Substances 0.000 description 26
- 238000010586 diagram Methods 0.000 description 15
- 230000005540 biological transmission Effects 0.000 description 14
- 230000015654 memory Effects 0.000 description 8
- 238000005562 fading Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 230000006870 function Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000017105 transposition Effects 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
Landscapes
- Noise Elimination (AREA)
Abstract
本发明实施例提供一种信道估计装置、方法以及接收机,其中,该装置包括:第一估计单元,对信道进行初步估计;第一变换单元,对信道初步估计的结果进行傅立叶逆变换,获得时域信号;噪声抑制单元,对预定范围之外的时域信号进行噪声抑制处理,其中,预定范围之内的时域信号包括有效功率大于预先设定的第一阈值的时域信号以及由于噪声的影响导致有效功率小于或等于第一阈值的时域信号;第二变换单元,对噪声抑制处理后的时域信号进行傅立叶变换,获得信道频域响应。通过保护预定范围之内的可能被误认为噪声的有用信号不被抑制,能够提高信道估计的准确性,从而能够有效的提高系统的性能。
Embodiments of the present invention provide a channel estimation device, method, and receiver, wherein the device includes: a first estimation unit that performs preliminary channel estimation; a first transformation unit that performs Fourier inverse transform on the result of the preliminary channel estimation to obtain Time-domain signal: the noise suppression unit performs noise suppression processing on time-domain signals outside the predetermined range, wherein the time-domain signals within the predetermined range include time-domain signals whose effective power is greater than a preset first threshold and due to noise The influence of the influence results in a time-domain signal whose effective power is less than or equal to the first threshold; the second transform unit performs Fourier transform on the time-domain signal after noise suppression processing to obtain a channel frequency-domain response. By protecting useful signals that may be mistaken for noise within a predetermined range from being suppressed, the accuracy of channel estimation can be improved, thereby effectively improving system performance.
Description
技术领域technical field
本发明涉及通信技术领域,尤其涉及一种信道估计装置、方法以及接收机。The present invention relates to the technical field of communication, and in particular to a channel estimation device, method and receiver.
背景技术Background technique
长期演进(LongTermEvolution,LTE)系统是基于正交频分复用(OrthogonalFrequencyDivisionMultiplexing,OFDM)和多入多出(Multiple-InputMultiple-Output,MIMO)技术的新一代宽带无线通信系统。在LTE系统的物理层定义的多载波系统中,在信号接收端,将宽带频率选择性信道下的接收信息分配到各近似平稳衰落的频率子载波(subcarriers)进行传输,避免了频率选择性对负载和覆盖能力等LTE系统性能指标的影响。可见,对各子载波信道估计的准确性直接影响系统解调的性能。The Long Term Evolution (LTE) system is a new generation of broadband wireless communication system based on Orthogonal Frequency Division Multiplexing (OFDM) and Multiple-Input Multiple-Output (MIMO) technologies. In the multi-carrier system defined by the physical layer of the LTE system, at the signal receiving end, the received information under the wideband frequency-selective channel is allocated to frequency subcarriers (subcarriers) with approximately smooth fading for transmission, which avoids the impact of frequency selectivity on The impact of LTE system performance indicators such as load and coverage capabilities. It can be seen that the accuracy of channel estimation for each subcarrier directly affects the performance of system demodulation.
目前,存在多种频率选择性信道下的信道估计方法,其中,根据时域信道为冲击响应的特性,在时域进行噪声抑制的方法得到了广泛的应用。该方法首先将频域迫零(Zero-force,ZF)信道估计变换到时域进行噪声抑制,然后再变换回频域得到最终信道估计值。相对于普通的ZF信道估计,系统性能得到明显提升。At present, there are various channel estimation methods under frequency selective channels, among which, according to the characteristic of the time domain channel as an impulse response, the method of noise suppression in the time domain has been widely used. In this method, the zero-force (ZF) channel estimation in the frequency domain is firstly transformed into the time domain for noise suppression, and then transformed back to the frequency domain to obtain the final channel estimation value. Compared with ordinary ZF channel estimation, the system performance is obviously improved.
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。It should be noted that the above introduction of the technical background is only for the convenience of a clear and complete description of the technical solution of the present invention, and for the convenience of understanding by those skilled in the art. It cannot be considered that the above technical solutions are known to those skilled in the art just because these solutions are described in the background of the present invention.
发明内容Contents of the invention
当利用上述现有的信道估计方法进行信道估计时,在信号的信噪比(SignaltoNoiseRatio,SNR)较低、噪声较高的情况下,有用信号可能会被淹没在背景噪声信号中,从而造成有用信号被错误的认定为噪声并进行抑制的情况出现。在该情况下,系统性能不仅可能没有获得增益,甚至可能导致系统性能的衰减。When using the above-mentioned existing channel estimation methods for channel estimation, when the signal-to-noise ratio (Signal to Noise Ratio, SNR) of the signal is low and the noise is high, the useful signal may be submerged in the background noise signal, resulting in useful A situation arises where a signal is falsely identified as noise and suppressed. In this case, not only may no gain be obtained in system performance, but it may even lead to attenuation of system performance.
本发明实施例提供一种信道估计装置、方法以及接收机,通过保护预定范围之内的可能被误认为噪声的有用信号不被抑制,能够提高信道估计的准确性,从而能够有效的提高系统的性能。Embodiments of the present invention provide a channel estimation device, method, and receiver, which can improve the accuracy of channel estimation by protecting useful signals that may be mistaken for noise within a predetermined range from being suppressed, thereby effectively improving the system performance. performance.
根据本发明实施例的第一方面,提供一种信道估计装置,所述装置包括:第一估计单元,所述第一估计单元用于对信道进行初步估计;第一变换单元,所述第一变换单元用于根据信道初步估计的结果进行傅立叶逆变换,获得时域信号;噪声抑制单元,所述噪声抑制单元用于对预定范围之外的时域信号进行噪声抑制处理,其中,所述预定范围之内的时域信号包括有效功率大于预先设定的第一阈值的时域信号以及由于噪声的影响导致有效功率小于或等于所述第一阈值的时域信号;第二变换单元,所述第二变换单元用于对噪声抑制处理后的时域信号进行傅立叶变换,获得信道频域响应。According to the first aspect of the embodiments of the present invention, there is provided a channel estimation device, the device includes: a first estimation unit, the first estimation unit is used for preliminary channel estimation; a first transformation unit, the first The transformation unit is used to perform Fourier inverse transform according to the result of preliminary channel estimation to obtain a time-domain signal; the noise suppression unit is used to perform noise suppression processing on time-domain signals outside a predetermined range, wherein the predetermined The time-domain signals within the range include time-domain signals whose effective power is greater than a preset first threshold and time-domain signals whose effective power is less than or equal to the first threshold due to the influence of noise; the second transformation unit, the The second transformation unit is configured to perform Fourier transformation on the time-domain signal after noise suppression processing to obtain a channel frequency-domain response.
根据本发明实施例的第二方面,提供一种接收机,所述接收机包括根据本发明实施例的第一方面所述的信道估计装置。According to a second aspect of the embodiments of the present invention, a receiver is provided, and the receiver includes the channel estimation device according to the first aspect of the embodiments of the present invention.
根据本发明实施例的第三方面,提供一种信道估计方法,所述方法包括:对信道进行初步估计;根据信道初步估计的结果进行傅立叶逆变换,获得时域信号;对预定范围之外的时域信号进行噪声抑制处理,其中,所述预定范围之内的时域信号包括有效功率大于预先设定的第一阈值的时域信号以及由于噪声的影响导致有效功率小于或等于所述第一阈值的时域信号;对噪声抑制处理后的时域信号进行傅立叶变换,获得信道频域响应。According to the third aspect of the embodiments of the present invention, there is provided a channel estimation method, the method comprising: performing preliminary channel estimation; performing inverse Fourier transform according to the results of the preliminary channel estimation to obtain time-domain signals; The time-domain signal is subjected to noise suppression processing, wherein the time-domain signal within the predetermined range includes a time-domain signal whose effective power is greater than a preset first threshold and whose effective power is less than or equal to the first preset threshold due to the influence of noise. The time-domain signal of the threshold value; the Fourier transform is performed on the time-domain signal after the noise suppression processing to obtain the channel frequency-domain response.
本发明的有益效果在于:通过保护预定范围之内的可能被误认为噪声的有用信号不被抑制,提高了信道估计的准确性,从而有效的提高了系统的性能。The beneficial effect of the present invention is that the accuracy of channel estimation is improved by protecting useful signals that may be mistaken for noise within a predetermined range from being suppressed, thereby effectively improving system performance.
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。With reference to the following description and accompanying drawings, there are disclosed in detail specific embodiments of the invention, indicating the manner in which the principles of the invention may be employed. It should be understood that embodiments of the invention are not limited thereby in scope. Embodiments of the invention encompass many changes, modifications and equivalents within the spirit and scope of the appended claims.
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。Features described and/or illustrated with respect to one embodiment can be used in the same or similar manner in one or more other embodiments, in combination with, or instead of features in other embodiments .
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。It should be emphasized that the term "comprising/comprising" when used herein refers to the presence of a feature, integer, step or component, but does not exclude the presence or addition of one or more other features, integers, steps or components.
附图说明Description of drawings
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施方式,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。在附图中:The included drawings are used to provide further understanding of the embodiments of the present invention, and constitute a part of the specification, are used to illustrate the implementation mode of the present invention, and together with the text description, explain the principle of the present invention. Apparently, the drawings in the following description are only some embodiments of the present invention, and those skilled in the art can obtain other drawings according to these drawings without any creative effort. In the attached picture:
图1是本发明实施例1的信道估计装置的结构示意图;FIG. 1 is a schematic structural diagram of a channel estimation device according to Embodiment 1 of the present invention;
图2是本发明实施例1的信道估计方法的流程图;FIG. 2 is a flowchart of a channel estimation method according to Embodiment 1 of the present invention;
图3是本发明实施例1的范围确定单元的结构示意图;FIG. 3 is a schematic structural diagram of a range determination unit in Embodiment 1 of the present invention;
图4是本发明实施例1的根据在该传播模式下的时域信号的有效功率确定该预定范围的参数的方法流程图;4 is a flowchart of a method for determining parameters in the predetermined range according to the effective power of the time-domain signal in the propagation mode according to Embodiment 1 of the present invention;
图5是本发明实施例1的参数确定单元的一结构示意图;5 is a schematic structural diagram of a parameter determination unit in Embodiment 1 of the present invention;
图6是本发明实施例1的根据该时域信号的有效功率确定预定范围参数的一方法流程图;FIG. 6 is a flow chart of a method for determining parameters in a predetermined range according to the effective power of the time-domain signal according to Embodiment 1 of the present invention;
图7是本发明实施例1的时域信号的有效功率以及预定范围的示意图;FIG. 7 is a schematic diagram of effective power and a predetermined range of a time-domain signal according to Embodiment 1 of the present invention;
图8是本发明实施例1的参数确定单元的另一结构示意图;FIG. 8 is another structural schematic diagram of the parameter determination unit in Embodiment 1 of the present invention;
图9是发明实施例1的根据该时域信号的有效功率确定预定范围参数的另一方法流程图;Fig. 9 is a flow chart of another method for determining parameters in a predetermined range according to the effective power of the time-domain signal according to Embodiment 1 of the invention;
图10是本发明实施例2的接收机的一结构示意图;FIG. 10 is a schematic structural diagram of a receiver according to Embodiment 2 of the present invention;
图11是本发明实施例2的接收机的系统构成的一示意框图。Fig. 11 is a schematic block diagram showing the system configuration of a receiver according to Embodiment 2 of the present invention.
具体实施方式detailed description
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。The foregoing and other features of the invention will become apparent from the following description, taken with reference to the accompanying drawings. In the specification and drawings, specific embodiments of the invention are disclosed, which illustrate some embodiments in which the principles of the invention may be employed. It is to be understood that the invention is not limited to the described embodiments, but rather, the invention The invention includes all modifications, variations and equivalents that come within the scope of the appended claims.
实施例1Example 1
图1是本发明实施例1的信道估计装置的结构示意图。如图1所示,该装置100包括:第一估计单元101、第一变换单元102、噪声抑制单元103以及第二变换单元104,其中,FIG. 1 is a schematic structural diagram of a channel estimation device according to Embodiment 1 of the present invention. As shown in FIG. 1, the device 100 includes: a first estimation unit 101, a first transformation unit 102, a noise suppression unit 103, and a second transformation unit 104, wherein,
第一估计单元101用于对信道进行初步估计;The first estimating unit 101 is used to perform preliminary estimation on the channel;
第一变换单元102用于对初步估计的结果进行傅立叶逆变换,获得时域信号;The first transformation unit 102 is configured to perform inverse Fourier transformation on the result of the preliminary estimation to obtain a time-domain signal;
噪声抑制单元103用于对预定范围之外的时域信号进行噪声抑制处理,其中,该预定范围之内的时域信号包括有效功率大于预先设定的第一阈值的时域信号以及由于噪声的影响导致有效功率小于或等于该第一阈值的时域信号;The noise suppression unit 103 is configured to perform noise suppression processing on time-domain signals outside the predetermined range, wherein the time-domain signals within the predetermined range include time-domain signals whose effective power is greater than a preset first threshold and noise due to affecting time-domain signals that result in an effective power less than or equal to the first threshold;
第二变换单元104用于对噪声抑制处理后的时域信号进行傅立叶变换,获得信道频域响应。The second transformation unit 104 is configured to perform Fourier transformation on the time-domain signal after the noise suppression processing to obtain a channel frequency-domain response.
图2是本发明实施例1的信道估计方法的流程图。如图2所示,该方法包括:FIG. 2 is a flow chart of the channel estimation method in Embodiment 1 of the present invention. As shown in Figure 2, the method includes:
步骤201:对信道进行初步估计;Step 201: Preliminary estimation of the channel;
步骤202:对信道初步估计的结果进行傅立叶逆变换,获得时域信号;Step 202: performing inverse Fourier transform on the result of preliminary channel estimation to obtain a time-domain signal;
步骤203:对预定范围之外的时域信号进行噪声抑制处理,其中,该预定范围之内的时域信号包括有效功率大于预先设定的第一阈值的时域信号以及由于噪声的影响导致有效功率小于或等于该第一阈值的时域信号;Step 203: Perform noise suppression processing on the time-domain signals outside the predetermined range, wherein the time-domain signals within the predetermined range include time-domain signals with effective power greater than a preset first threshold and effective power due to the influence of noise. a time-domain signal having a power less than or equal to the first threshold;
步骤204:对噪声抑制处理后的时域信号进行傅立叶变换,获得信道频域响应。Step 204: Perform Fourier transform on the noise-suppressed time-domain signal to obtain a channel frequency-domain response.
由上述实施例可知,通过保护预定范围之内的可能被误认为噪声的有用信号不被抑制,能够提高信道估计的准确性,从而能够有效的提高系统的性能。It can be seen from the above embodiments that the accuracy of channel estimation can be improved by protecting useful signals that may be mistaken for noise within a predetermined range from being suppressed, thereby effectively improving system performance.
在本实施例中,第一估计单元101基于频域信号进行初步信道估计。由于系统的接收端直接接收到的信号是时域信号,因此,需要对该接收到的时域信号进行傅立叶变换处理,以获得相应的频域信号。In this embodiment, the first estimation unit 101 performs preliminary channel estimation based on frequency domain signals. Since the signal directly received by the receiving end of the system is a time-domain signal, it is necessary to perform Fourier transform processing on the received time-domain signal to obtain a corresponding frequency-domain signal.
这样,信道估计装置100还可包括信号接收单元和信号处理单元(图中未示出),其中,该信号接收单元用于从发射端接收信号;该信号处理单元用于对接收到的信号进行傅立叶变换处理,以获得相应的频域信号。In this way, the channel estimation device 100 may also include a signal receiving unit and a signal processing unit (not shown in the figure), wherein the signal receiving unit is used to receive a signal from the transmitting end; the signal processing unit is used to process the received signal Fourier transform processing to obtain the corresponding frequency domain signal.
在本实施例中,信号接收单元和信号处理单元为可选部件。例如,在将信道估计装置100应用于接收机中时,信号的接收和傅立叶变换处理可由接收机的其他部件实现。In this embodiment, the signal receiving unit and the signal processing unit are optional components. For example, when the channel estimation apparatus 100 is applied to a receiver, signal reception and Fourier transform processing can be implemented by other components of the receiver.
在本实施例中,可使用现有的任一种方法对信道进行初步估计。以下对本实施例的对信道进行初步估计的方法进行示例性的说明。In this embodiment, any existing method may be used to initially estimate the channel. The method for initially estimating the channel in this embodiment will be exemplarily described below.
例如,可使用迫零(Zero-force,ZF)信道估计方法对第一估计单元101接收到的频域信号y进行信道的初步估计。其中,假设X为接收端已知的参考信号,那么参考信号的ZF信道估计值hZF可用下式(1)表示:For example, a zero-force (Zero-force, ZF) channel estimation method may be used to perform preliminary channel estimation on the frequency domain signal y received by the first estimation unit 101 . Among them, assuming that X is a known reference signal at the receiving end, then the ZF channel estimation value h ZF of the reference signal can be expressed by the following formula (1):
其中,X-1表示参考信号X的逆矩阵,Nc为接收机的带宽所包括的子载波个数,[.]T表示矩阵转置操作。Among them, X -1 represents the inverse matrix of the reference signal X, N c is the number of subcarriers included in the bandwidth of the receiver, and [.] T represents the matrix transposition operation.
在本实施例中,如图1所示,信道估计装置100还可以包括插值单元105,其中,插值单元105用于对信道初步估计的结果进行插值处理,并将插值处理的结果提供给第一变换单元102进行所述傅立叶逆变换。In this embodiment, as shown in FIG. 1 , the channel estimation apparatus 100 may further include an interpolation unit 105, wherein the interpolation unit 105 is configured to perform interpolation processing on the result of preliminary channel estimation, and provide the result of the interpolation processing to the first The transform unit 102 performs the inverse Fourier transform.
在本实施例中,插值单元105是可选部件,在图1中用虚线框表示。In this embodiment, the interpolation unit 105 is an optional component, which is represented by a dashed box in FIG. 1 .
通过对初步估计的结果进行差值处理,将信道初步估计的结果扩展为连续信号,能够进一步提高信道估计的准确性。The accuracy of the channel estimation can be further improved by extending the result of the preliminary estimation of the channel into a continuous signal by performing difference processing on the result of the preliminary estimation.
在本实施例中,可使用现有的任一种方法对信道初步估计的结果进行插值处理。例如,在ZF信道估计值hZF后插入一个(Nfft-Nc)×1长的向量,使ZF信道估计值hZF扩展为Nfft×1长的向量hIP,那么经过插值处理后的信道估计向量hIP可用下式(2)表示:In this embodiment, any existing method may be used to perform interpolation processing on the result of preliminary channel estimation. For example, insert a (N fft -N c )×1-long vector after the ZF channel estimate h ZF to make the ZF channel estimate h ZF expand to a N fft ×1-long vector h IP , then the interpolated The channel estimation vector h IP can be expressed by the following formula (2):
其中,Nfft为第二变换单元104进行傅立叶变换的点数,Nc为接收机的带宽所包括的子载波个数,Nfft≥Nc,表示被插入的向量,其被称为虚拟信道频域响应(VirtualChannelFrequencyResponse,VCFR)。Wherein, N fft is the number of points for Fourier transform performed by the second transformation unit 104, N c is the number of subcarriers included in the bandwidth of the receiver, N fft ≥ N c , Represents the inserted vector, which is called a Virtual Channel Frequency Response (VirtualChannelFrequencyResponse, VCFR).
在本实施例中,可使用线性方式或者非线性方式进行该插值处理,本发明实施例并不对插值处理的具体方式进行限定。以下对本实施例的利用线性方式以及非线性方式进行差值处理的方法分别进行示例性的说明。In this embodiment, the interpolation processing may be performed in a linear manner or a nonlinear manner, and this embodiment of the present invention does not limit the specific manner of the interpolation processing. The method for performing difference processing in a linear manner and in a nonlinear manner in this embodiment will be exemplarily described below.
例如,在使用线性方式进行插值处理时,其目的是使得加入虚拟信道频域响应hVCFR后的频域波形为连续的周期性信号,可用下式(3)表示:For example, when using a linear method for interpolation processing, the purpose is to make the frequency domain waveform after adding the virtual channel frequency domain response h VCFR a continuous periodic signal, which can be expressed by the following formula (3):
其中,hVCFR(k)表示经过插值处理后的k处的频域信号,k∈[Nc,Nfft-1],Nfft为FFT变换的点数,Nc为接收机的带宽所包括的子载波个数。Among them, h VCFR (k) represents the frequency domain signal at k after interpolation processing, k∈[N c , N fft -1], N fft is the number of FFT transformation points, and N c is the number of points included in the bandwidth of the receiver The number of subcarriers.
例如,在使用非线性方式进行插值处理时,其目的是使得加入虚拟信道频域响应hVCFR后的频域波形为平滑且连续的周期性信号,可用下式(4)表示:For example, when using a non-linear method for interpolation processing, the purpose is to make the frequency domain waveform after adding the virtual channel frequency domain response h VCFR a smooth and continuous periodic signal, which can be expressed by the following formula (4):
其中,hVCFR(k)表示经过插值处理后的k处的频域信号,k∈[Nc,Nfft-1],Nc为接收机的带宽所包括的子载波个数,Nfft为傅立叶变换的点数,F(k)和G(k)分别表示ZF信道估计值hZF在子载波Nc-1和0处的切向线段,L表示切向线段的长度,且2≤L≤(Nfft-Nc)/2。Among them, h VCFR (k) represents the frequency domain signal at k after interpolation processing, k∈[N c , N fft -1], N c is the number of subcarriers included in the bandwidth of the receiver, and N fft is The number of Fourier transform points, F(k) and G(k) represent the tangential line segment of ZF channel estimation value h ZF at subcarrier N c -1 and 0 respectively, L represents the length of the tangential line segment, and 2≤L≤ (N fft -N c )/2.
其中,F(k)和G(k)可用下式(5)表示:Among them, F(k) and G(k) can be expressed by the following formula (5):
F(k)=(k-Nc+1)a+bF(k)=(kN c +1)a+b
(5)(5)
G(k)=(k-Nfft)c+dG(k)=(kN fft )c+d
其中,k∈[Nc,Nfft-1],Nfft为FFT变换的点数,Nc为接收机的带宽所包括的子载波个数;Among them, k∈[N c ,N fft -1], N fft is the number of FFT transformation points, N c is the number of subcarriers included in the bandwidth of the receiver;
其中,a,b,c,d可根据下式(6)计算得到:Among them, a, b, c, d can be calculated according to the following formula (6):
其中,Nest为靠近边缘的子载波数量,Nc为接收机的带宽所包括的子载波个数。Wherein, N est is the number of subcarriers close to the edge, and N c is the number of subcarriers included in the bandwidth of the receiver.
在本实施例中,在获得经过插值处理的结果之后,可使用现有的任一种方法对经过插值处理的结果进行傅立叶逆变换,从而获得时域信号。In this embodiment, after the interpolated result is obtained, any existing method may be used to perform inverse Fourier transform on the interpolated result, so as to obtain a time-domain signal.
例如,可使用快速傅立叶逆变换(Inverse-FastFourierTransformation,IFFT)法进行傅立叶逆变换,获得以下式(7)表示的时域信号:For example, the Inverse-Fourier Transformation (IFFT) method can be used to perform inverse Fourier transform to obtain the time-domain signal represented by the following formula (7):
其中,gIP表示时域上未经过噪声抑制处理的信道冲击响应(ChannelImpulseresponse,CIR),且gIP满足
在本实施例中,在获得时域信号之后,噪声抑制单元103对预定范围之外的时域信号进行噪声抑制处理,其中,该预定范围之内的时域信号包括有效功率大于预先设定的第一阈值的时域信号以及由于噪声的影响导致有效功率小于或等于该第一阈值的时域信号。In this embodiment, after obtaining the time-domain signal, the noise suppression unit 103 performs noise suppression processing on the time-domain signal outside the predetermined range, wherein the time-domain signal within the predetermined range includes The time-domain signal of the first threshold and the time-domain signal whose effective power is less than or equal to the first threshold due to the influence of noise.
在本实施例中,时域信号的有效功率是指传输信号受到噪声或其他因素影响之后的信号功率。In this embodiment, the effective power of the time-domain signal refers to the signal power after the transmission signal is affected by noise or other factors.
在本实施例中,可使用现有的任一种方法对预定范围之外的时域信号进行噪声抑制处理。例如,可使用下式(8)对时域信号进行噪声抑制处理:In this embodiment, any existing method may be used to perform noise suppression processing on time-domain signals outside the predetermined range. For example, the following equation (8) can be used for noise suppression processing on the time domain signal:
其中,gNS(l)表示噪声抑制处理后的位置l处的时域信号,gIP(l)表示未经噪声抑制处理的位置l处的时域信号,AIP(l)表示位置l处的时域信号的功率,Tnoc表示第一阈值,Nstart表示预定范围的起始位置,Lw表示预定范围的长度,Nfft表示傅立叶变换的点数,0≤l≤Nfft-1。Among them, g NS (l) represents the time domain signal at position l after noise suppression processing, g IP (l) represents the time domain signal at position l without noise suppression processing, A IP (l) represents the time domain signal at position l The power of the time-domain signal, T noc represents the first threshold, N start represents the starting position of the predetermined range, L w represents the length of the predetermined range, N fft represents the number of Fourier transform points, 0≤l≤N fft -1.
在本实施例中,由于信号的随机衰落或者当信噪比较低时,可能出现由于噪声的影响导致有用信号的功率低于Tnoc而被误认为噪声的情形,通过仅对预定范围之外的时域信号进行噪声抑制处理,能够保护该预定范围之内的可能被误认为噪声的有用信号不被抑制。In this embodiment, due to the random fading of the signal or when the signal-to-noise ratio is low, it may occur that the power of the useful signal is lower than T noc due to the influence of the noise and is mistaken for the noise. The time-domain signal is subjected to noise suppression processing, which can protect useful signals that may be mistaken for noise within the predetermined range from being suppressed.
在本实施例中,信道估计装置100还可以包括范围确定单元106,其中,范围确定单元106用于根据经过傅立叶逆变换获得的该时域信号的时延选择传播模式,确定该预定范围的参数,其中,该预定范围的参数包括该预定范围的起始位置以及该预定范围的长度。In this embodiment, the channel estimation apparatus 100 may further include a range determination unit 106, wherein the range determination unit 106 is configured to select a propagation mode according to the time delay of the time-domain signal obtained through inverse Fourier transform, and determine the parameters of the predetermined range , wherein the parameters of the predetermined range include the starting position of the predetermined range and the length of the predetermined range.
在本实施例中,范围确定单元106是可选部件,在图1中用虚线框表示。In this embodiment, the range determination unit 106 is an optional component, which is represented by a dashed box in FIG. 1 .
在本实施例中,范围确定单元106可根据该时域信号的时延选择传播模式使用现有的任一种方法确定该预定范围的参数。以下对本实施例的范围确定单元106的结构以及确定该预定范围的参数的方法进行示例性的说明。In this embodiment, the range determining unit 106 may determine the parameters of the predetermined range by using any existing method according to the time-delay selection propagation mode of the time-domain signal. The structure of the range determination unit 106 of this embodiment and the method for determining the parameters of the predetermined range are exemplarily described below.
图3是本实施例的范围确定单元的结构示意图。如图3所示,范围确定单元106包括第二估计单元301、模式选择单元302以及参数确定单元303,其中,Fig. 3 is a schematic structural diagram of the range determination unit in this embodiment. As shown in FIG. 3, the range determination unit 106 includes a second estimation unit 301, a mode selection unit 302, and a parameter determination unit 303, wherein,
第二估计单元301用于根据该时域信号的多径时延进行时延扩展的估计;The second estimating unit 301 is configured to estimate the delay spread according to the multipath delay of the time domain signal;
模式选择单元302用于根据估计的时延扩展选择相应的传播模式,获得在该传播模式下的时域信号;The mode selection unit 302 is configured to select a corresponding propagation mode according to the estimated delay spread, and obtain a time-domain signal in the propagation mode;
参数确定单元303用于根据在该传播模式下的时域信号的有效功率确定该预定范围的参数。The parameter determining unit 303 is configured to determine the parameters in the predetermined range according to the effective power of the time domain signal in the propagation mode.
图4是本实施例的根据在该传播模式下的时域信号的有效功率确定该预定范围的参数的方法流程图。如图4所示,该方法包括:Fig. 4 is a flow chart of the method for determining the parameters in the predetermined range according to the effective power of the time-domain signal in the propagation mode in this embodiment. As shown in Figure 4, the method includes:
步骤401:根据该时域信号的多径时延进行时延扩展的估计;Step 401: Estimating delay spread according to the multipath delay of the time domain signal;
步骤402:根据估计的时延扩展选择相应的传播模式,获得在该传播模式下的时域信号;Step 402: Select a corresponding propagation mode according to the estimated delay spread, and obtain a time-domain signal in the propagation mode;
步骤403:根据在该传播模式下的时域信号的有效功率确定该预定范围的参数。Step 403: Determine the parameters of the predetermined range according to the effective power of the time-domain signal in the propagation mode.
在本实施例中,可使用现有的任一种方法根据该时域信号的多径时延进行时延扩展的估计。以下对本实施例的根据该时域信号的多径时延进行时延扩展的估计方法进行示例性的说明。In this embodiment, any existing method may be used to estimate the delay spread according to the multipath delay of the time domain signal. The method for estimating delay extension according to the multipath delay of the time-domain signal in this embodiment will be exemplarily described below.
例如,可以基于时延扩展定义的方式进行时延扩展的估计。For example, the estimation of the delay spread can be performed based on a delay spread definition.
假设衰落多径的数量为M个,其中,通过现有的任一种方法获得M’个信号强度最高的时延多径,并且M’≤M。例如,M’个信号强度最高的时延多径可以使用特征值分解(EigenvalueDecomposition,EVD)的方法或者通过设定门限值进行筛选的方法获得。Assume that the number of fading multipaths is M, where M' delay multipaths with the highest signal strength are obtained by any existing method, and M'≤M. For example, the M′ time-delay multipaths with the highest signal strengths can be obtained by using an eigenvalue decomposition (Eigenvalue Decomposition, EVD) method or by setting a threshold value for screening.
根据时延扩展的定义,时延扩展τrms可用下式(9)表示:According to the definition of delay spread, the delay spread τ rms can be expressed by the following formula (9):
其中,τ'm和γ'm表示第m个衰落多径的时延值和幅度值,表示时延均值,m=0,1,…,M’。Among them, τ' m and γ' m represent the delay value and amplitude value of the mth fading multipath, Indicates the mean value of time delay, m=0,1,...,M'.
并且,其中的时延均值可用下式(10)表示:And, the mean delay in which It can be expressed by the following formula (10):
其中,τ'm,γ'm和τm,γm不需要相等。Among them, τ' m , γ' m and τ m , γ m need not be equal.
例如,还可以基于最小时延的方式进行时延扩展的估计。For example, the estimation of the delay spread can also be performed based on the minimum delay.
同样,假设衰落多径的数量为M个,其中,通过现有的任一种方法获得M’个信号强度最高的时延多径,并且M’≤M。另外,假设每条多径按时延升序排列,即可用下式(11)表示:Similarly, it is assumed that the number of fading multipaths is M, wherein M' delay multipaths with the highest signal strength are obtained by any existing method, and M'≤M. In addition, assuming that each multipath is arranged in ascending order of delay, it can be expressed by the following formula (11):
τ'0≤τ'1≤...≤τ'M'-1(11)τ' 0 ≤τ' 1 ≤...≤τ'M'-1 (11)
其中,τ'M'-1表示第M’-1个衰落多径的时延值。Wherein, τ'M'-1 represents the time delay value of the M'-1th fading multipath.
假设时延扩展τrms与最大时延相等,从而获得可用下式(12)表示的时延扩展τrms:Assuming that the delay spread τ rms is equal to the maximum delay, the delay spread τ rms which can be expressed by the following equation (12) is obtained:
τrms=τ'M'-1(12)τ rms = τ'M'-1 (12)
在本实施例中,在获得估计的时延扩展后,可根据该估计的时延扩展选择相应的传播模式,获得在该传播模式下的时域信号。其中,可使用现有的任一种方法选择与时延扩展相应的传播模式。例如,可通过查表的方法进行选择利用不同的传输信道模型表示的传输模式。In this embodiment, after the estimated delay spread is obtained, a corresponding propagation mode may be selected according to the estimated delay spread, to obtain a time-domain signal in the propagation mode. Wherein, any existing method may be used to select a propagation mode corresponding to the delay extension. For example, the transmission mode represented by different transmission channel models may be selected through a table look-up method.
表1是本实施例的与估计的时延扩展对应的传播模式的表格。如表1所示,对应于某个范围的时延扩展,具有相应的传播模式。例如,当估计的时延扩展为0.5μs时,则选择对应的EVA传播模式。Table 1 is a table of propagation modes corresponding to estimated delay spreads in this embodiment. As shown in Table 1, corresponding to a certain range of delay spread, there is a corresponding propagation mode. For example, when the estimated delay spread is 0.5 μs, the corresponding EVA propagation mode is selected.
表1中的EPA、EVA以及ETU是在3GPP标准TS36.101【3】和TS36.104【4】中定义的在接收机中广泛使用的传输信道模型,但本发明实施例不限于这三种传输信道模型。另外,表1中的对应于各个传播模式的时延扩展的范围是根据实际需要进行设定的,本发明实施例不限于表1中的对于时延扩展的具体限定。EPA, EVA, and ETU in Table 1 are transmission channel models widely used in receivers defined in 3GPP standards TS36.101 [3] and TS36.104 [4], but embodiments of the present invention are not limited to these three Transport channel model. In addition, the delay extension range corresponding to each propagation mode in Table 1 is set according to actual needs, and the embodiment of the present invention is not limited to the specific limitation on delay extension in Table 1.
表1Table 1
在本实施例中,在选择了对应的传输信道模型之后,由于各个传输信道模型对应的时延和幅度是已知的,结合上面的式(2),得到用下式(13)表示的与该传输信道模型对应的时域信号:In this embodiment, after the corresponding transmission channel model is selected, due to the delay corresponding to each transmission channel model and amplitude is known, combined with the above formula (2), the time domain signal corresponding to the transmission channel model expressed by the following formula (13) is obtained:
其中,表示与该传输信道模型对应的位置l处的时域信号,和可利用下式(14)计算得到:in, represents the time-domain signal at position l corresponding to the transmission channel model, and It can be calculated using the following formula (14):
其中,和分别是该传输信道模型对应的时延和幅度,k∈[Nc,Nfft-1],Nfft为FFT变换的点数,Nc为接收机的带宽所包括的子载波个数,Δf表示各个子载波的间距,M为衰落多径的数量,表示该传输信道模型对应的经过差值处理的k处的频域信号。in, and are the delay and amplitude corresponding to the transmission channel model, k∈[N c , N fft -1], N fft is the number of FFT transformation points, N c is the number of subcarriers included in the bandwidth of the receiver, Δf represents The distance between each subcarrier, M is the number of fading multipath, Represents the frequency-domain signal at k corresponding to the transmission channel model after difference processing.
在获得了与传输模式对应的时域信号之后,可根据现有的任一种方法获得该时域信号的有效功率。例如,可利用下式(15)计算得到:After obtaining the time-domain signal corresponding to the transmission mode After that, the effective power of the time-domain signal can be obtained according to any existing method. For example, it can be calculated using the following formula (15):
其中,表示与该传输信道模型对应的位置l处的时域信号,表示时域信号的有效功率。in, represents the time-domain signal at position l corresponding to the transmission channel model, Represents a time domain signal effective power.
在本实施例中,在获得该传播模式下的时域信号之后,参数确定单元303根据该时域信号的有效功率确定预定范围的参数。其中,可使用现有的任一种方法根据该时域信号的有效功率确定预定范围的参数。以下对本实施例的参数确定单元303的结构以及确定预定范围参数的方法进行示例性的说明。In this embodiment, after obtaining the time-domain signal in the propagation mode, the parameter determination unit 303 determines parameters in a predetermined range according to the effective power of the time-domain signal. Wherein, any existing method may be used to determine parameters in a predetermined range according to the effective power of the time-domain signal. The structure of the parameter determination unit 303 of this embodiment and the method for determining a parameter in a predetermined range are exemplarily described below.
图5是本实施例的参数确定单元的一结构示意图。如图5所示,参数确定单元303包括第一确定单元501以及第二确定单元502,其中,FIG. 5 is a schematic structural diagram of the parameter determination unit of this embodiment. As shown in FIG. 5, the parameter determination unit 303 includes a first determination unit 501 and a second determination unit 502, wherein,
第一确定单元501用于将满足如下条件的位置作为该预定范围的起始位置:该时域信号在该位置的有效功率大于等于预先设定的第二阈值且在该位置的下一位置的有效功率小于该第二阈值,并且,在该位置以及下一位置,该时域信号的有效功率均为下降的变化趋势,其中,该第二阈值小于所述第一阈值;The first determining unit 501 is configured to use a position that satisfies the following condition as the starting position of the predetermined range: the effective power of the time-domain signal at this position is greater than or equal to a preset second threshold and is at the next position of this position The effective power is less than the second threshold, and, at this position and the next position, the effective power of the time domain signal has a downward trend, wherein the second threshold is less than the first threshold;
第二确定单元502用于根据该起始位置确定该预定范围的长度。The second determining unit 502 is configured to determine the length of the predetermined range according to the starting position.
图6是本实施例的根据该时域信号的有效功率确定预定范围参数的一方法流程图。如图6所示,该方法包括:FIG. 6 is a flow chart of a method for determining parameters in a predetermined range according to the effective power of the time-domain signal in this embodiment. As shown in Figure 6, the method includes:
步骤601:将满足如下条件的位置作为该预定范围的起始位置:该时域信号在该位置的有效功率大于等于预先设定的第二阈值且在该位置的下一位置的有效功率小于该第二阈值,并且,在该位置以及下一位置,该时域信号的有效功率均为下降的变化趋势,其中,该第二阈值小于所述第一阈值;Step 601: Use the position that meets the following conditions as the starting position of the predetermined range: the effective power of the time domain signal at this position is greater than or equal to a preset second threshold and the effective power at the next position of this position is less than the a second threshold, and, at this position and the next position, the effective power of the time domain signal has a downward trend, wherein the second threshold is smaller than the first threshold;
步骤602:根据该起始位置确定该预定范围的长度。Step 602: Determine the length of the predetermined range according to the starting position.
在本实施例中,可以使用现有的任一种方法确定该预定范围的起始位置和长度。例如,该预定范围的起始位置Nstart可以根据下述方法获得:In this embodiment, any existing method may be used to determine the initial position and length of the predetermined range. For example, the starting position N start of the predetermined range can be obtained according to the following method:
其中,表示时域信号的有效功率,
在获得该预定范围的起始位置Nstart之后,该预定范围的长度Lw可以根据下述方法获得:After obtaining the starting position N start of the predetermined range, the length L w of the predetermined range can be obtained according to the following method:
其中,Nfft表示傅立叶变换的点数。Among them, N fft represents the number of Fourier transform points.
图7是本实施例的时域信号的有效功率以及预定范围的示意图。如图7所示,从起始位置Nstart开始的虚线框内的范围表示该预定范围,即对该虚线框之外的时域信号进行噪声抑制处理。FIG. 7 is a schematic diagram of the effective power and the predetermined range of the time-domain signal in this embodiment. As shown in FIG. 7 , the range within the dotted frame starting from the starting position N start represents the predetermined range, that is, noise suppression processing is performed on time domain signals outside the dotted frame.
在本实施例中,参数确定单元303还可以具有其他结构,其确定预定范围参数也可以采用其他的方法。以下对本实施例的参数确定单元的另一结构和确定预定范围参数的另一方法进行示例性的说明。In this embodiment, the parameter determination unit 303 may also have other structures, and it may also use other methods to determine the predetermined range parameters. Another structure of the parameter determination unit of this embodiment and another method for determining a parameter in a predetermined range are exemplarily described below.
图8是本实施例的参数确定单元的另一结构示意图。如图8所示,参数确定单元303包括第三确定单元801以及第四确定单元802,其中,Fig. 8 is another structural schematic diagram of the parameter determining unit of this embodiment. As shown in FIG. 8, the parameter determining unit 303 includes a third determining unit 801 and a fourth determining unit 802, wherein,
第三确定单元801用于根据估计的时延扩展和一个正交频分复用符号的持续时间确定该预定范围的起始位置;The third determining unit 801 is configured to determine the starting position of the predetermined range according to the estimated delay spread and the duration of an OFDM symbol;
第四确定单元802用于将该起始位置与原点的距离作为该预定范围的长度。The fourth determining unit 802 is configured to use the distance between the starting position and the origin as the length of the predetermined range.
图9是本实施例的根据该时域信号的有效功率确定预定范围参数的另一方法流程图。如图9所示,该方法包括:Fig. 9 is a flow chart of another method for determining a predetermined range parameter according to the effective power of the time-domain signal in this embodiment. As shown in Figure 9, the method includes:
步骤901:根据估计的时延扩展和一个正交频分复用符号的持续时间确定该预定范围的起始位置;Step 901: Determine the starting position of the predetermined range according to the estimated delay spread and the duration of an OFDM symbol;
步骤902:将该起始位置与原点的距离作为该预定范围的长度。Step 902: Take the distance between the starting position and the origin as the length of the predetermined range.
在本实施例中,可以使用现有的任一种方法确定该预定范围的起始位置。例如,该预定范围的起始位置Nstart可利用下式(16)获得:In this embodiment, any existing method may be used to determine the starting position of the predetermined range. For example, the starting position N start of the predetermined range can be obtained using the following formula (16):
其中,tduration表示一个正交频分复用(OrthogonalFrequencyDivisionMultiplexing,OFDM)符号的持续时间,τrms表示时延扩展,Nfft表示傅立叶变换的点数。Wherein, t duration represents the duration of an Orthogonal Frequency Division Multiplexing (OFDM) symbol, τ rms represents the delay extension, and N fft represents the number of Fourier transform points.
在用该方法确定预定范围的起始位置Nstart后,可以将该起始位置Nstart与原点的距离作为该预定范围的长度Lw。After the starting position N start of the predetermined range is determined by this method, the distance between the starting position N start and the origin can be taken as the length L w of the predetermined range.
在本实施例中,噪声抑制单元103对预定范围之外的时域信号进行噪声抑制处理之后,第二变换单元104对噪声抑制处理后的时域信号进行傅立叶变换,获得信道频域响应。In this embodiment, after the noise suppression unit 103 performs noise suppression processing on the time domain signal outside the predetermined range, the second transformation unit 104 performs Fourier transform on the noise suppression processed time domain signal to obtain the channel frequency domain response.
在本实施例中,可使用现有的任一种方法对噪声抑制处理后的时域信号进行傅立叶变换。例如,可使用快速傅立叶变换(FastFourierTransformation,FFT)法对噪声抑制处理后的时域信号进行傅立叶变换,获得的结果可用下式(17)表示:In this embodiment, any existing method may be used to perform Fourier transform on the time-domain signal after noise suppression processing. For example, the Fast Fourier Transformation (FFT) method can be used to perform Fourier transform on the time-domain signal after noise suppression processing, and the obtained result can be expressed by the following formula (17):
hNS=FgNS(17) hNS = FgNS (17)
其中,hNS表示信道频率响应,
在获得了信道频率响应hNS,即获得了信道估计的结果之后,将该信道频率响应hNS输入到图2的解调装置203中用于进行信号的解调,从而获得解调后的接收信号。After the channel frequency response h NS is obtained, that is, the channel estimation result is obtained, the channel frequency response h NS is input to the demodulation device 203 in FIG. 2 for signal demodulation, thereby obtaining the demodulated received Signal.
由上述实施例可知,通过保护预定范围之内的可能被误认为噪声的有用信号不被抑制,能够提高信道估计的准确性,从而能够有效的提高系统的性能。It can be seen from the above embodiments that the accuracy of channel estimation can be improved by protecting useful signals that may be mistaken for noise within a predetermined range from being suppressed, thereby effectively improving system performance.
实施例2Example 2
本发明实施例还提供一种接收机。以将实施例1的信道估计装置100应用于LTE系统中频分双工(FrequencyDivisionDuplexing,FDD)模式下的接收机中的场景为例进行说明,其中对信号的接收和傅立叶变换处理由接收机完成,但本发明实施例不限于应用在该场景。The embodiment of the present invention also provides a receiver. The scenario where the channel estimation device 100 of Embodiment 1 is applied to a receiver in frequency division duplexing (Frequency Division Duplexing, FDD) mode in an LTE system is used as an example for illustration, wherein the receiving and Fourier transform processing of signals are completed by the receiver, However, the embodiment of the present invention is not limited to be applied in this scenario.
图10是本实施例的接收机的一结构示意图。其中,该接收机包括傅立叶变换装置1001、信道估计装置1002以及解调装置1003,信道估计装置1002具有与图1中的信道估计装置100相同的结构和功能。如图10所示,将接收到的时域信号输入到傅立叶变换装置1001中进行FFT处理,并将经过FFT处理获得的频域信号y输入到信道估计装置1002中,信道估计装置1002基于频域信号y进行信道估计,并将信道估计的结果hNS输入到解调装置203中,解调装置203根据信道估计的结果hNS进行信号的解调,从而获得解调后的接收信号。FIG. 10 is a schematic structural diagram of the receiver of this embodiment. Wherein, the receiver includes a Fourier transform device 1001 , a channel estimation device 1002 and a demodulation device 1003 , and the channel estimation device 1002 has the same structure and function as the channel estimation device 100 in FIG. 1 . As shown in Figure 10, the received time-domain signal is input into the Fourier transform device 1001 for FFT processing, and the frequency-domain signal y obtained through FFT processing is input into the channel estimation device 1002, and the channel estimation device 1002 is based on the frequency domain Channel estimation is performed on the signal y, and the channel estimation result h NS is input to the demodulation device 203, and the demodulation device 203 demodulates the signal according to the channel estimation result h NS to obtain the demodulated received signal.
在本实施例中,经过FFT处理获得的频域信号y可用下式(18)表示:In this embodiment, the frequency-domain signal y obtained through FFT processing can be represented by the following formula (18):
其中,表示对角元素为负载信息的对角矩阵,为信道频域响应(ChannelFrequencyResponse,CFR),为均值为0的高斯白噪声。[.]T表示矩阵转置操作,Nc为接收机的带宽所包括的子载波个数。in, Represents a diagonal matrix whose diagonal elements are load information, For the channel frequency domain response (ChannelFrequencyResponse, CFR), Gaussian white noise with a mean of 0. [.] T represents the matrix transposition operation, and N c is the number of subcarriers included in the bandwidth of the receiver.
图11是本发明实施例2的接收机1100的系统构成的一示意框图。如图11所示,接收机1100可以包括中央处理器1101和存储器1102;存储器1102耦合到中央处理器1101。该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。FIG. 11 is a schematic block diagram of the system configuration of a receiver 1100 according to Embodiment 2 of the present invention. As shown in FIG. 11 , the receiver 1100 may include a central processing unit 1101 and a memory 1102 ; the memory 1102 is coupled to the central processing unit 1101 . This diagram is exemplary; other types of structures may also be used in addition to or in place of this structure, for telecommunications or other functions.
如图11所示,该接收机1100还可以包括:通信模块1103、输入单元1104、显示器1105、电源1106。As shown in FIG. 11 , the receiver 1100 may further include: a communication module 1103 , an input unit 1104 , a display 1105 , and a power supply 1106 .
在一个实施方式中,信道估计装置的功能可以被集成到中央处理器1101中。其中,中央处理器1101可以被配置为:对信道进行初步估计;对信道初步估计的结果进行傅立叶逆变换,获得时域信号;对预定范围之外的时域信号进行噪声抑制处理,其中,所述预定范围之内的时域信号包括有效功率大于预先设定的第一阈值的时域信号以及由于噪声的影响导致有效功率小于或等于所述第一阈值的时域信号;对噪声抑制处理后的时域信号进行傅立叶变换,获得信道频域响应。In one embodiment, the function of the channel estimation device can be integrated into the central processing unit 1101 . Wherein, the central processing unit 1101 may be configured to: perform a preliminary estimation of the channel; perform Fourier inverse transform on the result of the preliminary channel estimation to obtain a time-domain signal; perform noise suppression processing on the time-domain signal outside the predetermined range, wherein the The time-domain signals within the predetermined range include time-domain signals whose effective power is greater than a preset first threshold and time-domain signals whose effective power is less than or equal to the first threshold due to the influence of noise; after noise suppression processing Fourier transform is performed on the time domain signal to obtain the channel frequency domain response.
其中,中央处理器1101还可以被配置为:根据经过傅立叶逆变换获得的所述时域信号的时延选择传播模式,确定所述预定范围的参数,其中,所述预定范围的参数包括所述预定范围的起始位置以及所述预定范围的长度。Wherein, the central processing unit 1101 may also be configured to: select a propagation mode according to the time delay of the time-domain signal obtained through inverse Fourier transform, and determine the parameters of the predetermined range, wherein the parameters of the predetermined range include the The starting position of the predetermined range and the length of the predetermined range.
其中,所述根据所述时域信号的时延选择传播模式从而确定预定范围的参数,包括:根据所述时域信号的多径时延进行时延扩展的估计;根据估计的时延扩展选择相应的传播模式,获得在所述传播模式下的时域信号;根据在所述传播模式下的时域信号的有效功率确定所述预定范围的参数。Wherein, the selection of the propagation mode according to the delay of the time domain signal so as to determine the parameters of the predetermined range includes: estimating the delay spread according to the multipath delay of the time domain signal; A corresponding propagation mode, obtaining a time-domain signal in the propagation mode; determining parameters in the predetermined range according to effective power of the time-domain signal in the propagation mode.
其中,所述根据在所述传播模式下的时域信号的功率确定所述预定范围的参数,包括;将满足如下条件的位置作为所述预定范围的起始位置:所述时域信号在所述位置的有效功率大于等于预先设定的第二阈值且在所述位置的下一位置的有效功率小于所述第二阈值,并且,在所述位置以及下一位置,所述时域信号的有效功率均为下降的变化趋势,其中,所述第二阈值小于所述第一阈值;根据所述起始位置确定所述预定范围的长度。Wherein, the determining the parameters of the predetermined range according to the power of the time domain signal in the propagation mode includes: taking the position satisfying the following condition as the starting position of the predetermined range: the time domain signal is in the The effective power at the position is greater than or equal to a preset second threshold and the effective power at a position next to the position is less than the second threshold, and, at the position and the next position, the time-domain signal The effective powers all have a downward trend, wherein the second threshold is smaller than the first threshold; and the length of the predetermined range is determined according to the starting position.
其中,所述根据在所述传播模式下的时域信号确定所述预定范围的参数,也可以包括:根据估计的时延扩展和一个正交频分复用符号的持续时间确定所述预定范围的起始位置;将所述起始位置与原点的距离作为所述预定范围的长度。Wherein, the determining the parameters of the predetermined range according to the time domain signal in the propagation mode may also include: determining the predetermined range according to the estimated delay spread and the duration of an OFDM symbol The starting position of ; the distance between the starting position and the origin is taken as the length of the predetermined range.
其中,中央处理器1101还可以被配置为:对所述信道初步估计的结果进行插值处理,并根据插值处理的结果进行所述傅立叶逆变换。Wherein, the central processing unit 1101 may also be configured to: perform interpolation processing on the result of the preliminary channel estimation, and perform the inverse Fourier transform according to the result of the interpolation processing.
在另一个实施方式中,信道估计装置可以与中央处理器1101分开配置,例如可以将信道估计装置配置为与中央处理器1101连接的芯片,通过中央处理器的控制来实现信道估计装置的功能。In another embodiment, the channel estimation device can be configured separately from the central processor 1101, for example, the channel estimation device can be configured as a chip connected to the central processor 1101, and the function of the channel estimation device can be realized through the control of the central processor.
在本实施例中接收机1100也并不是必须要包括图11中所示的所有部件In this embodiment, the receiver 1100 does not necessarily include all the components shown in FIG. 11
如图11所示,中央处理器1101有时也称为控制器或操作控件,可以包括微处理器或其他处理器装置和/或逻辑装置,中央处理器1101接收输入并控制接收机1100的各个部件的操作。As shown in FIG. 11 , the central processing unit 1101 is sometimes also referred to as a controller or an operating control, and may include a microprocessor or other processor devices and/or logic devices. The central processing unit 1101 receives input and controls various components of the receiver 1100 operation.
存储器1102,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存上述与失败有关的信息,此外还可存储执行有关信息的程序。并且中央处理器1101可执行该存储器1102存储的该程序,以实现信息存储或处理等。其他部件的功能与现有类似,此处不再赘述。接收机1100的各部件可以通过专用硬件、固件、软件或其结合来实现,而不偏离本发明的范围。The memory 1102 may be, for example, one or more of a cache, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory, or other suitable devices. The above-mentioned failure-related information may be stored, and a program for executing the related information may also be stored. And the central processing unit 1101 can execute the program stored in the memory 1102 to implement information storage or processing. The functions of other components are similar to those in the prior art, and will not be repeated here. The various components of receiver 1100 may be implemented by dedicated hardware, firmware, software or a combination thereof without departing from the scope of the present invention.
由上述实施例可知,通过保护预定范围之内的可能被误认为噪声的有用信号不被抑制,能够提高信道估计的准确性,从而能够有效的提高系统的性能。It can be seen from the above embodiments that the accuracy of channel estimation can be improved by protecting useful signals that may be mistaken for noise within a predetermined range from being suppressed, thereby effectively improving system performance.
实施例3Example 3
本发明实施例还提供一种信道估计方法,其对应于实施例1的信道估计装置,该信道估计方法可参见实施例1中的图2。如图2所示,该方法包括:An embodiment of the present invention also provides a channel estimation method, which corresponds to the channel estimation device in Embodiment 1. For the channel estimation method, refer to FIG. 2 in Embodiment 1. As shown in Figure 2, the method includes:
步骤201:对信道进行初步估计;Step 201: Preliminary estimation of the channel;
步骤202:对信道初步估计的结果进行傅立叶逆变换,获得时域信号;Step 202: performing inverse Fourier transform on the result of preliminary channel estimation to obtain a time-domain signal;
步骤203:对预定范围之外的时域信号进行噪声抑制处理,其中,该预定范围之内的时域信号包括有效功率大于预先设定的第一阈值的时域信号以及由于噪声的影响导致有效功率小于或等于该第一阈值的时域信号;Step 203: Perform noise suppression processing on the time-domain signals outside the predetermined range, wherein the time-domain signals within the predetermined range include time-domain signals with effective power greater than a preset first threshold and effective power due to the influence of noise. a time-domain signal having a power less than or equal to the first threshold;
步骤204:对噪声抑制处理后的时域信号进行傅立叶变换,获得信道频域响应。Step 204: Perform Fourier transform on the noise-suppressed time-domain signal to obtain a channel frequency-domain response.
在本实施例中,对信道进行初步估计的方法、对信道初步估计的结果进行傅立叶逆变换的方法、确定预定范围的参数的方法、对预定范围之外的时域信号进行噪声抑制处理的方法以及对噪声抑制处理后的时域信号进行傅立叶变换的方法与实施例1中的记载相同,此处不再重复。In this embodiment, the method of preliminary estimation of the channel, the method of inverse Fourier transform of the result of the preliminary estimation of the channel, the method of determining the parameters of the predetermined range, and the method of performing noise suppression processing on the time domain signals outside the predetermined range And the method of performing Fourier transform on the time-domain signal after noise suppression processing is the same as that described in Embodiment 1, and will not be repeated here.
由上述实施例可知,通过保护预定范围之内的可能被误认为噪声的有用信号不被抑制,能够提高信道估计的准确性,从而能够有效的提高系统的性能。It can be seen from the above embodiments that the accuracy of channel estimation can be improved by protecting useful signals that may be mistaken for noise within a predetermined range from being suppressed, thereby effectively improving system performance.
本发明实施例还提供一种计算机可读程序,其中当在信道估计装置或接收机中执行所述程序时,所述程序使得计算机在所述信道估计装置或接收机中执行实施例3所述的信道估计方法。An embodiment of the present invention also provides a computer-readable program, wherein when the program is executed in the channel estimation device or receiver, the program causes the computer to execute the program described in Embodiment 3 in the channel estimation device or receiver. channel estimation method.
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在信道估计装置或接收机中执行实施例3所述的信道估计方法。An embodiment of the present invention also provides a storage medium storing a computer-readable program, wherein the computer-readable program enables a computer to execute the channel estimation method described in Embodiment 3 in a channel estimation device or receiver.
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。The above devices and methods of the present invention can be implemented by hardware, or by combining hardware and software. The present invention relates to such a computer-readable program that, when the program is executed by a logic component, enables the logic component to realize the above-mentioned device or constituent component, or enables the logic component to realize the above-mentioned various methods or steps. The present invention also relates to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, flash memories, and the like.
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。The present invention has been described above in conjunction with specific embodiments, but those skilled in the art should be clear that these descriptions are all exemplary and not limiting the protection scope of the present invention. Those skilled in the art can make various variations and modifications to the present invention according to the spirit and principle of the present invention, and these variations and modifications are also within the scope of the present invention.
关于包括以上实施例的实施方式,还公开下述的附记:Regarding the implementation manner comprising the above embodiments, the following additional notes are also disclosed:
附记1、一种信道估计装置,所述装置包括:Supplementary note 1. A channel estimation device, said device comprising:
第一估计单元,所述第一估计单元用于对信道进行初步估计;a first estimating unit, the first estimating unit is used for preliminary channel estimation;
第一变换单元,所述第一变换单元用于对信道初步估计的结果进行傅立叶逆变换,获得时域信号;A first transformation unit, the first transformation unit is configured to perform Fourier inverse transformation on the result of the preliminary channel estimation to obtain a time-domain signal;
噪声抑制单元,所述噪声抑制单元用于对预定范围之外的时域信号进行噪声抑制处理,其中,所述预定范围之内的时域信号包括有效功率大于预先设定的第一阈值的时域信号以及由于噪声的影响导致有效功率小于或等于所述第一阈值的时域信号;A noise suppression unit, the noise suppression unit is configured to perform noise suppression processing on time-domain signals outside a predetermined range, wherein the time-domain signals within the predetermined range include time domain signals with effective power greater than a preset first threshold A domain signal and a time domain signal whose effective power is less than or equal to the first threshold due to the influence of noise;
第二变换单元,所述第二变换单元用于对噪声抑制处理后的时域信号进行傅立叶变换,获得信道频域响应。A second transformation unit, the second transformation unit is configured to perform Fourier transformation on the time-domain signal after the noise suppression processing to obtain a channel frequency-domain response.
附记2、根据附记1所述的装置,其中,所述装置还包括:Supplement 2. The device according to Supplement 1, wherein the device further includes:
范围确定单元,所述范围确定单元用于根据经过傅立叶逆变换获得的所述时域信号的时延选择传播模式,确定所述预定范围的参数,其中,所述预定范围的参数包括所述预定范围的起始位置以及所述预定范围的长度。A range determination unit, the range determination unit is configured to select a propagation mode according to the time delay of the time domain signal obtained by inverse Fourier transform, and determine the parameters of the predetermined range, wherein the parameters of the predetermined range include the predetermined The starting position of the range and the length of the predetermined range.
附记3、根据附记2所述的装置,其中,所述范围确定单元包括:Supplement 3. The device according to Supplement 2, wherein the range determination unit includes:
第二估计单元,所述第二估计单元用于根据所述时域信号的多径时延进行时延扩展的估计;A second estimating unit, the second estimating unit is configured to estimate delay spread according to the multipath delay of the time domain signal;
模式选择单元,所述模式选择单元用于根据估计的时延扩展选择相应的传播模式,获得在所述传播模式下的时域信号;A mode selection unit, the mode selection unit is used to select a corresponding propagation mode according to the estimated delay spread, and obtain a time domain signal in the propagation mode;
参数确定单元,所述参数确定单元用于根据在所述传播模式下的时域信号的有效功率确定所述预定范围的参数。A parameter determination unit, configured to determine the parameters in the predetermined range according to the effective power of the time domain signal in the propagation mode.
附记4、根据附记3所述的装置,其中,所述参数确定单元包括;Supplement 4. The device according to Supplement 3, wherein the parameter determination unit includes;
第一确定单元,所述第一确定单元用于将满足如下条件的位置作为所述预定范围的起始位置:所述时域信号在所述位置的有效功率大于等于预先设定的第二阈值且在所述位置的下一位置的有效功率小于所述第二阈值,并且,在所述位置以及下一位置,所述时域信号的有效功率均为下降的变化趋势,其中,所述第二阈值小于所述第一阈值;A first determining unit, the first determining unit is configured to use a position satisfying the following condition as the starting position of the predetermined range: the effective power of the time domain signal at the position is greater than or equal to a preset second threshold And the effective power at the position next to the position is less than the second threshold, and at the position and the next position, the effective power of the time-domain signal has a downward trend, wherein the first a second threshold is less than the first threshold;
第二确定单元,所述第二确定单元用于根据所述起始位置确定所述预定范围的长度。A second determining unit, configured to determine the length of the predetermined range according to the starting position.
附记5、根据附记3所述的装置,其中,所述参数确定单元包括:Supplement 5. The device according to Supplement 3, wherein the parameter determination unit includes:
第三确定单元,所述第三确定单元用于根据估计的时延扩展和一个正交频分复用符号的持续时间确定所述预定范围的起始位置;A third determining unit, configured to determine the starting position of the predetermined range according to the estimated delay spread and the duration of an OFDM symbol;
第四确定单元,所示第四确定单元用于将所述起始位置与原点的距离作为所述预定范围的长度。A fourth determining unit, where the fourth determining unit is configured to use the distance between the starting position and the origin as the length of the predetermined range.
附记6、根据附记1所述的装置,其中,所述噪声抑制单元利用以下的公式(1)进行噪声抑制处理:Supplement 6. The device according to Supplement 1, wherein the noise suppression unit uses the following formula (1) to perform noise suppression processing:
其中,gNS(l)表示噪声抑制处理后的位置l处的时域信号,gIP(l)表示未经噪声抑制处理的位置l处的时域信号,AIP(l)表示位置l处的时域信号的功率,Tnoc表示第一阈值,Nstart表示预定范围的起始位置,Lw表示预定范围的长度,Nfft表示傅立叶变换的点数,0≤l≤Nfft-1。Among them, g NS (l) represents the time domain signal at position l after noise suppression processing, g IP (l) represents the time domain signal at position l without noise suppression processing, A IP (l) represents the time domain signal at position l The power of the time-domain signal, T noc represents the first threshold, N start represents the starting position of the predetermined range, L w represents the length of the predetermined range, N fft represents the number of Fourier transform points, 0≤l≤N fft -1.
附记7、根据附记1所述的装置,其中,所述装置还包括:Supplement 7. The device according to Supplement 1, wherein the device further comprises:
插值单元,所述插值单元用于对所述信道初步估计的结果进行插值处理,并将插值处理的结果提供给所述第一变换单元进行所述傅立叶逆变换。An interpolation unit, configured to perform interpolation processing on the result of the preliminary channel estimation, and provide the result of the interpolation processing to the first transform unit to perform the inverse Fourier transform.
附记8、一种接收机,所述接收机包括根据附记1所述的信道估计装置。Supplement 8. A receiver, the receiver comprising the channel estimation device according to Supplement 1.
附记9、一种信道估计方法,所述方法包括:Supplementary Note 9. A channel estimation method, the method comprising:
对信道进行初步估计;Make a preliminary estimate of the channel;
对信道初步估计的结果进行傅立叶逆变换,获得时域信号;Inverse Fourier transform is performed on the result of preliminary channel estimation to obtain a time-domain signal;
对预定范围之外的时域信号进行噪声抑制处理,其中,所述预定范围之内的时域信号包括有效功率大于预先设定的第一阈值的时域信号以及由于噪声的影响导致有效功率小于或等于所述第一阈值的时域信号;performing noise suppression processing on time-domain signals outside the predetermined range, wherein the time-domain signals within the predetermined range include time-domain signals whose effective power is greater than a preset first threshold and whose effective power is less than or a time-domain signal equal to said first threshold;
对噪声抑制处理后的时域信号进行傅立叶变换,获得信道频域响应。Perform Fourier transform on the time-domain signal after noise suppression processing to obtain the channel frequency-domain response.
附记10、根据附记9所述的方法,其中,所述方法还包括:Supplement 10. The method according to Supplement 9, wherein the method further includes:
根据经过傅立叶逆变换获得的所述时域信号的时延选择传播模式,确定所述预定范围的参数,其中,所述预定范围的参数包括所述预定范围的起始位置以及所述预定范围的长度。Select a propagation mode according to the time delay of the time-domain signal obtained through inverse Fourier transform, and determine the parameters of the predetermined range, where the parameters of the predetermined range include the starting position of the predetermined range and the position of the predetermined range length.
附记11、根据附记10所述的方法,其中,所述根据所述时域信号的时延选择传播模式从而确定预定范围的参数,包括:Supplement 11. The method according to Supplement 10, wherein the selecting a propagation mode according to the delay of the time-domain signal so as to determine a predetermined range of parameters includes:
根据所述时域信号的多径时延进行时延扩展的估计;Estimating delay spread according to the multipath delay of the time domain signal;
根据估计的时延扩展选择相应的传播模式,获得在所述传播模式下的时域信号;selecting a corresponding propagation mode according to the estimated time delay spread, and obtaining a time-domain signal in the propagation mode;
根据在所述传播模式下的时域信号的有效功率确定所述预定范围的参数。The parameters of the predetermined range are determined according to the effective power of the time domain signal in the propagation mode.
附记12、根据附记11所述的方法,其中,所述根据在所述传播模式下的时域信号的功率确定所述预定范围的参数,包括;Supplement 12. The method according to Supplement 11, wherein said determining the parameters of the predetermined range according to the power of the time-domain signal in the propagation mode includes;
将满足如下条件的位置作为所述预定范围的起始位置:所述时域信号在所述位置的有效功率大于等于预先设定的第二阈值且在所述位置的下一位置的有效功率小于所述第二阈值,并且,在所述位置以及下一位置,所述时域信号的有效功率均为下降的变化趋势,其中,所述第二阈值小于所述第一阈值;A position that satisfies the following conditions is used as the starting position of the predetermined range: the effective power of the time domain signal at the position is greater than or equal to a preset second threshold and the effective power at the position next to the position is less than The second threshold, and, at the position and the next position, the effective power of the time domain signal has a downward trend, wherein the second threshold is smaller than the first threshold;
根据所述起始位置确定所述预定范围的长度。The length of the predetermined range is determined according to the starting position.
附记13、根据附记11所述的方法,其中,所述根据在所述传播模式下的时域信号确定所述预定范围的参数,包括:Supplement 13. The method according to Supplement 11, wherein said determining the parameters of the predetermined range according to the time-domain signal in the propagation mode includes:
根据估计的时延扩展和一个正交频分复用符号的持续时间确定所述预定范围的起始位置;determining the start position of the predetermined range according to the estimated delay spread and the duration of an OFDM symbol;
将所述起始位置与原点的距离作为所述预定范围的长度。The distance between the starting position and the origin is taken as the length of the predetermined range.
附记14、根据附记9所述的方法,其中,利用以下的公式(1)进行所述噪声抑制处理:Supplement 14. The method according to Supplement 9, wherein the noise suppression process is performed using the following formula (1):
其中,gNS(l)表示噪声抑制处理后的位置l处的时域信号,gIP(l)表示未经噪声抑制处理的位置l处的时域信号,AIP(l)表示位置l处的时域信号的功率,Tnoc表示第一阈值,Nstart表示预定范围的起始位置,Lw表示预定范围的长度,Nfft表示傅立叶变换的点数,0≤l≤Nfft-1。Among them, g NS (l) represents the time domain signal at position l after noise suppression processing, g IP (l) represents the time domain signal at position l without noise suppression processing, A IP (l) represents the time domain signal at position l The power of the time-domain signal, T noc represents the first threshold, N start represents the starting position of the predetermined range, L w represents the length of the predetermined range, N fft represents the number of Fourier transform points, 0≤l≤N fft -1.
附记15、根据附记9所述的方法,其中,所述方法还包括:Supplement 15. The method according to Supplement 9, wherein the method further includes:
对所述信道初步估计的结果进行插值处理,并根据插值处理的结果进行所述傅立叶逆变换。performing interpolation processing on the result of the preliminary channel estimation, and performing the inverse Fourier transform according to the result of the interpolation processing.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410371676.1A CN105337908B (en) | 2014-07-31 | 2014-07-31 | Channel estimating apparatus, method and receiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410371676.1A CN105337908B (en) | 2014-07-31 | 2014-07-31 | Channel estimating apparatus, method and receiver |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105337908A true CN105337908A (en) | 2016-02-17 |
CN105337908B CN105337908B (en) | 2018-11-13 |
Family
ID=55288203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410371676.1A Expired - Fee Related CN105337908B (en) | 2014-07-31 | 2014-07-31 | Channel estimating apparatus, method and receiver |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105337908B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101038172A (en) * | 2007-04-16 | 2007-09-19 | 北京航空航天大学 | Method for processing periodic error in inertial components |
CN101064942A (en) * | 2006-04-30 | 2007-10-31 | 北京信威通信技术股份有限公司 | Dynamic channel allocation and spatial feature extraction and beam forming method |
CN101155157A (en) * | 2006-09-30 | 2008-04-02 | 华为技术有限公司 | Method and apparatus for processing channel evaluation result based on transformed domain and its receiver |
CN101557377A (en) * | 2009-02-27 | 2009-10-14 | 华为技术有限公司 | Method, device and system for calculation of pre-filtering coefficient and interference suppression |
CN101835252A (en) * | 2009-03-10 | 2010-09-15 | 中兴通讯股份有限公司 | Device and method for channel estimation and channel post-processing |
CN101841349A (en) * | 2010-04-12 | 2010-09-22 | 北京理工大学 | Method for inhibiting MPSK narrowband interference of direct sequence spread spectrum system (DSSS) |
CN102611656A (en) * | 2012-03-21 | 2012-07-25 | 武汉邮电科学研究院 | Enhanced channel estimation method and enhanced channel estimation device suitable for uplink of LTE (long term evolution) system |
-
2014
- 2014-07-31 CN CN201410371676.1A patent/CN105337908B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101064942A (en) * | 2006-04-30 | 2007-10-31 | 北京信威通信技术股份有限公司 | Dynamic channel allocation and spatial feature extraction and beam forming method |
CN101155157A (en) * | 2006-09-30 | 2008-04-02 | 华为技术有限公司 | Method and apparatus for processing channel evaluation result based on transformed domain and its receiver |
CN101038172A (en) * | 2007-04-16 | 2007-09-19 | 北京航空航天大学 | Method for processing periodic error in inertial components |
CN101557377A (en) * | 2009-02-27 | 2009-10-14 | 华为技术有限公司 | Method, device and system for calculation of pre-filtering coefficient and interference suppression |
CN101835252A (en) * | 2009-03-10 | 2010-09-15 | 中兴通讯股份有限公司 | Device and method for channel estimation and channel post-processing |
CN101841349A (en) * | 2010-04-12 | 2010-09-22 | 北京理工大学 | Method for inhibiting MPSK narrowband interference of direct sequence spread spectrum system (DSSS) |
CN102611656A (en) * | 2012-03-21 | 2012-07-25 | 武汉邮电科学研究院 | Enhanced channel estimation method and enhanced channel estimation device suitable for uplink of LTE (long term evolution) system |
Also Published As
Publication number | Publication date |
---|---|
CN105337908B (en) | 2018-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101616104B (en) | Channel estimation method and device of orthogonal frequency division multiplexing system | |
CN102143115B (en) | Partial symmetric extension discrete Fourier transform-based channel estimation method | |
US10129063B2 (en) | Method and device for detecting signal of LTE uplink system in interference condition | |
CN101378371A (en) | Method for channel estimation of wideband wireless mobile commutation system and channel estimator | |
US9686102B2 (en) | Sparse ordered iterative group multi-antenna channel estimation | |
US10284411B2 (en) | Signal processing method and apparatus | |
CN110677359A (en) | Signal receiving method, receiving device and storage medium of orthogonal time-frequency space system | |
EP2928140A1 (en) | Method and a device for cancelling a narrow band interference in a single carrier signal | |
CN101707574A (en) | Channel estimation method and device | |
US20100150217A1 (en) | Channel estimation apparatus and method in mobile communication system having dispersed pilot | |
CN102006248A (en) | Multi-carrier based channel estimation method and device as well as application thereof | |
CN109617851B (en) | A channel estimation method and device based on DFT smoothing filtering | |
CN105337908B (en) | Channel estimating apparatus, method and receiver | |
CN104253771A (en) | Multi-parameter joint estimation method and apparatus | |
CN114221837A (en) | Frame structure indicating method, frame structure updating method and related equipment | |
EP2840745B1 (en) | Method and apparatus for channel estimation using an adaptive windowing approach | |
WO2016150094A1 (en) | Method, device, and storage medium for channel estimation | |
CN102148780A (en) | Interference processing method based on carrier interferometry orthogonal frequency division multiplexing (CI-OFDM) system | |
Khlifi et al. | A very low complexity LMMSE channel estimation technique for OFDM systems | |
CN103391266B (en) | The acquisition methods of a kind of domain channel response and equipment | |
EP4072088A1 (en) | Channel estimation method and apparatus, and device and storage medium | |
JP4766310B2 (en) | Transmitting apparatus and transmitting method | |
CN103414666A (en) | Two-dimensional self-adaptive OFDM channel estimation method based on uniformly distributed pilot frequencies | |
CN104639279A (en) | CQI (channel quality indicator) feedback device and method and UE (user equipment) | |
Taşpinar et al. | The investigation of the effect of the carrier frequency offset (CFO) in SC-FDMA system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181113 Termination date: 20210731 |