CN105337274B - Alternating current-direct current power grid decouples Power flow simulation model - Google Patents

Alternating current-direct current power grid decouples Power flow simulation model Download PDF

Info

Publication number
CN105337274B
CN105337274B CN201510683135.7A CN201510683135A CN105337274B CN 105337274 B CN105337274 B CN 105337274B CN 201510683135 A CN201510683135 A CN 201510683135A CN 105337274 B CN105337274 B CN 105337274B
Authority
CN
China
Prior art keywords
mrow
mtd
msub
mtr
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510683135.7A
Other languages
Chinese (zh)
Other versions
CN105337274A (en
Inventor
李传栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
State Grid Fujian Electric Power Co Ltd
Economic and Technological Research Institute of State Grid Fujian Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
State Grid Fujian Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd, State Grid Fujian Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201510683135.7A priority Critical patent/CN105337274B/en
Publication of CN105337274A publication Critical patent/CN105337274A/en
Application granted granted Critical
Publication of CN105337274B publication Critical patent/CN105337274B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention relates to a kind of alternating current-direct current power grid to decouple Power flow simulation model, including AC network part Δ Sph, DC network part Δ Dph, inverter portion Δ VphAn and governing equation Δ Vkz;The AC network part Δ SphIncluding exchanging node active balance equation Δ PsAnd exchange node reactive balance equation Δ Qs, the DC network part Δ DphIncluding DC node power balance equation Δ Pd, the inverter portion Δ VphIncluding transverter exchange side active balance equationTransverter exchange side reactive balance equationAnd Converter DC-side power balance equationThe governing equation Δ VkzIncluding determining DC voltage control equationDetermine exchange side real power control equationDetermine the idle governing equation of exchange sideAnd determine exchange side voltage governing equation

Description

Alternating current-direct current power grid decouples Power flow simulation model
Technical field
The present invention relates to a kind of alternating current-direct current power grid to decouple Power flow simulation model.
Background technology
It is to use newton La Fuxun method iterative solutions that the Power flow simulation of power grid, which calculates basic skills, and basic step is by electricity The power flow equation of net carries out partial differential, and solution is asked for by the matrix computations of the matrix of variable partial derivative and the deviation of power flow equation Direction is corrected, progressively corrects flow solution until deviation meets residual error requirement.
There is presently no the decoupling Power flow simulation computational methods for alternating current-direct current power grid.Conventional alternating current-direct current electric network swim is imitated Proper program mainly has simultaneous solution method and alternately solving method.
The basic principle of simultaneous solution method:By AC network, DC grid and the trend side for contacting their transverter Cheng Lianli gets up, and solves partial derivative matrix jointly, and Unified Solution is carried out using classical newton La Feixun methods.Simultaneous solution method The advantages of be that alternating current-direct current power grid equations simultaneousness calculates, better numerical value stability convergence is strong.The shortcomings that simultaneous solution method, is All equations need simultaneous, very difficult for the extension of model, it is difficult to realize being adjusted flexibly for control mode.At the same time Simultaneous solution method is for bulk power grid, it is difficult to realizes that block parallel calculates so that its Power flow simulation in ultra-large power grid It is difficult to meet higher and higher rate request in calculating speed.
Alternately solving method moral basic principle:Transverter is grouped into the side of alternating current-direct current power grid first, both sides power grid is handed over respectively For calculating.Think that the solution of offside power grid (direct current or exchange) has restrained when DC grid part is solved, this side power grid The Boundary Variables (voltage, electric current and power) of two power grids are changed with the last time of offside power grid iteration when (AC or DC) calculates The convergence solution in generation, tries to achieve this deuterzooid side (AC or DC) and the convergence result of this current iteration of side power grid is returned to offside electricity again Net is as Boundary Variables, and iteration is settled accounts the deviation of convergence solution and met the requirements twice before and after the power grid of both sides back and forth.Alternately The benefit of solving method be model easy to extension.The mould of the pattern of controller model and new equipment for DC grid Type continuously emerges, can be under conditions of AC network power flow algorithm and program is not influenced flexibly with alternately method for solving Increase new model.Alternately it is that introducing inside and outside two recirculates the shortcomings that solving method, the convergence for causing to calculate declines, on the one hand Number increase is restrained, the phenomenon for not receiving chain easily occurs in one side numerical stability variation, although also there are many correlative studys to adopt Overcome this shortcoming with various prediction initial values and the method for correction, but all cannot fundamentally solve, various compensation processes are all There is its applicable condition.Problem can be protruded more when this point is calculated for bulk power grid, and the situation of bulk power grid is sufficiently complex, with friendship It is difficult to obtain the guarantee of stabilization for the convergence of solving method.
Comprehensive existing various correlation models, have for various each class models of the Power flow simulation of extensive alternating current-direct current power grid Following two the problem of cannot taking into account at the same time:That is the flexibility body of the flexibility of model and the convergence calculated, model and program The block parallel that the supplement and increase of present new equipment and control mode also have power grid calculates, and the convergence of model is embodied in and adopts Convergent stability and convergence rate when being calculated with corresponding model.Specific equipment and mould among alternating current-direct current power grid simultaneous solution model The adjustment and addition of type are required for modifying to overall simultaneous equations, lack corresponding flexibility, while method is determined in itself Having determined can not be to the parallel computation of bulk power grid progress piecemeal.And the alternating solving model of alternating current-direct current power grid can not be solved fundamentally The stability of Algorithm Convergence, there are under initial value unfavorable condition the problem of poor astringency.
The content of the invention
In view of this, it is an object of the invention to provide a kind of alternating current-direct current power grid to decouple Power flow simulation model, has ensured mould Computational efficiency of the type in the parallel computation of the Power flow simulation of extensive AC-DC hybrid power grid.
To achieve the above object, the present invention adopts the following technical scheme that:A kind of alternating current-direct current power grid decouples Power flow simulation model, It is characterized in that:Including AC network part Δ Sph, DC network part Δ Dph, inverter portion Δ VphAn and governing equation ΔVkz;The AC network part Δ SphIncluding exchanging node active balance equation Δ PsAnd exchange node reactive balance equation Δ Qs, the DC network part Δ DphIncluding DC node power balance equation Δ Pd, the inverter portion Δ VphIncluding changing Flow device exchange side active balance equationTransverter exchange side reactive balance equationAnd Converter DC-side power-balance EquationThe governing equation Δ VkzIncluding determining DC voltage control equationDetermine exchange side real power control equationDetermine the idle governing equation of exchange sideAnd determine exchange side voltage governing equation
It is specific as follows:
ΔPd=ucic+Pd-ud·Ydud=0
In above formula:PsActive vector, C are injected for exchange nodescConversion square for transverter sequence to exchange sequence node Battle array,For transverter exchange side active injection active power vector, U is exchange node voltage amplitude vector, and θ is exchange node electricity Press phase angle vector, Y be AC network bus admittance matrix, QsReactive power vector is injected for exchange node,Exchanged for transverter Survey injection reactive power vector, ucFor Converter DC-side node voltage vector, icDC grid is injected for Converter DC-side Current vector, PdFor DC node injecting power vector, YdFor the bus admittance matrix of DC network, GcFor the conductance of transverter Matrix, BcFor the susceptance matrix of transverter,It is vectorial for transverter AC system side gusset voltage magnitude,Changed for transverter The vector of device side equivalence alternating voltage amplitude is flowed, δ is equivalent for transverter AC system side gusset voltage and transverter transverter side The differential seat angle of alternating voltage, BfFor the susceptance matrix of transverter reactive-load compensator,DC grid is injected for Converter DC-side Vector power, CcsFor exchange sequence node to the transition matrix of transverter sequence, subscriptuc_setRepresent constant DC voltage control Transverter set, subscriptPs_setRepresent that fixed exchange has the set of transverter of public power, subscriptQs_setRepresent fixed exchange nothing The set of the transverter of work(power, subscriptUs_setExpression determines alternating voltage amplitude and obtains transverter set;Various released by above-listed:
Wherein:bu、bθ、kU2P,kU2Q、kθ2P、kθ2QIt is symbol, represents the result of calculation of levoform;
Wherein:PdIt is invariant;
Replace
Wherein:Replaced and eliminated with the transverter exchange node voltage subvector included in the dU in exchange;
Wherein:DU, dudLinear relation substitute into above formula, can obtain Exchange Station network-based control mode equation.
The present invention has the advantages that compared with prior art:The present invention both ensure that alternating current-direct current power grid Power flow simulation Calculate the numerical stability of simultaneous solution makes it possess and alternately interface flexibility and autgmentability similar in solving method again, can be with Computational efficiency of the assurance model in the parallel computation of the Power flow simulation of extensive AC-DC hybrid power grid.
Embodiment
With reference to embodiment, the present invention will be further described.
The present invention provides a kind of alternating current-direct current power grid decoupling Power flow simulation model, it is characterised in that:A kind of alternating current-direct current power grid solution Coupling Power flow simulation model, it is characterised in that:Including AC network part Δ Sph, DC network part Δ Dph, inverter portion Δ VphAn and governing equation Δ Vkz;The AC network part Δ SphIncluding exchanging node active balance equation Δ PsAnd exchange section Point reactive balance equation Δ Qs, the DC network part Δ DphIncluding DC node power balance equation Δ Pd, the change of current Device part Δ VphIncluding transverter exchange side active balance equationTransverter exchange side reactive balance equationAnd the change of current Device power balance of DC side equationThe governing equation Δ VkzIncluding determining DC voltage control equationIt is fixed to hand over Flow side real power control equationDetermine the idle governing equation of exchange sideAnd determine exchange side voltage governing equation
It is specific as follows:
ΔPd=ucic+Pd-ud·Ydud=0
In above formula:PsActive vector, C are injected for exchange nodescConversion square for transverter sequence to exchange sequence node Battle array,For transverter exchange side active injection active power vector, U is exchange node voltage amplitude vector, and θ is exchange node electricity Press phase angle vector, Y be AC network bus admittance matrix, QsReactive power vector is injected for exchange node,Exchanged for transverter Survey injection reactive power vector, ucFor Converter DC-side node voltage vector, icDC grid is injected for Converter DC-side Current vector, PdFor DC node injecting power vector, YdFor the bus admittance matrix of DC network, GcFor the conductance of transverter Matrix, BcFor the susceptance matrix of transverter,It is vectorial for transverter AC system side gusset voltage magnitude,Changed for transverter The vector of device side equivalence alternating voltage amplitude is flowed, δ is equivalent for transverter AC system side gusset voltage and transverter transverter side The differential seat angle of alternating voltage, BfFor the susceptance matrix of transverter reactive-load compensator,DC grid is injected for Converter DC-side Vector power, CcsFor exchange sequence node to the transition matrix of transverter sequence, subscriptuc_setRepresent constant DC voltage control Transverter set, subscriptPs_setRepresent that fixed exchange has the set of transverter of public power, subscriptQs_setRepresent fixed exchange nothing The set of the transverter of work(power, subscriptUs_setExpression determines alternating voltage amplitude and obtains transverter set;Various released by above-listed:
Wherein:bu、bθ、kU2P,kU2Q、kθ2P、kθ2QIt is symbol, represents the result of calculation of levoform;
Wherein:PdIt is invariant;
Replace
Wherein:Replaced and eliminated with the transverter exchange node voltage subvector included in the dU in exchange;
Wherein:DU, dudLinear relation substitute into above formula, can obtain Exchange Station network-based control mode equation.
It is above-listed it is various in:
DiagU=diag (U ∠ θ), diagIbus=diag (YU ∠ θ), diagUnorm=diag (1 ∠ θ)
For it is above-listed it is various in each parameter matrixing form.
The foregoing is merely presently preferred embodiments of the present invention, all equivalent changes done according to scope of the present invention patent with Modification, should all belong to the covering scope of the present invention.

Claims (1)

1. a kind of alternating current-direct current power grid decouples Power flow simulation model, it is characterised in that:Including AC network part Δ Sph, DC network Part Δ Dph, inverter portion Δ VphAn and governing equation Δ Vkz;The AC network part Δ SphIt is active including exchange node Equilibrium equation Δ PsAnd exchange node reactive balance equation Δ Qs, the DC network part Δ DphPut down including DC node power Weigh equation Δ Pd, the inverter portion Δ VphIncluding transverter exchange side active balance equationTransverter exchange side without Work(equilibrium equationAnd Converter DC-side power balance equationThe governing equation Δ VkzIncluding determining DC voltage Governing equationDetermine exchange side real power control equationDetermine the idle governing equation of exchange sideAnd fixed exchange Side voltage governing equation
It is specific as follows:
<mrow> <msub> <mi>&amp;Delta;P</mi> <mi>s</mi> </msub> <mo>=</mo> <msub> <mi>P</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mi>c</mi> <mi>s</mi> </msubsup> <mo>-</mo> <mi>r</mi> <mi>e</mi> <mi>a</mi> <mi>l</mi> <mrow> <mo>(</mo> <mi>U</mi> <mo>&amp;angle;</mo> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>j</mi> <mo>(</mo> <mrow> <mi>Y</mi> <mi>U</mi> <mo>&amp;angle;</mo> <mi>&amp;theta;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow>
<mrow> <msub> <mi>&amp;Delta;Q</mi> <mi>s</mi> </msub> <mo>=</mo> <msub> <mi>Q</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> <msubsup> <mi>Q</mi> <mi>c</mi> <mi>s</mi> </msubsup> <mo>-</mo> <mi>i</mi> <mi>m</mi> <mi>a</mi> <mi>g</mi> <mrow> <mo>(</mo> <mi>U</mi> <mo>&amp;angle;</mo> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>j</mi> <mo>(</mo> <mrow> <mi>Y</mi> <mi>U</mi> <mo>&amp;angle;</mo> <mi>&amp;theta;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow>
ΔPd=ucic+Pd-ud·Ydud=0
<mrow> <msubsup> <mi>&amp;Delta;P</mi> <mi>c</mi> <mi>s</mi> </msubsup> <mo>=</mo> <msubsup> <mi>P</mi> <mi>c</mi> <mi>s</mi> </msubsup> <mo>-</mo> <msub> <mi>G</mi> <mi>c</mi> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <mi>c</mi> <mi>s</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>U</mi> <mi>c</mi> <mi>s</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>U</mi> <mi>c</mi> <mi>c</mi> </msubsup> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>c</mi> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;delta;</mi> <mo>+</mo> <msub> <mi>B</mi> <mi>c</mi> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;delta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow>
<mrow> <msubsup> <mi>&amp;Delta;Q</mi> <mi>c</mi> <mi>s</mi> </msubsup> <mo>=</mo> <msubsup> <mi>Q</mi> <mi>c</mi> <mi>s</mi> </msubsup> <mo>+</mo> <msubsup> <mi>U</mi> <mi>c</mi> <mi>s</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>U</mi> <mi>c</mi> <mi>c</mi> </msubsup> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>c</mi> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;delta;</mi> <mo>-</mo> <msub> <mi>B</mi> <mi>c</mi> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;delta;</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <mi>c</mi> <mi>s</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>0</mn> </mrow>
<mrow> <msubsup> <mi>&amp;Delta;P</mi> <mi>c</mi> <mi>d</mi> </msubsup> <mo>=</mo> <mn>2</mn> <msub> <mi>u</mi> <mi>c</mi> </msub> <msub> <mi>i</mi> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>G</mi> <mi>c</mi> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <mi>c</mi> <mi>c</mi> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>c</mi> <mi>c</mi> </msubsup> <mo>&amp;CenterDot;</mo> <msubsup> <mi>U</mi> <mi>c</mi> <mi>s</mi> </msubsup> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>c</mi> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;delta;</mi> <mo>-</mo> <msub> <mi>B</mi> <mi>c</mi> </msub> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;delta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow>
<mrow> <msubsup> <mi>&amp;Delta;i</mi> <mi>c</mi> <mrow> <mi>u</mi> <mi>c</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mi>c</mi> </msub> <mo>-</mo> <msub> <mi>Y</mi> <mi>d</mi> </msub> <msub> <mi>u</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>u</mi> <mi>c</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msup> <mo>=</mo> <mn>0</mn> </mrow>
<mrow> <msubsup> <mi>&amp;Delta;P</mi> <mi>c</mi> <mrow> <mi>P</mi> <mi>s</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>P</mi> <mi>c</mi> <mi>s</mi> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mi>c</mi> <mrow> <mi>P</mi> <mi>s</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> <mo>=</mo> <mn>0</mn> </mrow>
<mrow> <msubsup> <mi>&amp;Delta;Q</mi> <mi>c</mi> <mrow> <mi>Q</mi> <mi>s</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>Q</mi> <mi>c</mi> <mi>s</mi> </msubsup> <mo>-</mo> <msubsup> <mi>Q</mi> <mi>c</mi> <mrow> <mi>Q</mi> <mi>s</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> <mo>=</mo> <mn>0</mn> </mrow>
<mrow> <msubsup> <mi>&amp;Delta;Q</mi> <mi>c</mi> <mrow> <mi>U</mi> <mi>s</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> </msub> <msub> <mi>&amp;Delta;Q</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>U</mi> <mi>s</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msup> <mo>=</mo> <mn>0</mn> </mrow>
In above formula:PsActive vector, C are injected for exchange nodescTransition matrix for transverter sequence to exchange sequence node, For transverter exchange side active injection active power vector, U is exchange node voltage amplitude vector, and θ is exchange node voltage phase Angular amount, Y are the bus admittance matrix of AC network, QsReactive power vector is injected for exchange node,Noted for transverter exchange side Enter reactive power vector, ucFor Converter DC-side node voltage vector, icThe electric current of DC grid is injected for Converter DC-side Vector, PdFor DC node injecting power vector, udFor DC network node voltage vector, YdFor the node admittance of DC network Matrix, GcFor the conductance matrix of transverter, BcFor the susceptance matrix of transverter,For transverter AC system side gusset voltage amplitude Value vector,For the vector of transverter transverter side equivalence alternating voltage amplitude, δ for transverter AC system side gusset voltage and The differential seat angle of transverter transverter side equivalence alternating voltage, BfFor the susceptance matrix of transverter reactive-load compensator,For transverter DC side injects the vector power of DC grid, CcsFor exchange sequence node to the transition matrix of transverter sequence, subscriptuc_set Represent the set of the transverter of constant DC voltage control, subscriptPs_setRepresent the set of the transverter of exchange active power surely, on MarkQs_setRepresent the set of the transverter of exchange reactive power surely, subscriptUs_setThe transverter collection of alternating voltage amplitude is determined in expression Close,For the calibration value of transverter exchange side active injection active power vector,Nothing is injected for transverter exchange side The calibration value of work(vector power;
By above-listed various release:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;S</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;P</mi> <mi>s</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;Q</mi> <mi>s</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;P</mi> <mi>s</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>P</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;Q</mi> <mi>s</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>Q</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>dP</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>dQ</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;P</mi> <mi>s</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;P</mi> <mi>s</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;Q</mi> <mi>s</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;Q</mi> <mi>s</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>d</mi> <mi>U</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>d</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;DoubleRightArrow;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>d</mi> <mi>U</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>d</mi> <mi>&amp;theta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;P</mi> <mi>s</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;P</mi> <mi>s</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;Q</mi> <mi>s</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;Q</mi> <mi>s</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;P</mi> <mi>s</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;Q</mi> <mi>s</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;P</mi> <mi>s</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;P</mi> <mi>s</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;Q</mi> <mi>s</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;Q</mi> <mi>s</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;theta;</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>c</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>dP</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>dQ</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>b</mi> <mi>U</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mi>&amp;theta;</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>k</mi> <mrow> <mi>U</mi> <mn>2</mn> <mi>P</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>k</mi> <mrow> <mi>U</mi> <mn>2</mn> <mi>Q</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mrow> <mi>&amp;theta;</mi> <mn>2</mn> <mi>P</mi> </mrow> </msub> </mtd> <mtd> <msub> <mi>k</mi> <mrow> <mi>&amp;theta;</mi> <mn>2</mn> <mi>Q</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>dP</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>dQ</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein:bu、bθ、kU2P,kU2Q、kθ2P、kθ2QIt is symbol, represents the result of calculation of levoform;
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;D</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&amp;Delta;P</mi> <mi>d</mi> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;P</mi> <mi>d</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>i</mi> <mi>c</mi> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>dP</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>dQ</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>di</mi> <mi>c</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;P</mi> <mi>d</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>u</mi> <mi>d</mi> </msub> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mo>&amp;lsqb;</mo> <msub> <mi>du</mi> <mi>d</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;DoubleRightArrow;</mo> <mo>&amp;lsqb;</mo> <msub> <mi>du</mi> <mi>d</mi> </msub> <mo>&amp;rsqb;</mo> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;P</mi> <mi>d</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>u</mi> <mi>d</mi> </msub> </mrow> </mfrac> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>&amp;Delta;P</mi> <mi>d</mi> </msub> <mo>-</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;P</mi> <mi>d</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>u</mi> <mi>d</mi> </msub> </mrow> </mfrac> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>&amp;lsqb;</mo> <msub> <mi>C</mi> <mrow> <mi>d</mi> <mi>c</mi> </mrow> </msub> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <msub> <mi>di</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi>b</mi> <mi>u</mi> </msub> <mo>+</mo> <msub> <mi>k</mi> <mrow> <mi>u</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>di</mi> <mi>c</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein:PdIt is invariant, CdcFor transverter sequence node to the transition matrix between DC network sequence node, Ku2iIt is Symbol, represents the result of calculation of levoform;
<mrow> <msub> <mi>&amp;Delta;V</mi> <mrow> <mi>p</mi> <mi>h</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;Delta;P</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;Delta;Q</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;Delta;P</mi> <mi>c</mi> <mi>d</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>u</mi> <mi>d</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>dP</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>dQ</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>di</mi> <mi>c</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>&amp;Delta;P</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> <mrow> <mo>&amp;part;</mo> <mi>M</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>&amp;Delta;P</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;delta;</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>&amp;Delta;Q</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> <mrow> <mo>&amp;part;</mo> <mi>M</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>&amp;Delta;Q</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;delta;</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>&amp;Delta;P</mi> <mi>c</mi> <mi>d</mi> </msubsup> </mrow> <mrow> <mo>&amp;part;</mo> <mi>M</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>&amp;Delta;P</mi> <mi>c</mi> <mi>d</mi> </msubsup> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;delta;</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>d</mi> <mi>M</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>d</mi> <mi>&amp;delta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>&amp;Delta;P</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>U</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>&amp;Delta;Q</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>U</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>&amp;Delta;P</mi> <mi>c</mi> <mi>d</mi> </msubsup> </mrow> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>U</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;lsqb;</mo> <msubsup> <mi>dU</mi> <mi>c</mi> <mi>s</mi> </msubsup> <mo>&amp;rsqb;</mo> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>&amp;Delta;P</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>u</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>&amp;Delta;Q</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>u</mi> <mi>d</mi> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msubsup> <mi>&amp;Delta;P</mi> <mi>c</mi> <mi>d</mi> </msubsup> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>u</mi> <mi>d</mi> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;lsqb;</mo> <msub> <mi>du</mi> <mi>d</mi> </msub> <mo>&amp;rsqb;</mo> </mrow>
Replace
Wherein:M is the ontrol variables vector of transverter,With transverter exchange node voltage included in the dU in exchange Vector, which is replaced, to be eliminated;
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;V</mi> <mrow> <mi>k</mi> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;Delta;i</mi> <mi>c</mi> <mrow> <mi>u</mi> <mi>c</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;Delta;P</mi> <mi>c</mi> <mrow> <mi>P</mi> <mi>s</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;Delta;Q</mi> <mi>c</mi> <mrow> <mi>Q</mi> <mi>s</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;Delta;Q</mi> <mi>c</mi> <mrow> <mi>U</mi> <mi>s</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>dP</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>dQ</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>di</mi> <mi>c</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>d</mi> <mi>M</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>d</mi> <mi>&amp;delta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msup> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> </msub> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;Q</mi> <mi>s</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>U</mi> <mi>s</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;lsqb;</mo> <mi>d</mi> <mi>U</mi> <mo>&amp;rsqb;</mo> <mo>+</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msup> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>Y</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>u</mi> <mi>c</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;lsqb;</mo> <msub> <mi>du</mi> <mi>d</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;DoubleRightArrow;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>Y</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>u</mi> <mi>c</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msup> <msub> <mi>k</mi> <mrow> <mi>u</mi> <mn>2</mn> <mi>i</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;Q</mi> <mi>c</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>U</mi> <mi>s</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msup> <msub> <mi>k</mi> <mrow> <mi>U</mi> <mn>2</mn> <mi>P</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mn>1</mn> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;Q</mi> <mi>c</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>U</mi> <mi>s</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msup> <msub> <mi>k</mi> <mrow> <mi>U</mi> <mn>2</mn> <mi>Q</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>dP</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>dQ</mi> <mi>c</mi> <mi>s</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>di</mi> <mi>c</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>d</mi> <mi>M</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>d</mi> <mi>&amp;delta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;Delta;i</mi> <mi>c</mi> <mrow> <mi>u</mi> <mi>c</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>Y</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mrow> <mi>u</mi> <mi>c</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msup> <msub> <mi>b</mi> <mi>u</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;Delta;P</mi> <mi>c</mi> <mrow> <mi>P</mi> <mi>s</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;Delta;Q</mi> <mi>c</mi> <mrow> <mi>Q</mi> <mi>s</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;Delta;Q</mi> <mi>c</mi> <mrow> <mi>U</mi> <mi>s</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msubsup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Delta;Q</mi> <mi>c</mi> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <mi>U</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mrow> <mi>U</mi> <mi>s</mi> <mo>_</mo> <mi>s</mi> <mi>e</mi> <mi>t</mi> </mrow> </msup> <msub> <mi>b</mi> <mi>U</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein:DU, dudLinear relation substitute into above formula, obtain the governing equation of AC network.
CN201510683135.7A 2015-10-20 2015-10-20 Alternating current-direct current power grid decouples Power flow simulation model Active CN105337274B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510683135.7A CN105337274B (en) 2015-10-20 2015-10-20 Alternating current-direct current power grid decouples Power flow simulation model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510683135.7A CN105337274B (en) 2015-10-20 2015-10-20 Alternating current-direct current power grid decouples Power flow simulation model

Publications (2)

Publication Number Publication Date
CN105337274A CN105337274A (en) 2016-02-17
CN105337274B true CN105337274B (en) 2018-04-13

Family

ID=55287646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510683135.7A Active CN105337274B (en) 2015-10-20 2015-10-20 Alternating current-direct current power grid decouples Power flow simulation model

Country Status (1)

Country Link
CN (1) CN105337274B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301856B (en) * 2018-09-07 2021-05-07 山东大学 Modeling analysis method and system for direct-current layered structure
CN111697634B (en) * 2020-05-20 2023-04-28 重庆大学 Modeling method for direct-current voltage control small signal based on alternating-current and direct-current side instantaneous power

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102842907A (en) * 2012-09-11 2012-12-26 河海大学 Three-phase decoupling load flow calculation method of power distribution network based on path matrix
JP5444131B2 (en) * 2010-06-15 2014-03-19 株式会社日立製作所 Distribution system power flow simulation device, power distribution system power flow simulation method and program thereof
CN104636829A (en) * 2015-02-06 2015-05-20 河海大学 Decoupling algorithm for increasing temperature optimal power flow (OPF) calculation efficiency of electric power system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5444131B2 (en) * 2010-06-15 2014-03-19 株式会社日立製作所 Distribution system power flow simulation device, power distribution system power flow simulation method and program thereof
CN102842907A (en) * 2012-09-11 2012-12-26 河海大学 Three-phase decoupling load flow calculation method of power distribution network based on path matrix
CN104636829A (en) * 2015-02-06 2015-05-20 河海大学 Decoupling algorithm for increasing temperature optimal power flow (OPF) calculation efficiency of electric power system

Also Published As

Publication number Publication date
CN105337274A (en) 2016-02-17

Similar Documents

Publication Publication Date Title
CN102122310B (en) Train diagram-based traction load modeling method
CN103558766A (en) Flexible direct-current electromechanical and electromagnetic hybrid simulation method
US20060282239A1 (en) Method of setting-up steady state model of VSC-based multi-terminal HVDC transmission system
CN105846461A (en) Self-adaptive dynamic planning control method and system for large-scale energy storage power station
CN105322546B (en) AC/DC decoupling mixed current algorithm
CN105552915B (en) A kind of alternating current-direct current mixing network optimization tidal current computing methods of HVDC containing MMC for considering Static Security Constraints
CN106410835A (en) Power grid simulation realization method of multi-terminal flexible direct-current transmission system
CN102427229B (en) Zero-injection-constraint electric power system state estimation method based on modified Newton method
CN104600697B (en) Quasi-direct current optimal power flow method considering temperature influence
CN102931663B (en) Dynamic reactive power optimization method of large-scale alternating current and direct current power system
CN106549377B (en) A kind of handover method of alternating current-direct current combined hybrid system electromechanics-electromagnetic transient hybrid simulation
CN105958485A (en) Power flow calculation method for flexible interconnecting alternating current-direct current hybrid power distribution network
CN106712067A (en) Method for determining stability of small interference of direct-current power grid
CN102545207A (en) Voltage source commutation-high voltage direct current (VSC-HVDC) alternating-direct current optimal power flow method based on predictor-corrector inner point method
CN108493940A (en) A kind of Ac/dc Power Systems trend alternating iteration computational methods containing flexible direct current
CN103793755A (en) Method for obtaining optimal power flow of mixed direct-current transmission system based on prime-dual interior point method
CN105337274B (en) Alternating current-direct current power grid decouples Power flow simulation model
CN105119279B (en) A kind of distributed power source planing method and its system
CN104917174A (en) Static voltage stability judgment method for active power distribution network
CN103279590A (en) Initial self-correction computation method of interface power in electrical power system hybrid real-time simulation
CN107392498A (en) A kind of power network topology analysis system
CN107749628A (en) The multiple target voltage optimization method that meter and Gas Generator Set Reactive-power control and thermoelectricity are coordinated
CN109149665A (en) Multi-rate simulating method and system for flexible direct current AC network associative simulation
CN104392285B (en) A kind of Optimal Power Flow Problems acquisition methods containing Hybrid HVDC
CN105119269B (en) A kind of probabilistic loadflow computational methods for considering Multi-terminal Unified Power Flow Controller

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 350003 No. 257, 54 Road, Gulou District, Fuzhou, Fujian

Co-patentee after: STATE GRID CORPORATION OF CHINA

Patentee after: STATE GRID FUJIAN ELECTRIC POWER Co.,Ltd.

Co-patentee after: STATE GRID FUJIAN ELECTRIC POWER Research Institute

Address before: 350003 No. 257, 54 Road, Gulou District, Fuzhou, Fujian

Co-patentee before: State Grid Corporation of China

Patentee before: STATE GRID FUJIAN ELECTRIC POWER Co.,Ltd.

Co-patentee before: STATE GRID FUJIAN ELECTRIC POWER Research Institute

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20181112

Address after: 350003 No. 257, 54 Road, Gulou District, Fuzhou, Fujian

Co-patentee after: STATE GRID CORPORATION OF CHINA

Patentee after: STATE GRID FUJIAN ELECTRIC POWER Co.,Ltd.

Co-patentee after: STATE GRID FUJIAN ELECTRIC POWER Research Institute

Co-patentee after: STATE GRID FUJIAN ECONOMIC Research Institute

Address before: 350003 No. 257, 54 Road, Gulou District, Fuzhou, Fujian

Co-patentee before: STATE GRID CORPORATION OF CHINA

Patentee before: STATE GRID FUJIAN ELECTRIC POWER Co.,Ltd.

Co-patentee before: STATE GRID FUJIAN ELECTRIC POWER Research Institute