CN105320147A - 一种单轮双核中低速灭火机器人伺服控制系统 - Google Patents

一种单轮双核中低速灭火机器人伺服控制系统 Download PDF

Info

Publication number
CN105320147A
CN105320147A CN201510521892.4A CN201510521892A CN105320147A CN 105320147 A CN105320147 A CN 105320147A CN 201510521892 A CN201510521892 A CN 201510521892A CN 105320147 A CN105320147 A CN 105320147A
Authority
CN
China
Prior art keywords
motor
firefighting robot
control system
servo
direct current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510521892.4A
Other languages
English (en)
Inventor
张好明
杨锐敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongling University
Original Assignee
Tongling University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongling University filed Critical Tongling University
Priority to CN201510521892.4A priority Critical patent/CN105320147A/zh
Publication of CN105320147A publication Critical patent/CN105320147A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

本发明公开了一种单轮双核中低速灭火机器人伺服控制系统,包括:控制器STM32F407、若干判断前方运动环境的超声波传感器、电流传感器、电机、电机光电编码器、控制参数转化模块和环境参数转换模块;所述控制器STM32F407与所述的电流传感器、电机光电编码器、控制参数转化模块、环境参数转换模块之间相连接。通过上述方式,本发明能够提供一种单轮双核中低速灭火机器人伺服控制系统,加入了加速度传感器来测量加速度,通过一次积分和二次积分可以得到伺服控制需要的速度和位置反馈参数,实现了灭火机器人的三闭环伺服控制,基于直流电机的真空吸附装置能够彻底消除机器人高速行走打滑现象的发生。

Description

一种单轮双核中低速灭火机器人伺服控制系统
技术领域
本发明涉及一种灭火机器人伺服控制系统,特别是涉及一种单轮双核中低速灭火机器人伺服控制系统。
背景技术
灭火机器人是一中模拟现实生活中人类发现有害火源并能够自动熄灭火源的一种新型智能机器人。一般情况下,比赛型灭火机器人能够在一间平面结构房子模型里运动,在操作规则指导下以最短的时间找到代表火源的一根蜡烛并将它熄灭。模拟现实家庭中机器人处理火警的过程。蜡烛代表家里燃起的火源,机器人必须找到并熄灭火源。蜡烛火焰的底部将离地面15~20cm高。蜡烛是直径1-2cm的白蜡烛。蜡烛火焰的确切高度和尺寸是不确定的、变化的,而且由蜡烛条件和周围的环境所决定。蜡烛将随机地放在比赛场地的一个房间里,比赛开始后不管火焰具体是什么尺寸,都要求机器人能发现蜡烛。
在真正的比赛中,为了加大比赛难度,比赛场地被分为n*n格的标准模式,最常采用的是8*8格的均匀模式,其比赛场地二维结构如图1所示,灭火机器人将在64格房间里寻找火源并熄灭。在图1的二维搜寻火源地图中,墙的材料是木质一般且可以反光,每块挡墙的长度为60cm长,高度在27-34cm。比赛场地地面是光滑的,场地的地板是黑色的。场地上的任意缝隙都刷成黑色。场地的缝隙不超过5mm。一些机器人可能用泡沫,粉末或者其他的物质来熄灭蜡烛的火焰。由于每一个机器人比赛后清洗场地的好坏直接影响到地面情况,故地面不保证在整个比赛过程中都保持绝对黑色。一旦启动,灭火机器人必须在没有人的干预下自己控制导航,而非人工控制,为了考验灭火机器人在搜寻火源过程中的稳定性,其不可以碰撞或接触墙壁,否则将被受到处罚。
一台完整的灭火机器人大致分为以下几个部分:
1)电机:执行电机是灭火机器人的动力源,它根据微处理器的指令来执行灭火机器人在二维平面上行走的相关动作。
2)算法:算法是灭火机器人的灵魂。灭火机器人必须采用一定的智能算法才能准确快速的从一个房间到达另外一个房间的运动,然后发现火源,并开启自身携带的干冰控制器,扑灭火源。
3)微处理器:微处理器是灭火机器人的核心部分,是灭火机器人的大脑。灭火机器人所有的信息,包括房间墙壁信息,火源位置信息,和电机状态信息等都需要经过微处理器处理并做出相应的判断。
灭火机器人结合了多学科知识,对于提升在校学生的动手能力、团队协作能力和创新能力,促进学生课堂知识的消化和扩展学生的知识面都非常有帮助。国内研发此机器人的单位较多,但是研发的机器人比较落后,研发的灭火机器人结构如图2,长时间运行发现存在着很多安全问题,即:
(1)作为灭火机器人的执行机构采用的多是步进电机,经常会遇到丢失脉冲造成电机失步现象发生,导致对位置的记忆出现错误,灭火机器人无法寻求到火源,或者是灭火后机器人无法回到起始点。
(2)由于采用步进电机,使得机体发热比较严重,有的时候需要进行加装散热装置,使得机器人整体重量增加。
(3)由于采用步进电机,使得系统运转的机械噪声大大增加,不利于环境保护。
(4)由于采用步进电机,其电机本体一般都是多相结构,控制电路需要采用多个功率管,使得控制电路相对比较复杂,并且增加了控制器价格。
(5)由于采用步进电机,使得系统一般不适合在速度较高的场合运行,高速运动时容易产生振动,有时候可能会接触墙壁,导致寻找火源失败。
(6)由于灭火机器人要频繁的刹车和启动,加重了单片机的工作量,单一的单片机无法满足灭火机器人快速启动和停止的要求。
(7)相对采用的都是一些体积比较大的插件元器件,使得灭火机器人控制系统占用较大的空间,重量相对都比较重。
(8)由于受周围环境不稳定因素干扰,单片机控制器经常会出现异常,引起灭火机器人失控,抗干扰能力较差。
(9)对于两轮灭火机器人寻找火源过程来说,一般要求其两个电机的PWM控制信号要同步,由于受单片机计算能力的限制,单一单片机伺服系统很难满足这一条件,使得灭火机器人行走导航很难控制,特别是对于快速行走时情况更糟糕。
(10)对于通过两个电机差速行驶调节其在二维平面上位置的灭火机器人来说,理想状态下这种机器人都是由两个驱动电机配合一个万向轮来形成一个运动平面,但是当遇到运动路面不平整时经常碰到两个万向轮配合一个驱动轮运转的现象发生,这时就会发生小车失控现象,更为可怕的是,对于带重载的灭火机器人,这种失控有时候会严重破坏周围的物品。
(11)在实际机器人灭火过程中,灭火机器人可能进入一条狭长的巷子,由于受场地的影响,基于两轮差速原地旋转的方式可能行不通,这个时候机器人就要模仿现实生活进行倒车退出,但是这个时候又没有传感器对其进行位置校正,容易发生危险。
因此,需要对现有的基于单片机控制的灭火机器人控制器进行重新设计,寻求一种经济适用的能够在现实中使用的灭火机器人就成为了必要。
发明内容
本发明主要解决的技术问题是:如何提供一种加入了加速度传感器来测量加速度,通过一次积分和二次积分可以得到伺服控制需要的速度和位置反馈参数,实现了灭火机器人的三闭环伺服控制,基于直流电机的真空吸附装置能够彻底消除机器人高速行走打滑现象的发生的单轮双核中低速灭火机器人伺服控制系统。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种单轮双核中低速灭火机器人伺服控制系统,包括:控制器STM32F407、若干判断前方运动环境的超声波传感器、电流传感器、电机、电机光电编码器、控制参数转化模块和环境参数转换模块;所述控制器STM32F407与所述的电流传感器、电机光电编码器、控制参数转化模块、环境参数转换模块之间相连接,微控制器STM32F407通过结合电流传感器信号、电机光电编码器生成若干控制电机的PWM控制信号并驱动电机运行。
所述单轮双核高速灭火机器人伺服控制系统还包括加速度传感器,所述加速度传感器与电机光电编码器相结合并把实时信号传输至控制器STM32F407,所述控制器STM32F407根据实施信号的不同自动切换超声波传感器中的一个或多个。
在本发明一个较佳实施例中,所述电机包括直流无刷电机、直流电机和真空抽吸电机,所述电机光电编码器位于直流无刷电机、直流电机和真空抽吸电机上,且所述直流无刷电机、直流电机和真空抽吸电机分别产生第一位置脉冲信号、第二位置脉冲信号、第三位置脉冲信号,第一位置脉冲信号、第二位置脉冲信号、第三位置脉冲信号与控制器STM32F407之间通信连接。
在本发明一个较佳实施例中,控制器STM32F407通过实时检测并自动调节真空抽吸电机对地面的吸附能力,且存储环境信息。
在本发明一个较佳实施例中,所述第一位置脉冲信号、第二位置脉冲信号、第三位置脉冲信号同时为低电平,产生信号传输至控制器STM32F407,同时记录直流无刷电机、直流电机和真空抽吸电机的绝对位置。
在本发明一个较佳实施例中,所述单轮双核高速灭火机器人伺服控制系统还包括上位机模块和运动控制模块,所述上位机模块中包含有房间探索单元、房间存储单元、路径读取单元、人机界面单元和在线输出单元,所述房间探索单元、房间存储单元、路径读取单元、人机界面单元、在线输出单元均与上位机模块分别控制连接。
所述运动控制模块包含坐标定位单元、I/O控制单元、三轴同步直流无刷和直流混合伺服控制系统;所述三轴同步直流无刷和直流混合伺服控制系统包括直流无刷电机和直流电机两轴混合灭火伺服模块、单轴真空吸盘吸附伺服模块,所述直流无刷电机和直流电机两轴混合灭火伺服模块与单轴真空吸盘吸附伺服模块相连接,且将信号传输至单轴真空吸盘吸附伺服模块。
在本发明一个较佳实施例中,所述电机光电编码器输出第一位置脉冲信号、第二位置脉冲信号至控制器STM32F407,所述单轴真空吸盘吸附伺服模块与真空抽吸电机之间控制连接,直流无刷电机、直流电机两轴混合伺服模块分别与直流无刷电机、直流电机之间控制连接。
本发明的有益效果是:加入了加速度传感器来测量加速度,通过一次积分和二次积分可以得到伺服控制需要的速度和位置反馈参数,实现了灭火机器人的三闭环伺服控制,基于直流电机的真空吸附装置能够彻底消除机器人高速行走打滑现象的发生。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明的一种单轮双核中低速灭火机器人伺服控制系统一较佳实施例的灭火机器人房间示意图;
图2为本发明的一种单轮双核中低速灭火机器人伺服控制系统一较佳实施例的基于单片机控制的两轮灭火机器人原理图;
图3为本发明的一种单轮双核中低速灭火机器人伺服控制系统一较佳实施例的基于STM32F407单轮灭火机器人二维结构图;
图4为本发明的一种单轮双核中速灭火机器人伺服控制系统一较佳实施例的基于STM32F407单轮灭火机器人原理图;
图5为本发明的一种单轮双核中速灭火机器人伺服控制系统一较佳实施例的基于STM32F407单轮灭火机器人伺服程序框图;
图6为本发明的一种单轮双核中低速灭火机器人伺服控制系统一较佳实施例的灭火机器人运行方向示意图;
图7为本发明的一种单轮双核中低速灭火机器人伺服控制系统一较佳实施例的右转示意图;
图8为本发明的一种单轮双核中低速灭火机器人伺服控制系统一较佳实施例的左转示意图;
图9为本发明的一种单轮双核中低速灭火机器人伺服控制系统一较佳实施例的整体原理示意图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明实施例提供如下技术方案。
请参阅图1-9,在本实施例中提供一种单轮双核中低速灭火机器人伺服控制系统,所述的单轮双核中低速灭火机器人伺服控制系统1、一种单轮双核中低速灭火机器人伺服控制系统,其特征在于,包括:控制器STM32F407、若干判断前方运动环境的超声波传感器、电流传感器、电机、电机光电编码器、控制参数转化模块和环境参数转换模块;所述控制器STM32F407与所述的电流传感器、电机光电编码器、控制参数转化模块、环境参数转换模块之间相连接,微控制器STM32F407通过结合电流传感器信号、电机光电编码器生成若干控制电机的PWM控制信号并驱动电机运行。
所述单轮双核高速灭火机器人伺服控制系统还包括加速度传感器,所述加速度传感器与电机光电编码器相结合并把实时信号传输至控制器STM32F407,所述控制器STM32F407根据实施信号的不同自动切换超声波传感器中的一个或多个。
所述电机包括直流无刷电机、直流电机和真空抽吸电机,所述电机光电编码器位于直流无刷电机、直流电机和真空抽吸电机上,且所述直流无刷电机、直流电机和真空抽吸电机分别产生第一位置脉冲信号、第二位置脉冲信号、第三位置脉冲信号,第一位置脉冲信号、第二位置脉冲信号、第三位置脉冲信号与控制器STM32F407之间通信连接。
控制器STM32F407通过实时检测并自动调节真空抽吸电机对地面的吸附能力,且存储环境信息。
所述第一位置脉冲信号、第二位置脉冲信号、第三位置脉冲信号同时为低电平,产生信号传输至控制器STM32F407,同时记录直流无刷电机、直流电机和真空抽吸电机的绝对位置。
所述单轮双核高速灭火机器人伺服控制系统还包括上位机模块和运动控制模块,所述上位机模块中包含有房间探索单元、房间存储单元、路径读取单元、人机界面单元和在线输出单元,所述探索单元、存储单元、路径读取单元、人机界面单元、在线输出单元均与上位机模块分别控制连接。
所述运动控制模块包含坐标定位单元、I/O控制单元、三轴同步直流无刷和直流混合伺服控制系统;所述三轴同步直流无刷和直流混合伺服控制系统包括直流无刷电机和直流电机两轴混合灭火伺服模块、单轴真空吸盘吸附伺服模块,所述直流无刷电机和直流电机两轴混合灭火伺服模块与单轴真空吸盘吸附伺服模块相连接,且将信号传输至单轴真空吸盘吸附伺服模块。
所述电机光电编码器输出第一位置脉冲信号、第二位置脉冲信号至控制器STM32F407,所述单轴真空吸盘吸附伺服模块与真空抽吸电机之间控制连接,直流无刷电机、直流电机两轴混合伺服模块分别与直流无刷电机、直流电机之间控制连接。
在一个具体实施方式中,
对于本文设计的STM32F407控制器,在电源打开状态下,灭火机器人先进入自锁状态。灭火机器人通过超声波传感器S1、S6判断前方运动环境,实际导航环境被转化为控制参数传输给STM32F407,STM32F407把这些环境参数转化为灭火机器人在指定方向下直流无刷电机X要运行的速度指令值以及直流电机Y要运行的距离、速度和加速度参数指令值,然后控制器结合电流传感器C1、C2和电机光电编码器的反馈生成控制电机X和电机Y的PWM控制信号,直流无刷电机X和直流电机Y在控制信号驱动下向前运动,加速度计A1和光电编码器实时把测得的信号反馈给STM32F407,由微处理器二次校正灭火机器人的姿态。如果灭火机器人进入死胡同,控制器会自动切换传感器,使得灭火器人不需要原地旋转180度。灭火机器人在运动过程中,控制器根据灭火机器人运动速度自动通过电机M调节真空装置对地面的吸附能力,增加有效摩擦,防止灭火机器人快速行走打滑,并实时储存房间信息。当控制器发现火源后自动开启干冰灭火器电磁阀,通过喷洒干冰灭火,灭火完毕后控制器立即调出灭火机器人已经储存的房间信息,通过洪水算法找出返程最短路径,并开启加速模式迅速回到起点等待一下条寻求火源命令。
打开电源瞬间,STM32F407会对电池电压进行检测,如果低压的话,STM32F407将封锁直流无刷电机X和直流无刷电机Y的PWM波控制信号,电机不能启动,同时电压传感器V1将工作,并发出报警信号。如果系统电压正常,控制器首先开启真空抽吸电机M,通过抽吸装置先对微型真空吸盘抽吸,使真空吸盘对地面具有一定的吸附力,控制器并实时检测,如果地面不干净,系统会自动调节电机M加大真空吸盘对地面的吸附力。
在灭火机器人未接到探索命令之前,它一般会在起点坐标(0,0)等待控制器发出的探索命令,一旦接到任务后,会沿着起点开始为了寻找火源进行全宫探索。
灭火机器人放在起点坐标(0,0),一般情况下,灭火机器人按照图6中北的方向(计算机编程代码为0)放置,接到任务后其前方的传感器S1、S6和会对前方的环境进行判断,然后传输给STM32F407作为行走的初始指令值。
在灭火机器人运动过程中,装在直流无刷电机X、直流电机Y、直流电机M上的光电编码器会输出其位置信号A和位置信号B并反馈给STM32F407,光电编码器的位置信号A脉冲和B脉冲逻辑状态每变化一次,STM32F407的位置寄存器会根据直流无刷电机X、直流电机Y、直流电机M的运行方向加1或者是减1;
在灭火机器人运动过程中,装在直流无刷电机X、直流电机Y、直流电机M上的光电编码器的位置信号A脉冲和B脉冲和Z脉冲同时为低电平时,就产生一个INDEX信号给STM32F407寄存器,记录直流无刷电机X、直流电机Y、直流电机M的绝对位置,然后换算成灭火机器人在房间中的具体位置和调整的角度大小。
为了能够实现灭火机器人准确的坐标计算功能,灭火机器人左右的传感器S2、S3和S4、S5会时刻对运动方向左右的房间挡墙和柱子进行探测,如果S2、S3或者S4、S5发现传感器信号发生了跃变,则说明灭火机器人进入了从有房间挡墙到无房间挡墙(或者是从无房间挡墙到有房间挡墙)状态的变化,STM32F407会根据灭火机器人当前运行状态精确补偿,彻底消除灭火机器人在复杂房间中探寻火源时已经累计的误差。
在灭火机器人沿着任何一个方向向前运动,在任何一个方格的中心如果确定没有挡墙进入前方的运动范围,则灭火机器人将存储其坐标(X,Y),并把向前运动一格的位置参数送给STM32F407,由STM32F407根据搜寻控制器速度和加速度要求以及光电编码器的反馈,生成速度-时间运动梯形图,这个梯形包含的面积就是灭火机器人直流无刷电机X要运行的一格距离。STM32F407根据这个梯形图生成驱动直流无刷电机X的PWM波,然后STM32F407使能驱动芯片驱动直流无刷电机X向前运动,控制器实时采集其速度大小,并结合光电编码器的反馈实时调整其大小,STM32F407会根据直流无刷电机X的速度自动调节电机M的伺服控制,自动改变真空吸盘对地面的吸附能力。在沿着当前房间格向前探索过程中,传感器S2、S3和S4、S5会对左右的挡墙进行判断,并记录储存当前搜寻房间挡墙信息,灭火机器人根据前进方向左右挡墙的房间信息进入单墙导航模式或者是双墙导航模式,然后再结合设定的左右挡墙导航阀值,加速度计A1记录灭火机器人实时的加速度信号并送给控制器,控制器分别通过积分和二次积分得到瞬时角速度和角度。当灭火机器人快速探索脱离了设定中心位置时,微处理器把离开中心位置的偏差转化为直流电机Y的加速度、速度和位置指令值,然后STM32F407再结合直流电机Y的电流C2和光电编码器反馈,生成驱动直流电机Y的PWM波,通过直流电机Y的伺服控制调整直流无刷电机X的行走方向角度,加速度计A1记录灭火机器人实时的加速度信号并送给STM32F407,STM32F407通过二次积分得到瞬时角度,在下一个采样周期到来时,微处理器根据直流电机Y角度偏差再微调直流电机Y的PWM波输入,通过此方式可以精确调整灭火机器人的姿态,使其重新回到设定中心位置并沿着设定方向前进,行走速度全程满足探寻需求。当灭火机器人在加速度计的控制下运动一格距离到达新地址时,微处理器将更新其坐标。
如果在坐标(X,Y)时的方向为北,在更新其坐标为(X,Y+1),新坐标方向依旧为北;如果在坐标(X,Y)时的方向为东,在更新其坐标为(X+1,Y),新坐标方向依旧为东;如果在坐标(X,Y)时的方向为南,在更新其坐标为(X,Y-1),新坐标方向依旧为南;如果在坐标(X,Y)时的方向为西,在更新其坐标为(X-1,Y),新坐标方向依旧为西。
光电传感器S7开始工作,对新坐标下的光源进行判断,如果光电传感器捕捉到信号将通知控制器发现目标,控制器会让光电传感器禁止工作2秒工作,2秒后重新开启光电传感器,如果再次捕捉到光电信号,控制器会开启携带的干冰灭火器的电磁阀,开始对蜡烛进行喷洒干冰直至光源消失,然后控制器调出灭火机器人已经搜索的路径,并舍弃未搜寻的目标,通过洪水算法找出已经搜寻过房间的最佳路径,然后灭火机器人按照此路径快速回到搜寻起点。
如果光电传感器S7没有捕捉到新坐标下的光源,灭火机器人将离开目前房间格,将继续搜寻并更新其坐标。
在灭火机器人沿着当前方向向前运动过程中如果传感器S1和S6判断前方有挡墙进入运动范围,并且此时传感器S2、S3、S4、S5分别判断左右都有挡墙时,灭火机器人进入所谓的“死胡同”,控制器将存储此时坐标(X,Y),根据传感器S1和S6的反馈计算出向前运动停车的位置参数YS1,由STM32F407根据搜寻控制器速度和加速度要求以及光电编码器的反馈,生成速度-时间运动梯形图,这个梯形包含的面积就是灭火机器人直流无刷电机X要运行的停车距离。STM32F407根据这个梯形图生成驱动直流无刷电机X的PWM波,然后STM32F407使能驱动芯片驱动直流无刷电机X向前运动,控制器实时采集其速度大小,并结合光电编码器的反馈实时调整其大小满足梯形图要求,STM32F407会根据直流无刷电机X的速度自动调节电机M的伺服控制,自动改变真空吸盘对地面的吸附能力。在沿着当前房间格向前停车过程中,灭火机器人根据前进方向左右挡墙的房间信息进入双墙导航模式,然后再结合设定的左右挡墙导航阀值,加速度计A1记录灭火机器人实时的加速度信号并送给控制器,控制器分别通过积分和二次积分得到瞬时角速度和角度。当灭火机器人快速探索脱离了设定中心位置时,微处理器把离开中心位置的偏差转化为直流电机Y的加速度、速度和位置指令值,然后STM32F407再结合直流电机Y的电流C2和光电编码器反馈,生成驱动直流电机Y的PWM波,通过直流电机Y的伺服控制调整直流无刷电机X的行走方向角度,加速度计A1记录灭火机器人实时的加速度信号并送给STM32F407,STM32F407通过二次积分得到瞬时角度,在下一个采样周期到来时,微处理器根据直流电机Y角度偏差再微调直流电机Y的PWM波输入,通过此方式可以精确调整灭火机器人的姿态,使其重新回到设定中心位置并沿着设定方向前进。当灭火机器人进入死胡同停车后,STM32F407开启另外一套传感器,然后灭火机器人沿着原先相反的方向运动,灭火机器人开始更新其坐标信息。
如果在坐标(X,Y)时的方向为北,则更新其坐标为(X,Y),新坐标方向为南;如果在坐标(X,Y)时的方向为东,则更新其坐标为(X1,Y),新坐标方向为西;如果在坐标(X,Y)时的方向为南,则更新其坐标为(X,Y),新坐标方向为北;如果在坐标(X,Y)时的方向为西,则更新其坐标为(X,Y),新坐标方向为东。
在灭火机器人沿着当前方向向前运动过程中如果有挡墙进入前方的运动范围,并且此时左右的传感器S2和S3判断左边有挡墙,而S4、S5判断右方没有挡墙时,灭火机器人将存储此时坐标(X,Y),然后灭火机器人将按照图7的曲线行走;
在右转弯时,STM32F407首先把行走直线很短的距离R90_Leading按照控制器不同搜寻速度和加速度要求生成速度-时间运动梯形图,这个梯形包含的面积就是灭火机器人直流无刷电机X要运动的距离。STM32F407根据这个梯形图再结合直流无刷电机X光电编码器和电机电流反馈生成驱动直流无刷电机X的PWM波控制信号,然后控制信号经驱动桥放大后驱动直流无刷电机X向前运动,STM32F407会根据直流无刷电机X的速度自动调节电机M的伺服控制,自动改变真空吸盘对地面的吸附能力。在向前运动过程中,传感器S2、S3实时对左挡墙进行判断,并反馈当前房间挡墙信息,灭火机器人进入单左墙导航模式。加速度计A1实时记录灭火机器人的加速度信号并送给控制器,控制器分别通过积分和二次积分得到瞬时角速度和角度。当灭火机器人快速探索脱离了设定中心位置时,微处理器把离开中心位置的偏差转化为直流电机Y的加速度、速度和位置指令值,然后STM32F407再结合直流电机Y的电流C2和光电编码器反馈,生成驱动直流电机Y的PWM波,PWM波经驱动桥放大后驱动直流电机Y运动,直流电机Y通过机械装置调整直流无刷电机X的行走方向角度,加速度计A1记录灭火机器人实时的加速度信号并送给STM32F407,STM32F407通过二次积分得到瞬时角度,在下一个采样周期到来时,微处理器根据直流电机Y角度偏差再微调直流电机Y的PWM波输入,通过此方式可以精确调整灭火机器人的姿态,使其重新回到设定中心位置并沿着设定方向前进。
当到达既定目标时,传感器参考值R90_FrontWallRef开始工作,防止外界干扰开始做误差补偿。误差补偿结束后开始调整直流无刷电机X的速度和方向使其完成弧度ARC的运动曲线。
STM32F407首先把弧度ARC的角度按照控制器不同搜寻速度和加速度要求生成直流无刷电机X的速度大小和直流电机Y的速度-时间运动梯形图,这个梯形包含的面积就是直流电机Y要运动的距离,然后STM32F407再结合电机Y光电编码器和电流传感器C2的反馈生成驱动直流电机Y的PWM波驱动信号,然后驱动信号放大后驱动直流电机Y运动,电机Y通过机械装置调整直流无刷电机X的运动角度。在运动过程中,控制器根据直流无刷电机X的光电编码器的反馈实时调整其PWM波输出,使其速度满足探寻转弯需要,STM32F407会根据直流无刷电机X的速度自动调节电机M的伺服控制,自动改变真空吸盘对地面的吸附能力。在转弯过程中,加速度计A1实时记录灭火机器人的角加速度,然后通过二次积分就可以得到其角度,然后控制器就可以得到真实转弯角度与设定角度之间的偏差;当灭火机器人快速搜寻转弯脱离了设定位置时,在新的采样周期内,角度偏差大小被STM32F407转化为直流电机Y新的位置、速度和加速度指令值,然后STM32F407再结合电机Y的光电编码器和电流传感器C2的反馈微调直流电机Y的PWM波输入,使灭火机器人转弯的角度逼近于设定值,通过此方法可以准确调整灭火机器人在弧度ARC时的姿态,使其完成90度转弯。
当到达既定目标后,系统依靠传感器S2、S3开始导航,控制器把直线行走很短的距离R90_Passing按照控制器不同搜寻速度和加速度要求生成速度-时间运动梯形图,这个梯形包含的面积就是灭火机器人直流无刷电机X要运动的距离。STM32F407根据这个梯形图再结合直流无刷电机X光电编码器和电机电流反馈生成驱动直流无刷电机X的PWM波控制信号,然后控制信号经驱动桥放大后驱动直流无刷电机X向前运动,STM32F407会根据直流无刷电机X的速度自动调节电机M的伺服控制,自动改变真空吸盘对地面的吸附能力。在向前运动过程中,传感器S2、S3实时对左挡墙进行判断,并反馈当前房间挡墙信息,灭火机器人进入单左墙导航模式。加速度计A1实时记录灭火机器人的加速度信号并送给控制器,控制器分别通过积分和二次积分得到瞬时角速度和角度。当灭火机器人快速探索脱离了设定中心位置时,微处理器把离开中心位置的偏差转化为直流电机Y的加速度、速度和位置指令值,然后STM32F407再结合直流电机Y的电流C2和光电编码器反馈,生成驱动直流电机Y的PWM波,PWM波经驱动桥放大后驱动直流电机Y运动,直流电机Y通过机械装置调整直流无刷电机X的行走方向角度,加速度计A1记录灭火机器人实时的加速度信号并送给STM32F407,STM32F407通过二次积分得到瞬时角度,在下一个采样周期到来时,微处理器根据直流电机Y角度偏差再微调直流电机Y的PWM波输入,通过此方式可以精确调整灭火机器人的姿态,使其重新回到设定中心位置并沿着设定方向前进。当到达既定目标后完成整个右转弯的轨迹曲线运动,然后控制其开始更新其坐标和方向。
如果在坐标(X,Y)时的方向为北,则更新其坐标为(X+1,Y),新坐标方向为东;如果在坐标(X,Y)时的方向为东,则更新其坐标为(X,Y-1),新坐标方向为南;如果在坐标(X,Y)时的方向为南,则更新其坐标为(X-1,Y),新坐标方向为西;如果在坐标(X,Y)时的方向为西,则更新其坐标为(X,Y+1),新坐标方向为北;
光电传感器S7开始工作,对新坐标下的光源进行判断,如果光电传感器捕捉到信号将通知控制器发现目标,控制器会让光电传感器禁止工作2秒工作,2秒后重新开启光电传感器S7,如果再次捕捉到光电信号,控制器会开启携带的干冰灭火器的电磁阀,开始对蜡烛进行喷洒干冰直至光源消失;如果光电传感器S7没有捕捉到新坐标下的光源,灭火机器人将离开目前房间格,将继续搜寻并更新其坐标;
在灭火机器人沿着当前方向向前运动过程中如果有挡墙进入前方的运动范围,并且此时左右的传感器S2和S3判断左边无挡墙,而S4、S5判断右方有挡墙时,灭火机器人将存储此时坐标(X,Y),然后灭火机器人将按照图8的曲线行走;
在左转弯时,控制器控制电机行走规律与右转类似,当通过三段法到达既定目标后完成整个左转弯的轨迹曲线运动,控制器按照图6的设置开始更新其坐标和方向。
如果在坐标(X,Y)时的方向为北,则更新其坐标为(X-1,Y),新坐标方向为西;如果在坐标(X,Y)时的方向为东,则更新其坐标为(X,Y+1),新坐标方向为北;如果在坐标(X,Y)时的方向为南,则更新其坐标为(X+1,Y),新坐标方向为东;如果在坐标(X,Y)时的方向为西,则更新其坐标为(X,Y-1),新坐标方向为南。
光电传感器S7开始工作,对新坐标下的光源进行判断,如果光电传感器捕捉到信号将通知控制器发现目标,控制器会让光电传感器禁止工作2秒工作,2秒后重新开启光电传感器S7,如果再次捕捉到光电信号,控制器会开启携带的干冰灭火器的电磁阀,开始对蜡烛进行喷洒干冰直至光源消失;如果光电传感器S7没有捕捉到新坐标下的光源,灭火机器人将离开目前房间格,将继续搜寻并更新其坐标。
当灭火机器人搜到光源,并喷洒干冰完成灭火后,灭火机器人会停在目标点,然后控制器调出灭火机器人已经搜索的路径,并舍弃未搜寻的目标,通过洪水算法找出已经搜寻过房间的最佳路径,然后灭火机器人按照此路径快速回到搜寻起点,STM32F407会根据直流无刷电机X的速度自动调节电机M的伺服控制,自动改变真空吸盘对地面的吸附能力。
在灭火机器人房间搜寻过程中,STM32F407会对高速直流无刷电机X、直流电机Y、直流电机M的转矩进行在线辨识,由于系统采用的是三闭环伺服控制,如果转矩出现脉动,控制器会利用直流电机力矩与电流的关系对干扰进行线性补偿,有效减少了电机转矩抖动对灭火机器人快速探索时导航的影响,增加了其抗干扰能力。
当灭火机器人完成整个返程过程回到起始点(0,0),STM32F407将控制灭火机器人直流无刷电机X速度和直流电机Y为零并实现中心点停车,然后控制器自动切换到另外一套传感器工作,然后控制器使直流无刷电机X和直流电机Y自锁,等待下一个搜寻命令。
在本发明优选的实施例中,所述STM32F4系列除引脚和软件兼容高性能的F2系列外,F4的主频(168MHz)高于F2系列(120MHz),并支持单周期DSP指令和浮点单元、更大的SRAM容量(192KB,F2为128KB)、512KB-1MB的嵌入式闪存以及影像、网络接口和数据加密等更先进的外设。STM32F4系列基于最新的ARMCortexM4内核,在现有出色的STM32微控制器产品组合中新增了信号处理功能,并提高了运行速度;STM32F405x集成了定时器、3个ADC、2个DAC、串行接口、外存接口、实时时钟、CRC计算单元和模拟真随机数发生器在内的整套先进外设。STM32F407在STM32F405产品基础上增加了多个先进外设。这些性能使得F4系列可以较容易满足控制和信号处理功能混合的数字信号控制需求。高效的信号处理功能与Cortex-M4处理器系列的低能耗、低成本和易于使用的优点的组合,使得其可以为多轴电动机控制提供灵活解决方案。这些特点使得STM32F407特别适合多轴灭火机器人伺服系统的信号处理。
为了更好的提高灭火机器人对复杂地面的适应能力,本发明采用单轮驱动方式替代了传统的两轮差速行驶驱动方式。单轮驱动可以很好解决两轮差速行驶造成失控的问题:控制器通过控制一个直流无刷电机X,使其只满足机器人行走速度大小,然后通过调整另外一个很小的直流电机Y的伺服控制来调节行走电机的运行方向,实现运行速度与方向的完全解耦,然后再配备两个负责负重的承重轮A和承重轮B,复杂行走速度的直流无刷电机X所在的轮子时刻和承重轮A、承重轮B在一个平面上,永远不会出现两轮差速行驶所出现的失控现象。
为了能够精确探寻房间发现火源,并且实现灭火机器人进入死胡同不用原地旋转180度然后驶出死胡同,本发明采用两套六组传感器探测房间模式,所发明的灭火机器人二维结构中,传感器S1、S6共同作用判断前方挡墙,传感器S2和S3共同合作判断其左边挡墙的存在,传感器S4和S5共同合作判断其右边挡墙的存在,同时S2、S3、S4、S5合作为灭火机器人直线运动提供导航依据。由于在比赛现场,太阳光有可能直射进来,这样红外传感器就不能在使用,本发明采用超声波传感器代替了红外传感器。在这种结构设置中,S2和S3可以在不同位置精确测量到房间左侧从有挡墙到无挡墙或者无挡墙到有挡墙的变化,S4和S5可以在不同位置精确测量到房间右侧从有挡墙到无挡墙或者无挡墙到有挡墙的变化,这个位置的传感器信号阶跃变化可以被控制器捕捉到,然后在此位置可以对灭火机器人进行精确补偿,这对于灭火机器人求解房间找到火源并返回到起点计算至关重要,如果没有此智能补偿的话,灭火机器人有可能在复杂房间中的累计误差足以使无法求解此房间地图,导致无法回到房间起点;另外一套传感器只在灭火机器人进入死胡同退出现场时才使用。
为了提高灭火机器人在寻找火源过程中行走导航的稳定性,本发明在灭火机器人伺服硬件系统中加入了三轴加速度计传感器A1。在灭火机器人行走房间期间全程开启加速度计传感器A1,加速度计传感器A1用来测量灭火机器人三个前进方向的加速度。控制器根据测得的加速度计的加速度信号利用积分和二次积分近似得到其旋转角速度和角度。当灭火机器人的姿态发生变化超过设定阀值时,在一个新的采样周期控制器就立即对其位置补偿,避免灭火机器人远远偏离中心位置而出现撞墙现象的发生,提高了其快速行走导航的稳定性。
为了提高灭火机器人全数字伺服系统的稳定性,防止灭火机器人在高速行走时打滑导致灭火机器人房间信息错误,本发明在灭火机器人伺服硬件系统中加入了微型直流电机M,在灭火机器人运动过程中,电机M通过真空抽吸装置不停抽吸微型真空吸盘内的空气,使微型真空吸盘的内外压力不一样,产生一定的负压,使其对房间地面产生一定的吸附能力,即使房间地板受到了上一组选手的破坏产生了一定变化,灭火机器人也不会受到影响,有效防止了灭火机器人在高速行走时的地面打滑。
本发明为克服单片机不能满足两轴灭火机器人行走的稳定性和快速性的要求,舍弃了国产自动灭火机器人所采用的单片机工作模式和两轮差速行驶驱动模式,在吸收国外先进控制思想的前提下,自主发明了基于STM32F407的全新单轮驱动控制模式。控制板以STM32F407为处理核心,实现单轴直流无刷电机和两轴直流电机的三轴伺服控制的数字信号实时处理,并响应各种中断,实现数据信号的实时存储。
为达上述目的,本发明采取以下技术方案,为了提高灭火机器人搜寻速度,保证灭火机器人系统的稳定性和可靠性,本发明在基于STM32F407的控制器中引入真空吸附技术,同时引入单轮驱动技术使得灭火机器人的速度和运动方向实现解耦,并引入速度、加速度计传感器进行二次姿态校正。此控制器充分考虑电池在这个系统的作用,把控制系统中工作量最大的三轴伺服系统交给STM32F407处理,充分发挥STM32F407数据处理速度相对较快的特点,从而快速实现灭火机器人人机界面、房间读取、房间存储、坐标定位、I/O控制、火源发现及灭火等功能。
本发明的有益效果是:
1、在运动过程中,充分考虑了电池在这个系统中的作用,基于STM32F407控制器时刻都在对灭火机器人的运行状态进行监测和运算,并且在电池提供电源的过程中,电流传感器C1、C2时刻对电池的电流进行观测并送给控制器进行保护,避免了大电流的产生,所以从根本上解决了大电流对锂离子电池的冲击,避免了由于大电流放电而引起的锂离子电池过度老化现象的发生;
2、用直流无刷电机替代了步进电机,使得电机无机械摩擦,无磨损,无电火花,且免维护,而且直流无刷电机的效率高,功率和转矩密度高,使得系统的效率更高;
3:由STM32F407处理灭火机器人的单轴直流无刷电机X和负责行走方向的直流电机Y、单轴吸附控制直流电机M的伺服控制,使得控制比较简单,大大提高了运算速度,解决了单片机软件运行较慢的瓶颈,缩短了开发周期短,并且程序可移植能力强;
4:本发明基本实现全贴片元器件材料,实现了单板控制,不仅节省了控制板占用空间,而且有利于灭火机器人体积和重量的减轻;
5:由于采用直流无刷电机,使得调速范围比较宽,调速比较平稳;
6:由于本控制器采用STM32F407处理三轴伺服大量的数据与算法,有效地防止了程序的“跑飞”,抗干扰能力大大增强;
7:在灭火机器人实际运动过程中,STM32F407可以根据机器人外围运行情况适时调整内部三闭环伺服控制的PID参数,实现分段P、PD、PID控制和非线性PID控制,使系统满足中低速运行时速度的切换;
8、在此灭火机器人系统引入了三轴加速度计A1,通过积分和二次积分可以近似得到灭火机器人的角速度和角度信息,实现了灭火机器人在房间探索时的瞬时加速度、速度的检测,并利用反馈实现全程导航和二次补偿,有利于提高灭火机器人的稳定性和动态性能;
9:在灭火机器人运行过程中,STM32F407会对高速直流无刷电机X、直流电机Y和直流电机M的转矩进行在线辨识并利用电机力矩与电流的关系进行补偿,减少了电机转矩抖动对灭火机器人快速探寻火源的影响;
10:通过调节直流电机M可以有效调节真空吸盘对地面的吸附力,消除了灭火机器人在高速探寻火源时打滑现象的发生;
11:由于只有一个动力驱动轮,使得电机与两个从动轮永远在一个平面上,使得灭火机器人永远不会因为驱动问题而失控;
12:由于采用速度大小和方向的独立控制,使得控制灭火机器人运行方向的电机功率大大减少,这样有利于减少能量的消耗;
13:由于采用的是速度大小和方向的独立控制,使得灭火机器人更容易实现反向倒车,在实际结构中只要加多一套方向判别传感器,就可以实现灭火机器人的倒车功能,而不需要旋转180度,减少了场地对此灭火机器人的影响。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (8)

1.一种单轮双核中低速灭火机器人伺服控制系统,其特征在于,包括:控制器STM32F407、若干判断前方运动环境的超声波传感器、电流传感器、电机、电机光电编码器、控制参数转化模块和环境参数转换模块;所述控制器STM32F407与所述的电流传感器、电机光电编码器、控制参数转化模块、环境参数转换模块之间相连接,微控制器STM32F407通过结合电流传感器信号、电机光电编码器生成若干控制电机的PWM控制信号并驱动电机运行;
所述单轮双核高速灭火机器人伺服控制系统还包括加速度传感器,所述加速度传感器与电机光电编码器相结合并把实时信号传输至控制器STM32F407,所述控制器STM32F407根据实施信号的不同自动切换超声波传感器中的一个或多个。
2.根据权利要求1所述的单轮双核中低速灭火机器人伺服控制系统,其特征在于,所述电机包括直流无刷电机、直流电机和真空抽吸电机,所述电机光电编码器位于直流无刷电机、直流电机和真空抽吸电机上,且所述直流无刷电机、直流电机和真空抽吸电机分别产生第一位置脉冲信号、第二位置脉冲信号、第三位置脉冲信号,第一位置脉冲信号、第二位置脉冲信号、第三位置脉冲信号与控制器STM32F407之间通信连接。
3.根据权利要求1所述的单轮双核中低速灭火机器人伺服控制系统,其特征在于,控制器STM32F407通过实时检测并自动调节真空抽吸电机对地面的吸附能力,且存储环境信息。
4.根据权利要求1所述的单轮双核中低速灭火机器人伺服控制系统,其特征在于,所述第一位置脉冲信号、第二位置脉冲信号、第三位置脉冲信号同时为低电平,产生信号传输至控制器STM32F407,同时记录直流无刷电机、直流电机和真空抽吸电机的绝对位置。
5.根据权利要求1所述的单轮双核中低速灭火机器人伺服控制系统,其特征在于,所述单轮双核高速灭火机器人伺服控制系统还包括上位机模块和运动控制模块,所述上位机模块中包含有房间探索单元、房间存储单元、路径读取单元、人机界面单元和在线输出单元,所述房间探索单元、房间存储单元、路径读取单元、人机界面单元、在线输出单元均与上位机模块分别控制连接;
所述运动控制模块包含坐标定位单元、I/O控制单元、三轴同步直流无刷和直流混合伺服控制系统;所述三轴同步直流无刷和直流混合伺服控制系统包括直流无刷电机和直流电机两轴混合灭火伺服模块、单轴真空吸盘吸附伺服模块,所述直流无刷电机和直流电机两轴混合灭火伺服模块与单轴真空吸盘吸附伺服模块相连接,且将信号传输至单轴真空吸盘吸附伺服模块。
6.根据权利要求5所述的单轮双核中低速灭火机器人伺服控制系统,其特征在于,所述电机光电编码器输出第一位置脉冲信号、第二位置脉冲信号至控制器STM32F407,所述单轴真空吸盘吸附伺服模块与真空抽吸电机之间控制连接,直流无刷电机、直流电机两轴混合伺服模块分别与直流无刷电机、直流电机之间控制连接。
7.根据权利要求6所述的单轮双核中低速灭火机器人伺服控制系统,其特征在于,所述的超声波传感器的数量为6个、电流传感器的数量为3个、光电传感器和加速度传感器数量为1个。
8.根据权利要求7所述的单轮双核中低速灭火机器人伺服控制系统,其特征在于,所述单轮双核中低速灭火机器人伺服控制系统中还包含有电池,所述的电池采用锂离子电池。
CN201510521892.4A 2015-08-24 2015-08-24 一种单轮双核中低速灭火机器人伺服控制系统 Pending CN105320147A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510521892.4A CN105320147A (zh) 2015-08-24 2015-08-24 一种单轮双核中低速灭火机器人伺服控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510521892.4A CN105320147A (zh) 2015-08-24 2015-08-24 一种单轮双核中低速灭火机器人伺服控制系统

Publications (1)

Publication Number Publication Date
CN105320147A true CN105320147A (zh) 2016-02-10

Family

ID=55247725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510521892.4A Pending CN105320147A (zh) 2015-08-24 2015-08-24 一种单轮双核中低速灭火机器人伺服控制系统

Country Status (1)

Country Link
CN (1) CN105320147A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109375620A (zh) * 2018-10-12 2019-02-22 深圳市今天国际智能机器人有限公司 利用单个光电传感器控制舵轮返回原点的方法及装置
CN109794923A (zh) * 2019-01-11 2019-05-24 南京天创电子技术有限公司 智能轨道巡检机器人双驱三闭环运动控制装置及控制方法
CN110275433A (zh) * 2019-07-24 2019-09-24 西安市东郊市政养护管理公司 一种基于pid控制市政管网清淤机器人位姿纠偏系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201711969U (zh) * 2010-07-09 2011-01-19 华南理工大学 一种自带真空源的负压吸附模块
CN103529832A (zh) * 2013-09-24 2014-01-22 苏州工业园区职业技术学院 基于双核四轮高速微电脑鼠对角线冲刺系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201711969U (zh) * 2010-07-09 2011-01-19 华南理工大学 一种自带真空源的负压吸附模块
CN103529832A (zh) * 2013-09-24 2014-01-22 苏州工业园区职业技术学院 基于双核四轮高速微电脑鼠对角线冲刺系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张国营等: "以STM32F103为核心的智能灭火机器人", 《单片机与嵌入式系统应用》 *
张飞飞等: "基于STM32的智能灭火机器人设计", 《甘肃科技》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109375620A (zh) * 2018-10-12 2019-02-22 深圳市今天国际智能机器人有限公司 利用单个光电传感器控制舵轮返回原点的方法及装置
CN109794923A (zh) * 2019-01-11 2019-05-24 南京天创电子技术有限公司 智能轨道巡检机器人双驱三闭环运动控制装置及控制方法
CN109794923B (zh) * 2019-01-11 2023-11-17 南京天创电子技术有限公司 智能轨道巡检机器人双驱三闭环运动控制装置及控制方法
CN110275433A (zh) * 2019-07-24 2019-09-24 西安市东郊市政养护管理公司 一种基于pid控制市政管网清淤机器人位姿纠偏系统及方法

Similar Documents

Publication Publication Date Title
CN105137975A (zh) 六轮双核全自动高速灭火机器人伺服控制器
CN105116918A (zh) 一种双核两轮中速灭火机器人伺服控制器
CN105005249A (zh) 一种全自动四轮双核高速灭火机器人伺服控制器
CN105159325A (zh) 一种基于stm32f407和fpga两轮高速灭火机器人伺服控制器
CN105045289A (zh) 一种单轮全自动高速灭火机器人伺服控制系统
CN105045288A (zh) 一种单轮全自动中速灭火机器人伺服控制系统
CN105320146A (zh) 一种单轮双核中速灭火机器人伺服控制系统
CN105334853A (zh) 双核高速四轮微微鼠冲刺控制器
CN105137974A (zh) 六轮双核全自动中速灭火机器人伺服控制器
CN105169610A (zh) 基于两轮高速全自动灭火机器人的双核伺服控制系统
CN105005308A (zh) 基于stm32f407六轮灭火机器人伺服控制器
CN105116897A (zh) 双核高速四轮微微鼠全数字导航伺服控制器
CN105159323A (zh) 六轮单核全自动低速灭火机器人伺服控制器
CN105137983A (zh) 双核高速两轮微微鼠冲刺控制器及其控制方法
CN105320147A (zh) 一种单轮双核中低速灭火机器人伺服控制系统
CN105068558A (zh) 一种单轮双核高速灭火机器人伺服控制系统
CN105159324A (zh) 六轮双核中速灭火机器人伺服控制器
CN105138017A (zh) 基于两轮中速全自动灭火机器人的双核伺服控制系统
CN105116891A (zh) 双核中速两轮微微鼠冲刺控制器及其控制方法
CN105116898A (zh) 单核低速两轮微微鼠冲刺控制器
CN205055284U (zh) 基于两轮中速全自动灭火机器人的双核伺服控制系统
CN205055285U (zh) 基于两轮高速全自动灭火机器人的双核伺服控制系统
CN105005318A (zh) 一种全自动四轮低速灭火机器人伺服控制器
CN105137976A (zh) 一种四轮双核中速灭火机器人伺服控制器
CN105137991A (zh) 单核低速两轮微微鼠探索控制器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160210

RJ01 Rejection of invention patent application after publication