CN105319838A - Demolding method in nanoimprint technology process - Google Patents
Demolding method in nanoimprint technology process Download PDFInfo
- Publication number
- CN105319838A CN105319838A CN201510378214.7A CN201510378214A CN105319838A CN 105319838 A CN105319838 A CN 105319838A CN 201510378214 A CN201510378214 A CN 201510378214A CN 105319838 A CN105319838 A CN 105319838A
- Authority
- CN
- China
- Prior art keywords
- template
- adhesive layer
- nano
- nanometer embossing
- release method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 39
- 230000008569 process Effects 0.000 title claims abstract description 25
- 238000005516 engineering process Methods 0.000 title abstract description 20
- 239000012790 adhesive layer Substances 0.000 claims abstract description 28
- 238000004049 embossing Methods 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 8
- 239000010410 layer Substances 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 3
- 235000012239 silicon dioxide Nutrition 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 239000003292 glue Substances 0.000 claims 3
- 230000005540 biological transmission Effects 0.000 claims 1
- 229920002521 macromolecule Polymers 0.000 claims 1
- -1 monox Substances 0.000 claims 1
- 238000000465 moulding Methods 0.000 claims 1
- 238000006116 polymerization reaction Methods 0.000 claims 1
- 238000004513 sizing Methods 0.000 claims 1
- 238000002604 ultrasonography Methods 0.000 claims 1
- 239000000853 adhesive Substances 0.000 abstract description 5
- 230000001070 adhesive effect Effects 0.000 abstract description 5
- 238000000926 separation method Methods 0.000 abstract description 4
- 238000000206 photolithography Methods 0.000 abstract description 2
- 238000009776 industrial production Methods 0.000 abstract 1
- 239000002086 nanomaterial Substances 0.000 description 10
- 238000003848 UV Light-Curing Methods 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 230000006378 damage Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
Landscapes
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
Abstract
<b /><b />本发明公开了一种纳米压印技术过程中的脱模方法,先将纳米压印胶材料涂覆于衬底上,形成压印胶层;然后将模板压入压印胶层;待压印胶层固化定型后,在模板上部利用超声波发射装置向模板发射超声波,以辅助模板和压印成型的胶层分离,移去模板,完成脱模过程。本发明与现有技术相比解决了纳米压印技术脱模过程中由于模板和胶层的黏聚力而导致的已成型纳米压印结构严重变形、撕裂和脱模力过大等问题,使压印后的图案传递与光刻完全一致,并有效地降低了脱模力,大大的提高了脱模的成功率,使大规模的产业化生产成为可能。
<b /><b />The invention discloses a demoulding method in the process of nano-imprinting technology. First, the nano-imprinting adhesive material is coated on the substrate to form an embossing adhesive layer; then the template is pressed into the Embossing adhesive layer; after the embossing adhesive layer is cured and shaped, use an ultrasonic transmitter on the upper part of the template to emit ultrasonic waves to the template to assist the separation of the template and the embossed adhesive layer, remove the template, and complete the demoulding process. Compared with the prior art, the present invention solves the problems of severe deformation, tearing and excessive demoulding force of the formed nano-imprint structure caused by the cohesive force of the template and the adhesive layer during the demoulding process of the nano-imprinting technology. The pattern transfer after embossing is exactly the same as that of photolithography, and the release force is effectively reduced, the success rate of release is greatly improved, and large-scale industrial production becomes possible.
Description
技术领域 technical field
本发明涉及一种纳米压印技术过程中的脱模方法,属于微纳加工领域。 The invention relates to a demoulding method in the process of nano-imprint technology, which belongs to the field of micro-nano processing.
背景技术 Background technique
纳米压印技术最早于20世纪90年代中期由美国Princeton大学NanostructureLab的StephenY.Chou教授等针对传统的光刻工艺受到曝光波长的限制,无法进一步获得更小尺寸这一缺点而提出的。该技术以其低成本、高分辨率、工艺过程简单等优点,引起了各国研究人员的广泛关注。目前,成功证明了通过纳米压印这项技术可获得最小尺寸为5nm的特征结构。这项技术被广泛应用在光学、电子学、生物学等众多领域,被誉为十大可改变世界的科技之一。 Nanoimprint technology was first proposed in the mid-1990s by Professor Stephen Y. Chou of the Nanostructure Lab of Princeton University in the United States, aiming at the disadvantage of the traditional photolithography process being limited by the exposure wavelength and unable to obtain a smaller size. Due to its low cost, high resolution, simple process and other advantages, this technology has attracted extensive attention of researchers from all over the world. At present, it has been successfully demonstrated that nanoimprinting technology can obtain feature structures with a minimum size of 5nm. This technology is widely used in optics, electronics, biology and many other fields, and is known as one of the top ten technologies that can change the world.
纳米压印技术主要可分为热压印与紫外光固化压印两种类型。纳米热压印技术通常采用热塑性高分子聚合物如聚甲基丙烯酸甲酯(PMMA)作为压印胶层材料,通过加热使高分子聚合物熔融、软化,然后对模板施加外力荷载,将模板上的纳米结构图案压印在熔融的胶层上,待胶层固化、定型后,移去模板。紫外光固化压印技术采用紫外光固化预聚物作为压印胶材料,由于该材料具有流动性好,粘度低的优点,不需要外力荷载或需要极小的外力荷载就可以使模板上的纳米结构图案压印在胶层上,然后通过紫外光照射使其快速固化、定型,最后移去模板。 Nanoimprinting technology can be mainly divided into two types: thermal imprinting and UV curing imprinting. Nano-hot embossing technology usually uses thermoplastic polymers such as polymethyl methacrylate (PMMA) as the material of the imprinting adhesive layer. The polymer is melted and softened by heating, and then an external force load is applied to the template to place it on the template. The pattern of the nanostructure is imprinted on the molten adhesive layer, and after the adhesive layer is cured and shaped, the template is removed. The UV curing imprinting technology uses UV curing prepolymer as the imprinting adhesive material. Because the material has the advantages of good fluidity and low viscosity, it can make the nanometer on the template The structural pattern is embossed on the adhesive layer, and then it is quickly cured and shaped by ultraviolet light irradiation, and finally the template is removed.
在上述两种纳米压印技术中,为了使模板与胶层实现分离,都是通过对模板施加拉力荷载进行脱模,尽管定型的胶层固化后,胶层与模板的黏聚力有所下降,即使黏聚力有所降低,也需要在模板上施加很大的拉力,极容易使模板的纳米结构脱离胶层的纳米结构时导致相互损伤,特别是容易造成已成型的纳米结构严重变形、撕裂,直接导致压印失败。目前的技术通常采用在模板的纳米结构图案表面涂覆一层高分子抗黏层来降低黏聚力,减少脱模过程中的相互损伤,但是效果不够理想,特别是不能有效地防止对已压印成形纳米结构的破坏。 In the above two nanoimprinting technologies, in order to separate the template from the adhesive layer, the mold is demolded by applying a tensile load to the template, although the cohesion between the adhesive layer and the template decreases after the finalized adhesive layer is cured. , even if the cohesion is reduced, it is necessary to apply a large pulling force on the template, which can easily cause the nanostructures of the template to separate from the nanostructures of the adhesive layer and cause mutual damage, especially easily causing severe deformation of the formed nanostructures. Tearing directly leads to imprint failure. The current technology usually uses a layer of polymer anti-sticking layer on the surface of the nanostructure pattern of the template to reduce the cohesion and reduce the mutual damage during the demoulding process, but the effect is not ideal, especially it cannot effectively prevent the pressure on the pressed surface. Destruction of printed nanostructures.
发明内容 Contents of the invention
本发明的目的就是为了解决现有纳米压印技术脱模过程中由于模板和胶层的黏聚力而导致的已成型的纳米压印结构严重变形、撕裂和脱模力过大等问题,通过提供一种超声波辅助脱模的方法,以实现脱模质量的显著提高和脱模力的降低。 The purpose of the present invention is to solve the problems of severe deformation, tearing and excessive demoulding force of the formed nano-imprint structure caused by the cohesion between the template and the adhesive layer during the demoulding process of the existing nano-imprint technology. By providing a method of ultrasonically assisted demoulding, a significant improvement in demoulding quality and a reduction in demoulding force can be achieved.
为了实现上述目的,本发明采用如下的解决方案:一种纳米压印技术过程中的脱模方法,先将纳米压印胶材料涂覆于衬底上,形成压印胶层;然后将模板压入压印胶层;待压印胶层固化定型后,在模板上部利用超声波发射装置向模板发射超声波,以辅助模板和压印成型的胶层分离,移去模板,完成脱模过程。 In order to achieve the above object, the present invention adopts the following solution: a demoulding method in the process of nano-imprinting technology, first coating the nano-imprinting adhesive material on the substrate to form an embossing adhesive layer; then pressing the template Insert the embossed adhesive layer; after the embossed adhesive layer is cured and shaped, use an ultrasonic transmitter on the upper part of the template to emit ultrasonic waves to the template to assist the separation of the template and the embossed adhesive layer, remove the template, and complete the demoulding process.
上述技术方案中,所述模板上部超声波发生装置所发射的超声波作用于整个脱模过程。 In the above technical solution, the ultrasonic wave emitted by the ultrasonic generating device on the upper part of the template acts on the whole demoulding process.
上述技术方案中,所述模板是由硅、二氧化硅、氧化硅、金属等硬质材料中的一种制成的刚性模板。 In the above technical solution, the template is a rigid template made of one of hard materials such as silicon, silicon dioxide, silicon oxide, and metal.
上述技术方案中,所述刚性模板的纳米结构图案表面涂有一层高分子抗黏层。从而在压印过程中,提高模板的耐久性,增加模板的使用次数。 In the above technical solution, the surface of the nanostructure pattern of the rigid template is coated with a polymer anti-sticking layer. Therefore, in the imprinting process, the durability of the template is improved, and the number of times of use of the template is increased.
上述技术方案中,所述纳米压印胶材料为紫外光固化纳米压印胶、甲基丙烯酸甲酯中的一种。 In the above technical solution, the nano-imprint adhesive material is one of UV-curable nano-imprint adhesive and methyl methacrylate.
上述技术方案中,所述的纳米压印技术包括采用热压印或者紫外光固化压印等以刚性模板和衬底为组合的纳米压印技术。 In the above technical solution, the nano-imprinting technology includes a combination of a rigid template and a substrate using thermal embossing or UV-curing imprinting.
本发明的工作原理为:利用超声波作为机械波的物理特性,当对模板施加超声波时,由于刚性模板和柔性压印胶层之间的弹性模量相差很大,所以模板和胶层对超声波的吸收能力是不同的,从而超声波会对这两种材料产生完全不同的作用效果,进而引起模板和胶层产生不同的振动而造成相对位移,模板和胶层的相对位移会使模板和胶层之间的黏聚力大幅下降或变为零,极小的脱模力就可以实现模板和胶层的分离,并获得零缺陷的纳米结构图案。 The working principle of the present invention is: using ultrasonic waves as the physical characteristics of mechanical waves, when ultrasonic waves are applied to the template, due to the large difference in elastic modulus between the rigid template and the flexible embossing adhesive layer, the absorption of ultrasonic waves by the template and the adhesive layer The capabilities are different, so that the ultrasonic wave will have completely different effects on the two materials, which will cause different vibrations between the template and the adhesive layer and cause relative displacement. The relative displacement of the template and the adhesive layer will cause a gap between the template and the adhesive layer. The cohesive force of the film is greatly reduced or becomes zero, and the separation of the template and the adhesive layer can be achieved with a very small release force, and a zero-defect nanostructure pattern can be obtained.
附图说明 Description of drawings
图1为本发明纳米压印技术过程中脱模方法的结构示意图。其中(1)超声波发射装置;(2)模板;(3)压印胶层;(4)衬底。 Fig. 1 is a structural schematic diagram of the demoulding method in the nanoimprinting process of the present invention. Among them (1) ultrasonic emitting device; (2) template; (3) embossed adhesive layer; (4) substrate.
具体实施方式 detailed description
下面结合附图对本发明作进一步描述。 The present invention will be further described below in conjunction with the accompanying drawings.
本发明以纳米热压印技术过程中超声波辅助脱模为具体实施例。 The present invention takes ultrasonic-assisted demoulding in the process of nano hot embossing technology as a specific embodiment.
参见图1所示,一种纳米热压印技术过程中超声波辅助脱模方法,先将纳米压印聚合物涂覆于衬底上,加热使其熔融、软化,形成压印胶层3;然后将模板2压入压印胶层3;待压印胶层3固化定型后,在模板2上部利用超声波发射装置1向模板2发射超声波,以辅助模板2和成型的压印胶层3分离,移去模板2,完成脱模过程。 Referring to Fig. 1 , an ultrasonic-assisted demoulding method in the process of nano-hot embossing technology, the nano-imprint polymer is first coated on the substrate, heated to melt and soften it, and an embossed adhesive layer 3 is formed; then Press the template 2 into the embossed rubber layer 3; after the embossed rubber layer 3 is cured and shaped, use the ultrasonic emission device 1 on the upper part of the template 2 to emit ultrasonic waves to the template 2 to assist the separation of the template 2 and the formed embossed rubber layer 3, Remove template 2 to complete the demoulding process.
所述模板2上部超声波发射装置1所发射的超声波作用于整个脱模过程。 The ultrasonic waves emitted by the ultrasonic emitting device 1 on the upper part of the template 2 act on the entire demoulding process.
所述模板2是由二氧化硅为材料制成的刚性模板。刚性模板的纳米结构图案表面涂有一层高分子抗黏层。从而在压印过程中,提高模板的耐久性,增加模板的使用次数。 The template 2 is a rigid template made of silicon dioxide. The surface of the nanostructure pattern of the rigid template is coated with a polymer anti-sticking layer. Therefore, in the imprinting process, the durability of the template is improved, and the number of times of use of the template is increased.
所述纳米压印胶层3材料为甲基丙烯酸甲酯。 The material of the nano-imprint adhesive layer 3 is methyl methacrylate.
所述超声波发射装置1和模板2之间是刚性连接,可以看成是一体的,在超声波发射装置1的上部施加脱模荷载,模板2和超声波发射装置1产生相同的位移,模板2脱离压印胶层3。 The ultrasonic emitting device 1 and the template 2 are rigidly connected, which can be regarded as an integral body. When a demoulding load is applied on the upper part of the ultrasonic emitting device 1, the template 2 and the ultrasonic emitting device 1 produce the same displacement, and the template 2 breaks away from the pressure. Rubber layer 3.
以上所述是本发明的一种实施方式,同样本发明还可应用于紫外光固化压印等以刚性模板和衬底为组合的纳米压印技术。应当指出:在本发明基本原理的基础上,该领域的技术人不需要付出创造性劳动就可以做出的各种改进和变形都应视为本发明的保护范围。 The above is an embodiment of the present invention, and the present invention can also be applied to nano-imprinting technologies such as UV-curing imprinting that combine a rigid template and a substrate. It should be pointed out that: on the basis of the basic principles of the present invention, various improvements and deformations that can be made by those skilled in the art without creative efforts should be regarded as the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510378214.7A CN105319838A (en) | 2015-07-02 | 2015-07-02 | Demolding method in nanoimprint technology process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510378214.7A CN105319838A (en) | 2015-07-02 | 2015-07-02 | Demolding method in nanoimprint technology process |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105319838A true CN105319838A (en) | 2016-02-10 |
Family
ID=55247539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510378214.7A Pending CN105319838A (en) | 2015-07-02 | 2015-07-02 | Demolding method in nanoimprint technology process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105319838A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106495088A (en) * | 2016-09-22 | 2017-03-15 | 北京科技大学 | A kind of method of template hot pressing for wiener body structure surface pattern |
CN110355988A (en) * | 2018-04-11 | 2019-10-22 | 长春工业大学 | A kind of roller of two-dimension vibration auxiliary is to plane hot stamping device and method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101590714A (en) * | 2008-05-28 | 2009-12-02 | 深圳市凯意科技有限公司 | A kind of ultrasonic wave demoulding equipment and release method |
-
2015
- 2015-07-02 CN CN201510378214.7A patent/CN105319838A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101590714A (en) * | 2008-05-28 | 2009-12-02 | 深圳市凯意科技有限公司 | A kind of ultrasonic wave demoulding equipment and release method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106495088A (en) * | 2016-09-22 | 2017-03-15 | 北京科技大学 | A kind of method of template hot pressing for wiener body structure surface pattern |
CN110355988A (en) * | 2018-04-11 | 2019-10-22 | 长春工业大学 | A kind of roller of two-dimension vibration auxiliary is to plane hot stamping device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101477304B (en) | Stamping method for copying high-resolution nano-structure on complicated shape surface | |
JP4580411B2 (en) | Soft mold and manufacturing method thereof | |
TWI313788B (en) | Pattern replication with intermediate stamp | |
CN101923279B (en) | Nano imprint template and preparation method thereof | |
CN102591140B (en) | Nano-imprinting method | |
CN106444275A (en) | Roll-to-roll ultraviolet nano-imprinting device and method for preparing super-hydrophobic surface micro-structure by using roll-to-roll ultraviolet nano-imprinting device | |
CN104849957B (en) | A kind of SU-8 glue electrohydraulic dynamic jet stream nozzle needle manufacturing methods with nanoscale channel | |
CN113238456B (en) | An imprinting method using a flexible mold core with varying thickness | |
TW200848956A (en) | Devices and methods for pattern generation by ink lithography | |
CN102012633A (en) | Method for making self-supporting structure of nano fluid system based on SU-8 photoresist | |
WO2016051928A1 (en) | Imprint template and method for manufacturing same | |
CN102060262B (en) | Method for manufacturing micro-nano fluid control system by using low-pressure bonding technology | |
CN103279009A (en) | Flexible ultraviolet light imprinting composite template and preparation method thereof | |
Yi et al. | Roll-to-roll UV imprinting lithography for micro/nanostructures | |
CN102508410A (en) | Composite nanometer impressing mold plate with sandwich structure and preparation method of composite nanometer impressing mold plate | |
JP2010074163A (en) | Method of manufacturing mold for nano imprint, and pattern forming method using mold for nano imprint | |
KR101416625B1 (en) | Manufacturing method of polymer mold for forming fine pattern, polymer mold manufactured by the same, and method for forming fine pattern using the smae | |
CN102303841A (en) | Method for forming micro-nano composite structure by micro-spraying-printing and dielectrophoretic force | |
Sun | Recent progress in low temperature nanoimprint lithography | |
CN105319838A (en) | Demolding method in nanoimprint technology process | |
KR101086083B1 (en) | Fabrication of transparent roll mold for ultraviolet roll nanoimprint lithography | |
CN105372931A (en) | Nanoimprinting method | |
KR102128175B1 (en) | Method of forming both sided pattern of nanostructure using nanoimprint method | |
CN205485273U (en) | Supplementary shedder in nanometer impression technique | |
CN207594514U (en) | A kind of novel solid thermoprint label process units |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160210 |