CN105247654B - 选择性离子弹射、传输和富集的装置和方法以及质量分析器 - Google Patents

选择性离子弹射、传输和富集的装置和方法以及质量分析器 Download PDF

Info

Publication number
CN105247654B
CN105247654B CN201280035778.5A CN201280035778A CN105247654B CN 105247654 B CN105247654 B CN 105247654B CN 201280035778 A CN201280035778 A CN 201280035778A CN 105247654 B CN105247654 B CN 105247654B
Authority
CN
China
Prior art keywords
electrode
ion
voltage
linear ion
hydrazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201280035778.5A
Other languages
English (en)
Other versions
CN105247654A (zh
Inventor
徐伟
熊行创
江游
黄泽建
方向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Publication of CN105247654A publication Critical patent/CN105247654A/zh
Application granted granted Critical
Publication of CN105247654B publication Critical patent/CN105247654B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/422Two-dimensional RF ion traps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/22Electrostatic deflection

Abstract

一种选择性离子弹射、传输和富集的装置和方法以及质量分析器。在线性离子阱(1)的一端设有中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3),中心线电极(DC1)通过线性离子阱的中心,中心线电极(DC1)位于顶部线电极(DC2)和底部线电极(DC3)的中间,在中心线电极(DC1)上施加第一直流电压,在顶部线电极(DC2)和底部线电极(DC3)上施加第二直流电压,第一直流电压与第二直流电压的极性相反;给线性离子阱的y电极施加双极性交流电压,以激发其共振频率与交流电压信号的频率匹配的离子,被激发的离子受到顶部线电极(DC2)和底部线电极(DC3)上施加的电压的作用;在选中的离子通过中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3)之后,去除选中的离子在y和z方向上的过量的动能。

Description

选择性离子弹射、传输和富集的装置和方法以及质量分析器
技术领域
本发明涉及一种质谱仪,更具体地涉及选择性离子弹射、传输、富集的装置和方法以及质量分析器。
背景技术
质谱法(MS)作为一种定性与定量的方法已经广泛应用于化学、生物、环境科学、制药行业、空间探测等领域。质谱仪不仅可以测量离子的质荷比(m/z),而且可以通过串联MS检测离子结构。截止到目前为止,已经发明了若干质量分析仪器,例如,磁质谱(sector),飞行时间(TOF),四极离子阱,傅立叶变换离子回旋共振(FT-ICR)单元(cell)以及轨道离子阱(Orbitrap)。除了用作质量分析器,四极离子阱还用作离子存储、离子导引以及离子反应装置,并与其它质量分析器组合使用从而构成功能强大的混合MS仪器。
MS应用的发展给MS仪器带来了新的需求与挑战。当处理并分析离子时,空间电荷效应不可避免并且该效应已经在各种方面限制了MS仪器的性能。首先,离子阱容量是空间电荷效应的直接结果。库仑力也可以在离子阱内展宽并漂移离子运动频率,这将导致质量漂移以及MS分辨率降低。此外,由于离子阱饱和,有过量的离子,所以,线性动态范围将受到损失,以及可能检测不到低丰度离子。在一些离子/离子和离子/分子反应过程中,需要控制总的反应时间,从而可以最小化所需的子离子的进一步的反应,由此将限制反应效率。
为了最小化空间电荷效应,目前线性离子阱和离子阱阵列被广泛应用以便增加离子捕获能力。已经提出了具有双曲线形的电极以及圆形电极的线性离子阱并将其应用在商业离子阱质谱仪中,这在很大程度上改进了基于离子阱的MS系统的捕获能力和线性动态范围。为了增加单个离子阱的离子捕获能力,特别是小型化的离子阱的捕获能力,已经以阵列方式放置了多个几何形状相同的离子阱。阵列中的每一个离子阱在相同条件下正常工作,相同条件例如是相同的缓冲气压以及弹射(ejection)条件。最近,已经开发了离子阱阵列,其中阵列中的每个组件发挥不同功能。双压力(dual pressure)线性离子阱技术利用两个线性离子阱以便增加离子捕获效率和质量分析速度。已经应用双线性离子阱以便最小化对MS分辨率产生影响的空间电荷效应。开发了三维离子阱阵列,既,离子海绵设备,以及描述了设备内的有趣的功能,例如,3D离子分布操纵以及离子色谱。但是,现有的线性离子阱和离子阱阵列还没有选择性离子富集的功能,尤其是连续性的选择性离子富集。此外,现有选择性离子弹射和传输方案的功耗大、效率低。
发明内容
本发明所要解决的技术问题是克服现有技术的上述缺点,提供在离子阱阵列中选择性离子弹射、传输(selective ion transfer)和富集(accumulation)的方案以及质量分析器,,以便最小化空间电荷效应以及便于离子/离子,离子/分子反应。
根据本发明的第一方面,提供了一种在线性离子阱中质量选择性弹射离子的装置,包括:设置在线性离子阱的一端的离子控制电极,离子控制电极包括中心线电极、顶部线电极和底部线电极,中心线电极、顶部线电极和底部线电极平行于x轴,中心线电极位于顶部线电极与底部线电极之间,中心线电极通过线性离子阱的中心,顶部线电极与中心线电极的距离与底部线电极与中心线电极的距离相同,在中心线电极上施加第一直流电压,在顶部线电极和底部线电极上施加第二直流电压,第一直流电压与第二直流电压的极性相反;直流电压源,用于给所述中心线电极、顶部线电极和底部线电极提供直流电压;交流电压源,用于给线性离子阱的y电极施加双极性交流电压,以激发其共振频率与交流电压信号的频率匹配的离子,被激发的离子为选中的离子,选中的离子具有y方向上足够大的运动以感受到顶部线电极和底部线电极上施加的电压的作用,从而从z轴弹射选中的离子,使选中的离子离开线性离子阱。
顶部线电极与中心线电极的距离或底部线电极与中心线电极的距离等于线性离子阱中心至y电极距离(y0)。
当捕获阳离子时,在中心线电极上施加正电压,在顶部线电极和底部线电极上施加负电压;当捕获阴离子时,在中心线电极上施加负电压,在顶部线电极和底部线电极上施加正电压;以便沿着z轴进行阳离子或阴离子弹射。
根据本发明的第二方面,提供了一种在线性离子阱中质量选择性弹射离子的方法,包括:在线性离子阱的一端设置平行于x轴的中心线电极、顶部线电极和底部线电极,中心线电极位于顶部线电极与底部线电极之间,中心线电极通过线性离子阱的中心,顶部线电极与中心线电极的距离与底部线电极与中心线电极的距离相同,在中心线电极上施加第一直流电压,在顶部线电极和底部线电极上施加第二直流电压,第一直流电压与第二直流电压的极性相反;
给线性离子阱的y电极施加双极性交流电压信号,以激发其共振频率与交流电压信号的频率匹配的离子,被激发的离子为选中的离子,选中的离子具有y方向上足够大的运动以感受到顶部线电极和底部线电极上施加的电压的作用,从而从z轴弹射选中的离子,使选中的离子离开线性离子阱。
根据本发明的第三方面,提供了一种在线性离子阱阵列中选择性离子传输和富集的装置,包括:线性离子阱阵列,该线性离子阱阵列包括第一线性离子阱(1)和第二线性离子阱(2);第一端盖电极和第二端盖电极,第一端盖电极设置在线性离子阱阵列的一端,第二端盖电极设置在线性离子阱阵列的另一端;位于第一线性离子阱和第二线性离子阱之间的离子控制电极(3),离子控制电极包括中心线电极、顶部线电极和底部线电极,中心线电极、顶部线电极和底部线电极平行于x轴,中心线电极位于顶部线电极与底部线电极之间,中心线电极通过线性离子阱的中心,顶部线电极与中心线电极的距离与底部线电极与中心线电极的距离相同,在中心线电极上施加第一直流电压,在顶部线电极和底部线电极上施加第二直流电压,第一直流电压与第二直流电压的极性相反;直流电压源,用于给第一线性离子阱、第二线性离子阱、中心线电极、顶部线电极和底部线电极提供直流电压;交流源,用于给线性离子阱的y电极施加双极性交流电压信号,以激发其共振频率与双极性交流电压信号的频率匹配的离子,被激发的离子为选中的离子,选中的离子具有y方向上足够大的运动以受到顶部线电极和底部线电极上施加的电压的作用,从而从z轴弹射子,离开第一线性离子阱;射频源给第一线性离子阱和第二线性离子阱提供射频电压;通过调整施加在第一线性离子阱和第二线性离子阱上的射频电压、交流电压和直流电压信号以及调整施加在中心线电极、顶部线电极和底部线电极上的直流电压实现选中的离子从第一线性离子阱传输到第二线性离子阱。
可选择地,第一线性离子阱具有尺寸:x0=y0=5mm,z0=40mm;第二线性离子阱具有尺寸:x0=y0=5mm,z0=80mm;第一线性离子阱与第二线性离子阱之间的距离是2mm,以及中心线电极、顶部线电极和底部线电极具有0.2mm的直径;顶部线电极和底部线电极离中心线电极的距离等于线性离子阱的尺寸y0或不等于y0;其中x0表示线性离子阱中心至x电极距离,y0表示线性离子阱中心至y电极距离,z0表示线性离子阱的纵向尺寸;在第一线性离子阱上施加恒定的射频电压和在第二线性离子阱上施加恒定的射频电压,第一线性离子阱上的射频电压和第二线性离子阱上的射频电压设置为278V;频率为230kHz、零-峰值为0.2V的双极性交流电压施加在第一线性离子阱上,施加在第二线性离子阱上的双极性交流电压AC2为=0;将6V直流电压施加在中心线电极上,以及将-2.5V直流电压施加在顶部线电极与底部线电极上;将-5V偏置电压施加在第二线性离子阱上。
可选择地,第一线性离子阱具有尺寸:x0=y0=5mm,z0=40mm;第二线性离子阱具有尺寸:x0=y0=5mm,z0=80mm;第一线性离子阱与第二线性离子阱之间的距离是2mm,以及中心线电极、顶部线电极和底部线电极具有0.2mm的直径;顶部线电极和底部线电极离中心线电极的距离等于线性离子阱的尺寸y0或不等于y0;其中x0表示线性离子阱中心至x电极距离,y0表示线性离子阱中心至y电极距离,z0表示线性离子阱的纵向尺寸;在y电极上施加频率为230kHz、零-峰值为0.4V的双极性交流电压的同时通过扫描施加在第一线性离子阱上的第一射频电压,从而在不同的时间传输不同质荷比的离子,施加在第一线性离子阱上的第一射频电压为200V/s,施加在第二线性离子阱上的第二射频电压和第一射频电压保持相同,施加在第二线性离子阱上的双极性交流电压为0,将6V的直流电压施加在中心线电极上,以及将-2.5V直流电压施加在顶部线电极与底部线电极上,将-5V偏置电压施加在第二线性阱上。
施加在第一线性离子阱上的交流电压为如下交流电压之一:单一频率的交流电压、宽频带的交流电压、多频带/多频的交流电压。所述离子为母离子或子离子。
中心线电极、顶部线电极和底部线电极为任何形状的导线或圆柱形导线,三个线电极位于两个离子阱之间的间隔的中间位置或者位于两个离子阱之间的任何位置。
所述在线性离子阱阵列中选择性离子传输和富集的装置还包括冷却离子装置,所述冷却离子装置用于在y方向上和/或z方向上冷却沿z轴从第一线性离子阱传输到第二线性离子阱的离子;所述冷却离子装置包括电压控制器和/或缓冲气体供给装置,所述电压控制器调整脉冲或扫描直流和/或AC2,以便去除传输到线性离子阱的离子的动能能量,防止传输到第二线性离子阱的离子返回到第一线性离子阱;所述缓冲气体供给装置为线性离子阱提供缓冲气体,缓冲气体用于在离子弹回到离子控制电极之前在y方向上和/或z方向上冷却传输到线性离子阱中的选中的离子。
施加在第二线性离子阱上的交流与施加在第一线性离子阱上的交流锁频,施加在第二线性离子阱上的交流与施加在第一线性离子阱上的交流相移180度,通过施加在第二线性离子阱上的交流去除传输到第二线性离子阱的离子的动能能量,以便防止离子传输回到第一线性离子阱。
根据本发明的第四方面,提供了一种在线性离子阱阵列中选择性离子传输和和富集的方法,包括:通过在线性离子阱的y电极上施加双极性AC信号以便在y方向上激发具有特定质荷比m/z的选中的离子,所述特定质荷比(m/z)的离子的共振频率与在线性离子阱的y电极上施加双极性AC信号的共振频率匹配;被激发的离子为选中的离子,选中的离子具有y方向上足够大的运动以受到设置在线性离子阱之间的离子控制电极的顶部线电极DC2和底部线电极上施加的电压的作用,从z轴弹射选中的离子并使选中的离子离开线性离子阱,在选中的离子通过离子控制电极之后,去除选中的离子在y和z方向上的过量的动能以便在第二线性离子阱#2中捕获离子。
根据本发明的第五方面,提供了一种质量分析器,包括:线性离子阱阵列,线性离子阱阵列包括二个或者二个以上的线性离子阱;端盖电极,线性离子阱阵列的两端各设有一个端盖电极;离子控制电极,离子控制电极设置在线性离子阱之间,离子控制电极包括中心线电极、顶部线电极和底部线电极,中心线电极、顶部线电极和底部线电极平行于X轴,中心线电极位于顶部线电极与底部线电极之间,中心线电极通过线性离子阱的中心,顶部线电极与中心线电极的距离与底部线电极与中心线电极的距离相同,在中心线电极上施加第一直流电压,在顶部线电极和底部线电极上施加第二直流电压,第一直流电压与第二直流电压的极性相反;射频电压源,用于给所述线性离子阱提供射频;直流电压源,用于给所述线性离子阱、中心线电极、顶部线电极和底部线电极提供直流电压;交流电压源,用于给线性离子阱的Y电极施加双极性交流电压电压,以激发其共振频率与双极性交流电压的共振频率匹配的离子,被激发的离子为选中的离子,选中的离子具有y方向上足够大的运动以受到顶部线电极和底部线电极上施加的电压的作用;通过调整施加在所述线性离子阱上的射频电压、交流电压和直流电压以及施加在中心线电极、顶部线电极和底部线电极的直流电压实现选中的离子从前一级线性离子阱沿Z轴传输到与前一级线性离子阱相邻的后一级线性离子阱。
在所述质量分析器的线性离子阱阵列的后端可以增加轨道阱和/或飞行时间(TOF)设备。
本发明具有以下优点和有益效果:本发明通过在线性离子阱的一端或在线性离子阱阵列之间设置离子控制电极并控制施加在线性离子阱上的射频电压、交流电压、直流偏置以及施加在离子控制电极的直流电压,能实现在线性离子阱阵列中选择性离子弹射、传输和富集,最小化了空间电荷效应以及便于离子/离子,离子/分子反应。此外,本发明的选择性离子弹射、传输和富集的方案比现有技术的功耗小并且比现有技术的效率高。
附图说明
应说明的是,下面描述中的附图仅示意地示出了一些实施例,并没有包括所有可能的实施例。
图1a是根据本发明的实施例的具有从z轴质量选择性弹射离子能力的线性离子阱的示意图;图1b是根据本发明的实施例的离子控制电极在x-y平面的结构示意图;
图2是根据本发明实施例的具有离子控制电极的线性离子阱阵列的结构示意图;
图3a是由两个线性离子阱构成的离子阱阵列的示意图,其中在两个线性离子阱之间具有离子控制电极;图3b表示势阱形成于阱阵列的中心;图3c表示势阱形成于离开阱阵列的轴的位置;
图4是连续离子传输的示意波形;
图5a是m/z为180的连续离子传输的示例;图5b是m/z为181的连续离子传输的示例;图5c是m/z为184的连续离子传输的示例;
图6a是m/z为180的离散离子传输的示例;图6b是m/z为181的离散离子传输的示例;图6c是m/z为184的离散离子传输的示例;
图7是离散离子传输使用的示意波形;
图8是不同离子传输和富集策略的示例;
图9是在气相离子反应过程中稀疏的子离子富集的示例。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图描述本发明的示例性实施例的技术方案。显然,所描述的实施例只是本发明的一部分实施例,而不是全部的实施例。所描述的实施例仅用于图示说明,而不是对本发明范围的限制。基于本发明的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了叙述方便,本文中所称的“x轴”、“y轴”、“z轴”与图1、图2和图3a中的“x轴”、“y轴”、“z轴”方向一致,“x”、“y”、“z”的定义与空间直角坐标系定义相同,y电极为线性离子阱的沿y轴方向对称分布的一对电极,x电极为线性离子阱的沿x轴方向对称分布的一对电极,V表示电压的单位“伏”;但并不对本发明的结构起限定作用。
从具有双曲线电极的线性离子阱的Z轴质量选择性弹射离子
离子在四极电场内具有特征运动频率(characteristic motion frequencies),其中最低频率成分被称为共振频率(secular frequency)。具有不同质荷比m/z的离子将具有不同的共振频率。在线性离子阱中,在x-y平面施加四极RF电场,DC电场用于捕获z轴方向上的离子。在线性离子阱中,离子将具有x-y平面上的共振频率。因此,通常在2D离子阱(具有双曲线电极的线性离子阱)和矩形离子阱(rectilinear ion trap)的x-y平面质量选择性弹射离子。借助使用边缘电场,从具有圆形电极的线性离子阱的z轴质量选择性弹射离子。
为了便于在离子阱阵列中离子选择性传输,提出了从具有双曲线电极的线性离子阱的z轴质量选择性弹射离子的一种方案。图1示出了这种方案的一个实施例。如图1a所示,在离子阱1的一端放置端盖电极4,在离子阱1的另一端放置离子控制电极3,离子控制电极3包括三个平行于x轴的线电极,三个线电极分别为中心线电极DC1、顶部线电极DC2和底部线电极DC3。中心线电极DC1位于顶部线电极DC2与底部线电极DC3之间,中心线电极DC1通过离子阱的中心,顶部线电极DC2与中心线电极DC1的垂直距离与底部线电极DC3与中心线电极DC1的垂直距离相同,例如,顶部线电极DC2与中心线电极DC1的距离或底部线电极与中心线电极DC1的距离等于线性离子阱中心至y电极5距离(y0)。在中心线电极上施加第一直流电压,在顶部线电极DC2和底部线电极DC3上施加第二直流电压,第一直流电压与第二直流电压的极性相反。例如,由直流电压源给中心线电极DC1、顶部线电极DC2和底部线电极DC3提供直流电压。
当捕获阳离子时,可以在中心线电极DC1上施加正电压,在顶部线电极DC2和底部线电极DC3上施加负电压。在没有激发的情况下,离子云将具有沿着离子阱z轴的圆柱形,阳离子将受到由中心线电极DC1产生的捕获电势的作用。为了沿着z轴质量选择性弹射离子,可以在离子阱的y电极上施加双极性交流(AC)电压以便激发其共振频率与双极性AC电压信号的频率匹配的离子。y电极为线性离子阱的沿y轴方向对称分布的一对电极。由交流电压源给离子阱的y电极施加双极性AC电压信号。被激发的离子为选中的离子。使用合适的激发电压,选中的离子将具有y方向上足够大的运动以受到顶部线电极DC2和底部线电极DC3上施加的负电压的作用,从而从z轴弹射选中的离子,使选中的离子离开离子阱。离子检测器7可以检测从z轴弹射并离开离子阱的离子。
当捕获阴离子时,可以在中心线电极DC1上施加负电压,以及在顶部线电极DC2和底部线电极DC3上施加正电压,以便沿着z轴进行离子弹射。
在给定射频电压RF或某一射频电压RF的情况下,具有不同质荷比m/z的离子具有不同的共振频率,,选中的离子的共振频率与施加在离子阱的y电极上的AC电压信号的共振频率匹配,所以可以沿着z轴质量选择性弹射离子,即沿着z轴弹射具有与施加在离子阱的y电极上的AC信号的共振频率对应的质荷比m/z的离子。当改变射频电压RF时,同一质荷比m/z的离子的共振频率会随之改变。
在离子阱阵列中离子选择性传输和富集
基于从线性离子阱的z轴质量选择性弹射离子,可以实现在离子阱阵列中离子选择性传输和富集。图2示出了离子阱阵列,该离子阱阵列包括两个线性离子阱和离子控制电极3。离子控制电极3位于线性离子阱之间,离子控制电极3用于控制离子弹射和传输。两个线性离子阱包括第一线性离子阱1和第二线性离子阱2。图2中的离子控制电极3的结构与图1中的离子控制电极的结构相同,包括三个平行于x轴的线电极,三个线电极分别为中心线电极DC1、顶部线电极DC2和底部线电极DC3。如图2所示,每一线性离子阱1、2包括y电极5和x电极6,y电极为线性离子阱的沿y轴方向对称分布的一对电极,x电极为线性离子阱的沿x轴方向对称分布的一对电极。
图3(a)示出了图2所示的离子阱阵列的截面视图和放置在离子阱阵列两端的端盖电极4。在这种设置中,有两个端盖电极4和在这两个离子阱之间的离子控制电极3。
作为示例,第一离子阱1具有尺寸:x0=y0=5mm,z0=40mm;第二离子阱2具有尺寸:x0=y0=5mm,z0=80mm。这两个离子阱之间的距离是2mm,其中x0是离子阱中心至x电极距离(即离子阱的尺寸),y0是离子阱中心至y电极距离,z0是离子阱的纵向尺寸。“离子阱中心至x电极距离”指的是“离子阱中心至x电极双曲面顶点的距离”,“离子阱中心至y电极距离”指的是“离子阱中心至y电极双曲面顶点的距离。
例如,三个线电极可以位于两个离子阱之间的间隔的中间位置。可选择地,三个线电极也可以位于两个离子阱之间的任何位置。
作为实例,三个线电极可以是三根平行导线,线电极可以为任何形状,例如线电极可以为圆柱形,线电极具有0.2mm的直径。这三个线电极用作离子弹射和传输的控制电极,从而通过调整在这些电极上的适当的电压获得选择性离子传输。
中心线电极DC1放在中间,顶部线电极DC2和底部线电极DC3离中心线电极的距离例如为离子阱的尺寸x0,顶部线电极DC2和底部线电极DC3离中心线电极的距离也可以大于或小于离子阱的尺寸x0。
为了获得来自第一离子阱1至第二离子阱2的选择性离子传输,首先通过在第一离子阱1的y电极上施加双极性AC信号以便在y方向上激发具有特定质荷比m/z的选中的离子,所述特定质荷比m/z的离子的共振频率与在第一离子阱的y电极上施加的双极性AC信号的频率匹配,在中心线电极上施加第一直流电压,在顶部线电极DC2和底部线电极DC3上施加第二直流电压,第一直流电压与第二直流电压的极性相反;之后沿着第一离子阱1的z轴向第二离子阱2弹射选中的离子。在离子通过离子控制电极3之后,去除离子在y和z方向上的过量动能以便在第二离子阱2中捕获离子。
可以在离子阱1和离子阱2上施加不同RF、AC和DC信号从而便于离子传输。将合适的DC电压施加在离子阱上,可以获得如图3(b)和(c)所示的势阱。图3(b)表示在离子阱阵列的中心形成的势阱,图3(c)表示在离开离子阱阵列的中心轴的位置形成的势阱。沿着离子阱阵列(x=0,y=0)的中心轴,形成沿着z轴的两个离子捕获区域,以及通过离子控制电极形成的势壁(potential wall)来分离该两个捕获区域。当离子具有y方向上的较大的运动时,离子将经受如图3(c)所示的势阱,在该势阱条件下第一离子阱1的离子可以传输到第二离子阱2的内部。
可以按照两种方式实现离子传输:(1)连续离子传输;(2)离散离子传输。
(1)连续离子传输
在连续离子传输模式中,通过在离子阱上设置合适的射频(RF)电压,交流(AC)电压和直流(DC)电压,只要选中的或关注的离子在第一离子阱1出现,就将该离子传输到第二离子阱2。为了获得连续离子传输,可以在第一离子阱1上施加恒定(constant)射频(RF)电压RF1,其中离子将具有固定的共振频率。通过在第一离子阱1上施加双极性交流电压AC1以及在第二离子阱2上施加直流偏置DC以吸引离子向第二离子阱2传输,将选中的离子传输到第二离子阱2。
图4示出了可以用于连续离子传输的波形。在图4中,RF1为在第一离子阱1上施加的恒定射频电压RF1,RF2为在第二离子阱2上施加的恒定射频电压,AC1为在第一离子阱1的y电极上施加的双极性交流电压,AC2为在第二离子阱2的y电极上施加的双极性交流电压AC2。
在连续离子传输的模拟中,例如,将恒定的RF1和RF2设置为278V,AC1的频率为230kHz、零-峰值为0.2V;AC2=0;将6V(伏)DC电压施加在中心线电极上,以及将-2.5V的DC施加在顶部线电极与底部线电极上;将-5V偏置电压施加在第二离子阱2上;将20V的电压加到第一离子阱1左侧的端盖电极4和第二离子阱2右侧的端盖电极4上,端盖电极4参见图3a。将氦气用作缓冲气体,压力为3mTorr。图5a、图5b、图5c示出了模拟结果,其中选择第一离子阱1中的具有m/z为180的离子以连续方式传输至第二离子阱2。
图5a是m/z为180的连续离子传输的示例;图5b是m/z为181的连续离子传输的示例;图5c是m/z为184的连续离子传输的示例。当RF1=278V时,m/z为180的离子具有30kHz的共振频率,该共振频率与AC1的频率匹配或者接近于AC1的频率。因此,在施加AC1时,如图5a底部所示,m/z为180的这些离子将被激发到y方向上的更大轨道上。在y方向上具有小的离子运动幅度时,离子受到由中心线电极提供的捕获电压的作用,在本例中捕获电压(即施加在中心线电极上的电压)为6V。当离子运动幅度增加时,离子将受到由顶部线电极与底部线电极提供的引出电压(extractivevoltage)的作用并传输到第二离子阱2。所以,在本例中,在第一离子阱的m/z为180的离子的共振频率与AC1的频率匹配并被激发到y方向上较大轨道,即m/z为180的离子具有y方向上足够大的运动,从而,m/z为180的离子可以受到顶部线电极DC2和底部线电极DC3上施加的DC电压作用,从而从z轴弹射,离开第一离子阱,传输到第二离子阱2。但是,m/z为181的离子和m/z为184的离子的共振频率与AC1的频率不匹配,在y方向上只有小的离子运动幅度,没有受到由顶部线电极与底部线电极上施加的作用作用,所以没有传输到第二离子阱。
(2)离散离子传输
对于离散离子传输,可以将选中的或关注的离子在不同的时间段传输到第二离子阱2,或者选择不同的离子在不同的时间段传输。在每一个时间段,可以按照与连续模式相似的方式实现离子传输。可选地,可以扫描双极性AC信号和/或离子共振频率以便根据离子的m/z比顺序进行传输。或者,可选地,可以扫描RF信号和/或离子共振频率,以便根据离子的m/z比顺序进行传输。图7示出了离散离子传输实施例使用的示意波形。
例如,AC1的频率230kHz,AC1的零-峰值为0.4V,在施加AC1激发信号的同时通过200V/s的扫描RF1在不同的时间传输不同的离子,其中AC2=0,RF1和RF2保持相同,在端盖电极4上的DC信号和在离子控制电极上的DC信号与图5a、图5b、图5c中所使用的相同,图6a、图6b、图6c示出在此情况下的离散离子传输的示例。图6a是m/z为180的离散离子传输的示例;图6b是m/z为181的离散离子传输的示例;图6c是m/z为184的离散离子传输的示例。在这种情况下,通过扫描RF1和RF2将m/z为180的离子和m/z为181的离子顺序传输到第二离子2。
为了将传输到第二离子阱2中的离子富集,需要在离子弹回到图2所示的离子控制电极之前在y方向上和/或z方向上冷却传输到第二离子阱2的离子。这在连续离子传输模式中非常关键,其中施加在第一离子阱1上的RF电压RF1和施加在第二离子阱2上的RF电压RF2是恒定的。在这些条件下,如果不冷却离子,离子将返回第一离子阱1,这将降低它们的存留机会,诸如通过与离子控制电极的线电极的碰撞而消失。在图5a、5b、5c和图6a、6b、6c所示的模拟结果中,缓冲气体已经在冷却方面起到了非常重要的作用。除了缓冲气体,可以调整脉冲或扫描DC和/或AC2,以便防止离子传输回第一离子阱1。例如,AC2可以与AC1锁频或频率相同,但是AC2与AC1相移180度,参见图4和图7,从而利用AC2去除传输到第二离子阱2的离子的动能能量。需要仔细控制电信号,从而离子不会再次从AC2获取动能能量。
在上述示例中,在离子阱阵列中存在两个离子阱,但本发明并不局限于此,可以包括更多的离子阱或质量分析器。例如,可以使用三个或者更多个线性离子阱,以及可以使用上述提出的相同方法在这些离子阱中弹射、传输、富集离子。此外,可以在离子阱阵列的后端(例如图3a所示第二离子阱2的右边)增加高性能的质量分析器用于高精度/分辨率分析,例如,轨道阱和飞行时间(TOF)设备。
基于不同应用的不同方案
在离子阱阵列中的离子富集方法可用于复杂样本分析,特别是用于复杂样本中的低丰度离子分析。生物样本通常含有丰富的化学成分,例如血液、尿样以及细胞样本,很多情况下化学物质之间的浓度会有很大的不同。在很多的例子中,低丰度离子可以携带重要信息。然而,由于动态范围局限,分辨率局限以及离子阱中的空间电荷效应,在质谱中可能观测不到低丰度离子。
对于不同的应用,不同的离子传输和富集策略可以便于化学分析并提高分析精确度,灵敏度以及分辨率。例如,对于具有特定m/z的离子,对于具有多个m/z的离子组可以进行离子传输与富集。
图8示出了不同离子传输和富集方案的示例,对于具有图8所示的范围内的m/z的离子组可以进行离子传输与富集。
如图8所示,当在第一离子阱的y电极上施加单一频率的AC信号时,在第一离子阱中的一种质荷比m/z的离子传输到第二离子阱,这种质荷比m/z的离子的共振频率与施加在离子阱的y电极上的AC信号的共振频率匹配,这种离子可以为低丰度离子。
如图8所示,当在第一离子阱的y电极上施加宽频带的AC信号时,在第一离子阱中的三种质荷比m/z的离子传输到第二离子阱,宽频带的AC信号中具有与这些质荷比m/z的离子的共振频率匹配的频率分量,这些离子可以包括低丰度离子。
如图8所示,当在第一离子阱的y电极上施加多频带/多频的AC信号时,在第一离子阱中的三种质荷比m/z的离子传输到第二离子阱,所施加的AC信号中具有与这些质荷比m/z的离子的共振频率匹配的频率分量,这些离子可以包括低丰度离子。
本发明的另一应用在于:在碎裂与气相离子反应过程中富集信息性子离子,以便提高碎裂和反应速率。碎裂和反应是动态过程,在该动态过程中,子离子可能经历进一步的碎裂或者反应。在一些其它的情况下,信息性子离子可能丰度较低。传输并富集这些子离子将保护这些离子免受进一步裂解。如果不将子离子传输并富集,子离子会经历进一步的反应,而消失。将子离子传输走,可使子离子可免受进一步反应、裂解,从而对子离子进行了保护,可以长时间的对母离子进行反应,而不影响检测子离子。因此,可以完全执行母离子(前驱离子)的反应,这将增加反应速率并改进分析灵敏度。图9描述了子离子富集的示意图,图9示出的是在气相离子反应过程中稀疏的子离子富集的示例。如图9所示,标记的子离从第一离子阱1传输到了第二离子阱2,所述标记的子离子的共振频率与施加在第一离子阱的y电极上的AC信号的频率匹配。例如,所述标记的子离子是第一离子阱中的第二代子离子。
以上对本发明的实施例的描述仅用于说明本发明的技术方案,而不是对本发明范围的限制,本发明并不限于所公开的这些实施例,本领域的技术人员可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,而这些修改或替换都应落入本发明的保护范围。

Claims (16)

1.一种在线性离子阱中质量选择性弹射离子的装置,包括:
设置在线性离子阱的一端的离子控制电极,离子控制电极包括中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3),中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3)平行于x轴,中心线电极(DC1)位于顶部线电极(DC2)与底部线电极(DC3)之间,中心线电极(DC1)通过线性离子阱在X-Y平面上的中心,顶部线电极(DC2)与中心线电极(DC1)的距离与底部线电极(DC3)与中心线电极(DC1)的距离相同,在中心线电极(DC1)上施加第一直流电压,在顶部线电极(DC2)和底部线电极(DC3)上施加第二直流电压,第一直流电压与第二直流电压的极性相反;
直流电压源,用于给所述中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3)提供直流电压;
交流电压源,用于给线性离子阱的y电极施加双极性交流电压,以激发其共振频率与交流电压信号的频率匹配的离子,被激发的离子为选中的离子,选中的离子具有y方向上足够大的运动以感受到顶部线电极(DC2)和底部线电极(DC3)上施加的电压的作用,从而从z轴弹射选中的离子,使选中的离子离开线性离子阱。
2.如权利要求1所述的在线性离子阱中质量选择性弹射离子的装置,其特征在于:顶部线电极(DC2)与中心线电极(DC1)的距离或底部线电极(DC3)与中心线电极(DC1)的距离等于线性离子阱中心至y电极距离(y0)。
3.如权利要求1或2所述的在线性离子阱中质量选择性弹射离子的装置,其特征在于:当捕获阳离子时,在中心线电极(DC1)上施加正电压,在顶部线电极(DC2)和底部线电极(DC3)上施加负电压;当捕获阴离子时,在中心线电极(DC1)上施加负电压,在顶部线电极(DC2)和底部线电极(DC3)上施加正电压;以便沿着z轴进行阳离子或阴离子弹射。
4.一种在线性离子阱中质量选择性弹射离子的方法,包括:
在线性离子阱的一端设置平行于x轴的中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3),中心线电极(DC1)位于顶部线电极(DC2)与底部线电极(DC3)之间,中心线电极(DC1)通过线性离子阱在X-Y平面上的中心,顶部线电极(DC2)与中心线电极(DC1)的距离与底部线电极(DC3)与中心线电极(DC1)的距离相同,在中心线电极上施加第一直流电压,在顶部线电极和底部线电极上施加第二直流电压,第一直流电压与第二直流电压的极性相反,
给线性离子阱的y电极施加双极性交流电压信号,以激发其共振频率与交流电压信号的频率匹配的离子,被激发的离子为选中的离子,选中的离子具有y方向上足够大的运动以感受到顶部线电极(DC2)和底部线电极(DC3)上施加的电压的作用,从而从z轴弹射选中的离子,使选中的离子离开线性离子阱。
5.一种在线性离子阱阵列中选择性离子传输和富集的装置,包括:
线性离子阱阵列,该线性离子阱阵列包括第一线性离子阱(1)和第二线性离子阱(2);
第一端盖电极和第二端盖电极,第一端盖电极设置在线性离子阱阵列的一端,第二端盖电极设置在线性离子阱阵列的另一端;
位于第一线性离子阱(1)和第二线性离子阱(2)之间的离子控制电极(3),离子控制电极(3)包括中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3),中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3)平行于x轴,中心线电极(DC1)位于顶部线电极(DC2)与底部线电极(DC3)之间,中心线电极(DC1)通过第一线性离子阱在X-Y平面上的中心,顶部线电极(DC2)与中心线电极(DC1)的距离与底部线电极(DC3)与中心线电极(DC1)的距离相同,在中心线电极上施加第一直流电压,在顶部线电极和底部线电极上施加第二直流电压,第一直流电压与第二直流电压的极性相反;
直流电压源,用于给第一线性离子阱、第二线性离子阱、中心线电极、顶部线电极和底部线电极提供直流电压;
交流电压源,用于给线性离子阱的y电极施加双极性交流电压信号,以激发其共振频率与双极性交流电压信号的频率匹配的离子,被激发的离子为选中的离子,选中的离子具有y方向上足够大的运动以受到顶部线电极和底部线电极上施加的电压的作用,从而从z轴弹射离子,离开第一线性离子阱;
射频电压源,用于给第一线性离子阱和第二线性离子阱提供射频电压;通过调整施加在第一线性离子阱和第二线性离子阱上的射频电压、交流电压和直流电压信号以及调整施加在中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3)上的直流电压实现选中的离子从第一线性离子阱传输到第二线性离子阱。
6.如权利要求5所述的在线性离子阱阵列中选择性离子传输和富集的装置,其特征在于:第一线性离子阱具有尺寸:x0=y0=5mm,z0=40mm;第二线性离子阱具有尺寸:x0=y0=5mm,z0=80mm;第一线性离子阱与第二线性离子阱之间的距离是2mm,以及中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3)具有0.2mm的直径;顶部线电极(DC2)和底部线电极(DC3)离中心线电极的距离等于线性离子阱的尺寸y0或不等于y0;其中x0表示线性离子阱中心至x电极距离,y0表示线性离子阱中心至y电极距离,z0表示线性离子阱的纵向尺寸;
在第一线性离子阱上施加恒定的第一射频电压(RF1)和在第二线性离子阱上施加恒定的第二射频电压(RF2),第一线性离子阱上的第一射频电压(RF1)和第二线性离子阱上的第二射频电压(RF2)设置为278V;频率为230kHz、零-峰值为0.2V的双极性交流电压(AC1)施加在第一线性离子阱上,施加在第二线性离子阱上的双极性交流电压(AC2)为0;将6V直流电压施加在中心线电极上,以及将-2.5V直流电压施加在顶部线电极与底部线电极上;将-5V偏置电压施加在第二线性离子阱上。
7.如权利要求5所述的在线性离子阱阵列中选择性离子传输和富集的装置,其特征在于:第一线性离子阱具有尺寸:x0=y0=5mm,z0=40mm;第二线性离子阱具有尺寸:x0=y0=5mm,z0=80mm;第一线性离子阱与第二线性离子阱之间的距离是2mm,以及中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3)具有0.2mm的直径;顶部线电极(DC2)和底部线电极(DC3)离中心线电极的距离等于线性离子阱的尺寸y0或不等于y0;其中x0表示线性离子阱中心至x电极距离,y0表示线性离子阱中心至y电极距离,z0表示线性离子阱的纵向尺寸;
在y电极上施加频率为230kHz、零-峰值为0.4V的双极性交流电压的同时通过200V/s扫描施加在第一线性离子阱上的第一射频电压(RF1),从而在不同的时间传输不同质荷比的离子,施加在第二线性离子阱上的第二射频电压(RF2)和第一射频电压(RF1)保持相同,施加在第二线性离子阱上的双极性交流电压(AC2)为0,将6V的直流电压施加在中心线电极上,以及将-2.5V直流电压施加在顶部线电极与底部线电极上,将-5V偏置电压施加在第二线性阱上。
8.如权利要求5-7中的任一权利要求所述的在线性离子阱阵列中选择性离子传输和富集的装置,其特征在于:施加在第一线性离子阱上的双极性交流电压(AC1)为如下交流电压之一:单一频率的交流电压、宽频带的交流电压、多频带/多频的交流电压。
9.如权利要求5-7中的任一权利要求所述的在线性离子阱阵列中选择性离子传输和富集的装置,其特征在于:所述离子为母离子或子离子。
10.如权利要求5-7中的任一权利要求所述的在线性离子阱阵列中选择性离子传输和富集的装置,其特征在于:中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3)为任何形状的导线,三个线电极位于两个离子阱之间的任何位置。
11.如权利要求10所述的在线性离子阱阵列中选择性离子传输和富集的装置,其特征在于:中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3)为圆柱形导线,三个线电极位于两个离子阱之间的间隔的中间位置。
12.如权利要求5-7中的任一权利要求所述的在线性离子阱阵列中选择性离子传输和富集的装置,其特征在于:还包括冷却离子装置,所述冷却离子装置用于在y方向上和/或z方向上冷却沿z轴从第一线性离子阱传输到第二线性离子阱的离子;所述冷却离子装置包括电压控制器和/或缓冲气体供给装置,所述电压控制器调整脉冲或扫描直流和/或施加在第二线性离子阱上的双极性交流电压,以便去除传输到线性离子阱的离子的动能能量,防止传输到第二线性离子阱的离子返回到第一线性离子阱;所述缓冲气体供给装置为线性离子阱提供缓冲气体,缓冲气体用于在离子弹回到离子控制电极之前在y方向上和/或z方向上冷却传输到线性离子阱中的选中的离子。
13.如权利要求12所述的在线性离子阱阵列中选择性离子传输和富集的装置,其特征在于施加在第二线性离子阱上的双极性交流电压(AC2)与施加在第一线性离子阱上的双极性交流电压(AC1)锁频,施加在第二线性离子阱上的双极性交流电压(AC2)与施加在第一线性离子阱上的双极性交流电压(AC1)相移180度,通过施加在第二线性离子阱上的双极性交流电压(AC2)去除传输到第二线性离子阱的离子的动能能量,以便防止离子传输回到第一线性离子阱。
14.一种在线性离子阱阵列中选择性离子传输和富集的方法,包括:
在线性离子阱的一端设置平行于x轴的中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3),中心线电极(DC1)位于顶部线电极(DC2)与底部线电极(DC3)之间,中心线电极(DC1)通过线性离子阱在X-Y平面上的中心,顶部线电极(DC2)与中心线电极(DC1)的距离与底部线电极(DC3)与中心线电极(DC1)的距离相同;
通过在线性离子阱的y电极上施加双极性AC信号以便在y方向上激发具有特定质荷比m/z的选中的离子,所述特定质荷比(m/z)的离子的共振频率与在线性离子阱的y电极上施加双极性AC信号的共振频率匹配;被激发的离子为选中的离子,选中的离子具有y方向上足够大的运动以受到设置在线性离子阱之间的离子控制电极的顶部线电极和底部线电极上施加的电压的作用,从z轴弹射选中的离子并使选中的离子离开线性离子阱,在选中的离子通过离子控制电极之后,去除选中的离子在y和z方向上的过量的动能以便在第二线性离子阱中捕获离子。
15.一种质量分析器,包括:
线性离子阱阵列,线性离子阱阵列包括二个或者二个以上的线性离子阱;
端盖电极,线性离子阱阵列的两端各设有一个端盖电极;
离子控制电极,离子控制电极设置在线性离子阱之间,离子控制电极包括中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3),中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3)平行于x轴,中心线电极(DC1)位于顶部线电极(DC2)与底部线电极(DC3)之间,中心线电极(DC1)通过前一级线性离子阱在X-Y平面上的中心,顶部线电极(DC2)与中心线电极(DC1)的距离与底部线电极(DC3)与中心线电极(DC1)的距离相同,在中心线电极上施加第一直流电压,在顶部线电极和底部线电极上施加第二直流电压,第一直流电压与第二直流电压的极性相反;
射频电压源,用于给所述线性离子阱提供射频电压;
直流电压源,用于给所述线性离子阱、中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3)提供直流电压;
交流电压源,用于给线性离子阱的y电极施加双极性交流电压,以激发其共振频率与双极性交流电压的共振频率匹配的离子,被激发的离子为选中的离子,选中的离子具有y方向上足够大的运动以受到顶部线电极(DC2)和底部线电极(DC3)上施加的电压的作用;通过调整施加在所述线性离子阱上的射频电压、交流电压和直流电压以及施加在中心线电极(DC1)、顶部线电极(DC2)和底部线电极(DC3)的直流电压实现选中的离子从前一级线性离子阱沿z轴传输到与前一级线性离子阱相邻的后一级线性离子阱。
16.如权利要求15所述的质量分析器,其特征在于:在线性离子阱阵列的后端增加轨道阱和/或飞行时间(TOF)设备。
CN201280035778.5A 2012-11-13 2012-11-13 选择性离子弹射、传输和富集的装置和方法以及质量分析器 Expired - Fee Related CN105247654B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/001534 WO2014075204A1 (zh) 2012-11-13 2012-11-13 选择性离子弹射、传输和富集的装置和方法以及质量分析器

Publications (2)

Publication Number Publication Date
CN105247654A CN105247654A (zh) 2016-01-13
CN105247654B true CN105247654B (zh) 2016-12-07

Family

ID=50730446

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280035778.5A Expired - Fee Related CN105247654B (zh) 2012-11-13 2012-11-13 选择性离子弹射、传输和富集的装置和方法以及质量分析器

Country Status (2)

Country Link
CN (1) CN105247654B (zh)
WO (1) WO2014075204A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108198741B (zh) * 2017-11-27 2021-05-07 上海裕达实业有限公司 一种辅助调节电压ac的施加方式

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021056395A1 (zh) * 2019-09-27 2021-04-01 瑞湾科技(珠海)有限公司 一种导线电极离子控制装置拉伸器及导线张力控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695724A (en) * 1983-10-14 1987-09-22 Seiko Instruments & Electronics Ltd. AC-modulation quadrupole mass spectrometer
EP0817239A1 (en) * 1996-07-02 1998-01-07 Hitachi, Ltd. Ion trapping mass spectrometry apparatus
CA2234754A1 (en) * 1997-05-16 1998-11-16 Mds Inc. Multiple reaction monitoring mass spectrometer and method
CN1833300A (zh) * 2003-03-19 2006-09-13 萨默费尼根有限公司 在离子总体中获取多个母离子的串联质谱分析数据

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7022298A (en) * 1997-05-12 1998-12-08 Mds Inc. Rf-only mass spectrometer with auxiliary excitation
CN1788327A (zh) * 2003-01-10 2006-06-14 珀杜研究基金会 直线式离子阱及质量分析器系统和方法
CN101063672A (zh) * 2006-04-29 2007-10-31 复旦大学 离子阱阵列
JP5449701B2 (ja) * 2008-05-28 2014-03-19 株式会社日立ハイテクノロジーズ 質量分析計

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695724A (en) * 1983-10-14 1987-09-22 Seiko Instruments & Electronics Ltd. AC-modulation quadrupole mass spectrometer
EP0817239A1 (en) * 1996-07-02 1998-01-07 Hitachi, Ltd. Ion trapping mass spectrometry apparatus
CA2234754A1 (en) * 1997-05-16 1998-11-16 Mds Inc. Multiple reaction monitoring mass spectrometer and method
CN1833300A (zh) * 2003-03-19 2006-09-13 萨默费尼根有限公司 在离子总体中获取多个母离子的串联质谱分析数据

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108198741B (zh) * 2017-11-27 2021-05-07 上海裕达实业有限公司 一种辅助调节电压ac的施加方式

Also Published As

Publication number Publication date
WO2014075204A1 (zh) 2014-05-22
CN105247654A (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
US7547878B2 (en) Neutral/Ion reactor in adiabatic supersonic gas flow for ion mobility time-of-flight mass spectrometry
EP2697638B1 (en) High duty cycle ion storage/ion mobility separation mass spectrometer
EP1956635B1 (en) Ion guide device, ion reactor, and mass analyzer
Enke Reactive intermediates: MS investigations in solution
CN104823045B (zh) 用于横流离子迁移谱分析的设备和方法
US7429729B2 (en) Multi-beam ion mobility time-of-flight mass spectrometer with bipolar ion extraction and zwitterion detection
US8227748B2 (en) Confining positive and negative ions in a linear RF ion trap
US9368336B2 (en) Ion trap-based apparatus and method for analyzing and detecting bipolar ions
US8389932B2 (en) Stacked-electrode peptide-fragmentation device
CN103354203A (zh) 直线式离子阱及质量分析器系统和方法
CN103262205A (zh) 离子检测
US9070542B2 (en) Selective ionization using high frequency filtering of reactive ions
GB2477007A (en) Electrostatic trap mass spectrometer
CN105957798A (zh) 一种基于离子阱质量分析器的红外光解离光谱仪
US7514674B2 (en) Octapole ion trap mass spectrometers and related methods
CN102651301A (zh) 线形离子存储器和飞行时间质量分析器串联的质谱仪
CN105247654B (zh) 选择性离子弹射、传输和富集的装置和方法以及质量分析器
CN1788327A (zh) 直线式离子阱及质量分析器系统和方法
CN105470096A (zh) 一种离子漏斗和质谱检测系统
CN109103065B (zh) 用于分子离子反应的线性离子阱复合质谱分析系统及方法
CN210245452U (zh) 一种离子诱导喷雾离子化装置
CN110459459A (zh) 一种离子诱导喷雾离子化方法和装置
US20220155318A1 (en) Background reduction in top-down antibody analysis
CN210668276U (zh) 一种多段式四极杆电极系统
CN104576288B (zh) 一种离子连续收集装置和方法、以及离子富集系统和方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20161207

Termination date: 20211113