CN105242236B - Sensor position uncertainties bearing calibration in broadband signal super-resolution direction finding - Google Patents
Sensor position uncertainties bearing calibration in broadband signal super-resolution direction finding Download PDFInfo
- Publication number
- CN105242236B CN105242236B CN201510628070.6A CN201510628070A CN105242236B CN 105242236 B CN105242236 B CN 105242236B CN 201510628070 A CN201510628070 A CN 201510628070A CN 105242236 B CN105242236 B CN 105242236B
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- msup
- mover
- mtr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 claims abstract description 50
- 238000012937 correction Methods 0.000 claims abstract description 22
- 238000003491 array Methods 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims description 73
- 239000013598 vector Substances 0.000 claims description 39
- 238000005070 sampling Methods 0.000 claims description 17
- 238000009795 derivation Methods 0.000 claims description 6
- 230000001419 dependent effect Effects 0.000 claims description 5
- 238000005315 distribution function Methods 0.000 claims description 4
- 230000009466 transformation Effects 0.000 claims description 3
- 241000764238 Isis Species 0.000 claims 1
- 238000013459 approach Methods 0.000 claims 1
- 238000006467 substitution reaction Methods 0.000 claims 1
- 238000005457 optimization Methods 0.000 abstract description 7
- 238000012545 processing Methods 0.000 abstract description 7
- 239000012482 calibration solution Substances 0.000 abstract 1
- 230000004927 fusion Effects 0.000 abstract 1
- 238000011068 loading method Methods 0.000 abstract 1
- 235000019800 disodium phosphate Nutrition 0.000 description 39
- 238000001514 detection method Methods 0.000 description 10
- 239000013078 crystal Substances 0.000 description 6
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Sensor position uncertainties bearing calibration in broadband signal super-resolution direction finding, the present invention relates to the bearing calibration of array error present in broadband signal super-resolution direction finding.The problem of existing operand is big, convergence rate is slow and the existing alignment technique to more small-bore arrays is not suitable for broadband signal when the present invention is in order to solve the problems, such as the optimization of existing sensor position uncertainties bearing calibration solution high dimensional nonlinear.The present invention utilizes majorized function corresponding to the signal structure on each frequency, it is openness using the spatial domain of signal afterwards, optimization processing is iterated to the function on each frequency by management loading method respectively, finally carrying out fusion to the information on all frequencies estimates direction of arrival of signal.This method can effectively realize the array error correction in the presence of sensor position uncertainties, and the speed of service of algorithm is effectively improved using multi-disc digital signal processor.The present invention is applied to the correction field of array error present in broadband signal super-resolution direction finding.
Description
Technical Field
The invention relates to a method for correcting array errors existing in broadband signal super-resolution direction finding.
Background
Super-resolution direction finding is an important research content in array signal processing, and has a wide application in the fields of radio monitoring, internet of things, electronic countermeasure and the like. Most of the current direction-finding methods are based on the premise of accurately mastering the array flow pattern. In an actual direction-finding system, due to the disturbance of the position of the array element or inaccurate measurement, a position error of the array element is often caused during direction-finding estimation, which directly causes the performance of many super-resolution direction-finding methods to deteriorate or even fail, so that it is necessary to correct the errors.
The correction methods of the parameter class can be generally classified into active correction and self-correction. Active correction can be performed by off-line estimation of the array perturbation parameters by arranging auxiliary sources with known orientations in space, while self-correction methods generally estimate the orientation of a spatial source and the array perturbation parameters jointly according to some optimization function. Friedlander B and Weiss A J provide an array self-correction technology for alternately and iteratively estimating information source orientation, mutual coupling between array elements and array element gain and phase disturbance based on a subspace principle. However, the technology needs to solve the optimization problem of high-dimensional nonlinearity, the operation amount is large, the convergence rate is low, and the array disturbance parameters have the fuzzy problem for the uniform linear array. The Mavrychev and other scholars research partial correction technologies of the multi-small-aperture array, and effectively solve the problem that a single small-aperture array cannot meet the multi-target resolution and orientation precision requirements. Since the constructed estimator does not need to accurately know the position information among the sub-arrays, the influence of false peaks and position estimation errors on the azimuth estimation is avoided. However, they are only suitable for narrow-band signals, and published documents are not rare for array element position error correction technology in super-resolution direction finding of wide-band signals.
Disclosure of Invention
The invention aims to solve the problems of large computation amount and low convergence speed when the existing array element position error correction method is used for solving the high-dimensional nonlinear optimization and the problem that the existing correction technology for a multi-small-aperture array is not suitable for broadband signals.
The array element position error correction method in the broadband signal super-resolution direction finding comprises the following steps:
step 1: establishing an array signal model containing array element position errors:
when array element position error exists in the array, the frequency point fiThe output of the array at (1) can be expressed as
X'(fi)=A'(fi,α)S(fi)+N(fi),i=1,2,…,J (12)
A'(fiα) is the frequency point f when array element position error existsiAn array flow pattern matrix above; s (f)i) Is a signal sk(t) a signal vector matrix after fourier transformation; n (f)i) Is noise nm(t) noise vector matrix after Fourier transform, mean 0, variance μ2(fi);
Time frequency point f with array element position erroriA received signal covariance matrix of
R'(fi)=E{X'(fi)(X'(fi))H},i=1,2,…,J (13)
A(fi,α)=[a(fi,α1),…,a(fi,αk),…,a(fi,αK)]Is the frequency point f under the ideal conditioniArray flow pattern matrix ofi,αk) Is the frequency point f under the ideal conditioniAn array steering vector for the k-th signal;
when the position of the m-th array element has an error △ dmWhen the method is used, the method can be equivalent to the method that azimuth-dependent phase disturbance is introduced into the array steering vector, namely
Wherein, W (f)i,αk) Is a frequency point fiUp and down directionαkArray element position error disturbance matrix of (a') (f)i,αk) Time frequency point f for indicating array element position erroriAn array steering vector for the k-th signal;
from direction α for the k signalkWhen the m-th array element is reached, the signal source propagation delay error introduced by the disturbance of the position error of the array element is introduced; the time frequency point f with array element position erroriAn array flow pattern matrix of
A'(fi,α)=[a'(fi,α1),…,a'(fi,αk),…,a'(fi,αK)]
(17)
=W(fi,α)·A(fi,α)
Wherein, W (f)i,α)=[W(fi,α1),…,W(fi,αk),…,W(fi,αK)]Representing frequency point fiAn array element position error disturbance matrix is arranged;
step 2: estimating array signal parameters containing array element position errors:
the search space is first divided into a number of discrete angular gridsCorresponding to the L directions in which the signal may arrive; thereby obtaining the frequency point fiSparse representation of an over-array streaming matrix
Wherein,is a frequency point fiThe array steering vector of the last ith sparse signal can correspondingly obtain the time frequency point f with array element position erroriSparse representation of an over-array streaming matrix Is a frequency point fiSparse representation of the position error perturbation matrix of the upper array element,is a frequency point fiArray element position error disturbance matrixes of the upper and the l-th sparse signals,when the ith sparse signal reaches the mth array element, the signal source propagation delay error is introduced by the disturbance of the position error of the array element,for existence of array element position error time frequency point fiThe array steering vector of the last ith sparse signal can obtain the time frequency point f with array element position erroriSparse representation of upper array output signal
Wherein, Λ (f)i) Is a parameter only related to the original signal and is not related to errors;is Λ (f)i) A sparse representation of (c); w (f)i)=[△d2,…,△dM]TRepresenting the position error disturbance vector of the array element, taking the 1 st array element as a position reference point,△d2,…,△dMare respectively frequency points fiDeviation of true and measured positions of the upper 2 nd to Mth array elements from the signal frequency fiIrrelevant;
has a covariance matrix of
In the formula (18)Is S (f)i) Is represented by a sparse representation of (a) a,
wherein,is a sparse matrix, is S (f)iKp) is used in the sparse representation,contains only K non-zero elements,is composed ofIf and only ifTime of flightWherein the elements are not all zero and haveThus, it isCan be regarded as S (f)i) A matrix obtained by adding a plurality of 0 elements;
is provided (f)i)=[1(fi),…,l(fi),…,L(fi)]TIs composed ofThe variance of the medium element reflects the energy of the signal, i.e. has
Wherein, Σ (f)i)=diag((fi) That is to sayObedience mean 0, variance (f)i) (ii) a gaussian distribution of;
due to the fact thatCan be regarded as S (f)i) A vector obtained by adding a plurality of 0 elements, so (f)i) Contains K non-zero elements and has K<<L is according to (f)i) In combination with w (f)i) Sum noise variance μ2(fi) Estimate outThus reconstructing the original signal and correcting the error;
as can be seen from equation (18), the frequency f when there is an array element position erroriHas a probability density of
The combination of formula (18), (20) and (21) gives
Wherein, IMIs a unit matrix of dimension M × M;
the Expectation Maximization (EM) method is adopted to pair w (f)i)、μ2(fi) Andl(fi) Performing iterative estimation to obtain an estimated valueAndis correspondingly obtainedAnd
and step 3: by usingAndcorrecting array errors and solving the signal arrival direction;
let X be the vector formed by the sum of all frequency point signals received by the array in a period of observation time, and because the signals of each frequency point have statistical independence, the joint probability density of the signals received by each frequency point is
The logarithm at both ends of the pair formula (35) is
Thus, by maximizing equation (36), the direction of arrival of the signal, i.e., the estimated value of the direction of arrival of the signal, can be obtainedK is 1,2, …, K, i.e. can pass
Obtaining;
by derivation have
Wherein Re {. is the real part of the solution {. cndot.); omega-k、Respectively expressed from Ω andremoving the k-th element from the first element; k is 1,2, …, K;
according to△ d is found from the expression2,…,△dMThen, W (f) is obtained from the equations (16) and (15)i,αk) And W (f)iΩ), then array correction is performedDe a' (f)i,αk) And A' (f)i,Ω-k) (ii) a Based on the above parameters and equation (38), an estimate of the direction of arrival of the array-corrected signal can be obtained
The invention has the following beneficial effects:
the invention provides a broadband signal super-resolution direction finding error correction method when array element position errors exist, which comprises the steps of constructing a corresponding optimization function by using signals on all frequency points, then performing iterative optimization processing on the functions on all the frequency points by using the space domain sparsity of the signals and a sparse Bayesian learning method, and finally fusing information on all the frequency points to estimate the arrival direction of the signals. The array error correction method can effectively realize array error correction when array element position errors exist, and when the signal-to-noise ratio is 10dB and the sampling fast beat number of each frequency point is 40, the accuracy can reach 0.6 degree/sigma.
The method of the invention can use a plurality of digital signal processors to process, and can effectively improve the running speed of the algorithm.
Drawings
FIG. 1 is a schematic diagram of a broadband signal super-resolution direction-finding array signal model;
FIG. 2 is a diagram of a broadband signal detection system;
FIG. 3 is a diagram of a broadband signal super-resolution direction-finding device according to a fourth embodiment;
FIG. 4 is a diagram of a broadband signal super-resolution direction-finding device according to a fifth embodiment;
fig. 5 is a diagram of a broadband signal super-resolution direction finding device according to a sixth embodiment.
Detailed Description
The first embodiment is as follows:
the array element position error correction method in the broadband signal super-resolution direction finding comprises the following steps:
step 1: establishing an array signal model containing array element position errors:
when array element position error exists in the array, the frequency point fiThe output of the array at (1) can be expressed as
X'(fi)=A'(fi,α)S(fi)+N(fi),i=1,2,…,J (12)
A'(fiα) is the frequency point f when array element position error existsiAn array flow pattern matrix above; s (f)i) Is a signal sk(t) a signal vector matrix after fourier transformation; n (f)i) Is noise nm(t) noise vector matrix after Fourier transform, mean 0, variance μ2(fi);
Time frequency point f with array element position erroriA received signal covariance matrix of
R'(fi)=E{X'(fi)(X'(fi))H},i=1,2,…,J (13)
A(fi,α)=[a(fi,α1),…,a(fi,αk),…,a(fi,αK)]Is the frequency point f under the ideal conditioniArray flow pattern matrix ofi,αk) Is the frequency point f under the ideal conditioniAn array steering vector for the k-th signal;
when the position of the m-th array element has an error △ dmWhen the method is used, the method can be equivalent to the method that azimuth-dependent phase disturbance is introduced into the array steering vector, namely
Wherein, W (f)i,αk) Is a frequency point fiUp and direction αkArray element position error disturbance matrix of (a') (f)i,αk) Time frequency point f for indicating array element position erroriAn array steering vector for the k-th signal;
from direction α for the k signalkWhen the m-th array element is reached, the signal source propagation delay error introduced by the disturbance of the position error of the array element is introduced; the time frequency point f with array element position erroriAn array flow pattern matrix of
A'(fi,α)=[a'(fi,α1),…,a'(fi,αk),…,a'(fi,αK)]
(17)
=W(fi,α)·A(fi,α)
Wherein, W (f)i,α)=[W(fi,α1),…,W(fi,αk),…,W(fi,αK)]Representing frequency point fiAn array element position error disturbance matrix is arranged;
step 2: estimating array signal parameters containing array element position errors:
the search space is first divided into a number of discrete angular gridsCorresponding letterL directions in which the number may arrive; thereby obtaining the frequency point fiSparse representation of an over-array streaming matrix
Wherein,is a frequency point fiThe array steering vector of the last ith sparse signal can correspondingly obtain the time frequency point f with array element position erroriSparse representation of an over-array streaming matrix Is a frequency point fiSparse representation of the position error perturbation matrix of the upper array element,is a frequency point fiArray element position error disturbance matrixes of the upper and the l-th sparse signals,when the ith sparse signal reaches the mth array element, the signal source propagation delay error is introduced by the disturbance of the position error of the array element,for existence of array element position error time frequency point fiThe array steering vector of the last ith sparse signal can obtain the time frequency point f with array element position erroriSparse representation of upper array output signal
Wherein, Λ (f)i) Is a parameter only related to the original signal and is not related to errors;is Λ (f)i) A sparse representation of (c); w (f)i)=[△d2,…,△dM]TRepresenting the position error disturbance vector of the array element, taking the 1 st array element as the position reference point, △ d2,…,△dMAre respectively frequency points fiDeviation of true and measured positions of the upper 2 nd to Mth array elements from the signal frequency fiIrrelevant;
has a covariance matrix of
In the formula (18)Is S (f)i) Is represented by a sparse representation of (a) a,
wherein,is a sparse matrix, is S (f)iKp) is used in the sparse representation,contains only K non-zero elements,is composed ofThe first one ofElements, if and only ifTime of flightWherein the elements are not all zero and haveThus, it isCan be regarded as S (f)i) A matrix obtained by adding a plurality of 0 elements;
is provided (f)i)=[1(fi),…,l(fi),…,L(fi)]TIs composed ofThe variance of the medium element reflects the energy of the signal, i.e. has
Wherein, Σ (f)i)=diag((fi) That is to sayObedience mean 0, variance (f)i) (ii) a gaussian distribution of;
due to the fact thatCan be regarded as S (f)i) A vector obtained by adding a plurality of 0 elements, so (f)i) Contains K non-zero elements and has K<<L is according to (f)i) In combination with w (f)i) Sum noise variance μ2(fi) Estimate outThus reconstructing the original signal and correcting the error;
as can be seen from equation (18), the frequency f when there is an array element position erroriHas a probability density of
The combination of formula (18), (20) and (21) gives
Wherein, IMIs a unit matrix of dimension M × M;
the Expectation Maximization (EM) method is adopted to pair w (f)i)、μ2(fi) Andl(fi) Performing iterative estimation to obtain an estimated valueAndis correspondingly obtainedAnd
and step 3: by usingAndcorrecting array errors and solving the signal arrival direction;
let X be the vector formed by the sum of all frequency point signals received by the array in a period of observation time, and because the signals of each frequency point have statistical independence, the joint probability density of the signals received by each frequency point is
The logarithm at both ends of the pair formula (35) is
Thus, by maximizing equation (36), the direction of arrival of the signal, i.e., the estimated value of the direction of arrival of the signal, can be obtainedK is 1,2, …, K, i.e. can pass
Obtaining;
by derivation have
Wherein Re {. is the real part of the solution {. cndot.); omega-k、Respectively expressed from Ω andremoving the k-th element from the first element; k is 1,2, …, K;
according to△ d is found from the expression2,…,△dMThen, W (f) is obtained from the equations (16) and (15)i,αk) And W (f)iΩ), then array correction is performed to find a' (f)i,αk) And A' (f)i,Ω-k) (ii) a Based on the above parameters and equation (38), an estimate of the direction of arrival of the array-corrected signal can be obtained
The second embodiment is as follows:
the specific steps of establishing an array signal model containing array element position errors in step 1 of the present embodiment are as follows:
step 1.1: establishing an ideal array signal model:
as shown in FIG. 1, K far-field broadband signals s are providedk(t), K is 1,2, …, K, and is incident on a broadband uniform linear array of M omnidirectional array elements, arriving at α ═ α1,…,αk,…,αK]The array element interval is d; far field broadband signal sk(t), broadband signal s for shortk(t);
Taking the 1 st array element as the phase reference point, ideally, the output of the m-th array element is expressed as
Wherein,representing the kth broadband signal sk(t) the time delay for reaching the mth array element relative to its arrival at the phase reference point, c is the propagation speed of the electromagnetic wave in vacuum, nm(t) Gaussian white noise received by the mth array element;
suppose the frequency range of the wideband signal is fLow,fHigh]The broadband signal is divided into J frequency points by using discrete Fourier transform, and the J frequency points are separated by a narrow-band filter bank, so that the output signal of the filter array of the ith group is expressed as
X(fi)=A(fi,α)S(fi)+N(fi),i=1,2,…,J (2)
Wherein f isLow≤fi≤fHigh,i=1,2,…,J;
Assuming at each frequency point fiHaving performed KP subsampling, X (f)i) Is expressed in matrix form as
X(fi)=[X(fi,1),…,X(fi,kp),…,X(fi,KP)],i=1,2,…,J (3)
Wherein, X (f)iKp) is X (f)i) The kp-th time data sampling matrix of (c),
X(fi,kp)=[X1(fi,kp),…,Xm(fi,kp),…,XM(fi,kp)]T,i=1,2,…,J, (4)
Xm(fikp) is the m-th array element at frequency point fiThe kp-th data sampling value obtained above;
A(fiα) is the ideal case frequency point fiThe array flow pattern matrix on the upper surface,
A(fi,α)=[a(fi,α1),…,a(fi,αk),…,a(fi,αK)],i=1,2,…,J, (5)
a(fi,αk) Is the frequency point f under the ideal conditioniThe array of the top k-th signal leads to the vector,
wherein,is the phase of the kth signal; j is a complex number flag;
S(fi)=[S(fi,1),…,S(fi,kp),…,S(fi,KP)],i=1,2,…,J, (8)
is a signal sk(t) a fourier transformed signal vector matrix, K being 1,2, …, K;
wherein, S (f)iKp) is S (f)i) The kp-th sub-sampling matrix of the signal,
S(fi,kp)=[S1(fi,kp),…Sk(fi,kp),…,SK(fi,kp)]Ti=1,2,…,J (9)
Sk(fikp) is the k signal at frequency fiThe kpth signal sampling value obtained above;
N(fi)=[N(fi,1),…,N(fi,kp),…,N(fi,KP)]i=1,2,…,J (10)
is noise nm(t) noise vector matrix after Fourier transform, mean 0, variance μ2(fi) (ii) a M is 1,2, …, M; wherein, N (f)iKp) is N (f)i) The kp-th time of the noise sampling matrix,
N(fi,kp)=[N1(fi,kp),…,Nm(fi,kp),…,NM(fi,kp)]Ti=1,2,…,J (11)
Nm(fikp) is the m-th array element at frequency point fiThe kp-th noise sampling value obtained above;
step 1.2: establishing an array signal model containing array element position errors on the basis of an ideal array signal model:
when array element position error exists in the array, the frequency point fiThe output of the array at (1) can be expressed as
X'(fi)=A'(fi,α)S(fi)+N(fi),i=1,2,…,J (12)
Time frequency point f with array element position erroriA received signal covariance matrix of
R'(fi)=E{X'(fi)(X'(fi))H},i=1,2,…,J (13)
In formula (12), A' (f)i,α)=[a'(fi,α1),…,a'(fi,αk),…,a'(fi,αK)]For existence of array element position error time frequency point fiArray flow pattern matrix of (a') (f)i,αk) Steering vectors for the corresponding arrays;
when the position of the m-th array element has an error △ dmWhen the method is used, the method can be equivalent to the method that azimuth-dependent phase disturbance is introduced into the array steering vector, namely
Wherein,
is a frequency point fiThe up and arrival direction is αkThe position error of the array element disturbs the matrix;
wherein
When the kth signal reaches the mth array element, the signal source propagation delay error is introduced by the disturbance of the position error of the array element;
then the array flow pattern matrix in the presence of array element position error is
A'(fi,α)=[a'(fi,α1),…,a'(fi,αk),…,a'(fi,αK)]
(17)
=W(fi,α)·A(fi,α)
Wherein W (f)i,α)=[W(fi,α1),…,W(fi,αk),…,W(fi,αK)]Time frequency point f for indicating array element position erroriAnd (3) disturbing the matrix by the position error of the array element.
Other steps and parameters are the same as in the first embodiment.
The third concrete implementation mode:
in step 2 of the present embodiment, w (f) is maximized by the expectation maximization methodi)、μ2(fi) Andl(fi) The specific steps for performing the iterative estimation are as follows:
in the E-step of expectation maximization method, first, the method is performedIs calculated by the distribution function of
Wherein the operator < · > represents the solution condition expectation;
in the M-step of the expectation-maximization method, the distribution functions are respectively obtainedDerivatives of unknown parameters, i.e. pairsSolving each unknown parameter by taking an extreme value;
respectively making the above derivatives be 0, so as to obtain the estimated value of every unknown parameter in p-th iteration
Wherein (p) represents the number of iterations, in equation (27)
Is a matrixRow r1, column r2, where tr [ ·]Representing trace-solving operation;
in formula (30);
O(fi)=Σ(fi)(A'(fi,Ω))H(μ2(fi)IM+A'(fi,Ω)Σ(fi)(A'(fi,Ω))H)-1X(fi) (31)
is an intermediate variable;
Ξ(fi)
(32)
=Σ(fi)-Σ(fi)(A'(fi,Ω))H(μ2(fi)IM+A'(fi,Ω)Σ(fi)(A'(fi,Ω))H)-1A'(fi,Ω)Σ(fi)
is an intermediate variable;
in formula (27);
in the formula (28)
In formula (33), Ψr(fi) The intermediate variable is a matrix with M × M dimensions, only the elements at the r +1 th row and the r +1 th column are all 1, and the rest elements are all 0;
w (f) is calculated by directly using equations (27) to (28)i) And mu2(fi) Since it is relatively complicated, w (f) can be degenerated by substituting equations (30) to (34) for equivalents in equations (27) to (28)i) And mu2(fi) Solving;
after several iterations, w (f)i)、μ2(fi) Andl(fi) The three estimated values vary towards 0, when they can be considered to have converged, and the final estimate can be derivedAndcorrespond to obtainAnd
other steps and parameters are the same as in the second embodiment.
The fourth concrete implementation mode: this embodiment is described in detail with reference to figures 2 and 3,
this embodiment is a wideband signal detection system and a method for implementing detection according to the first to third embodiments,
as shown in fig. 2, the broadband signal detection system includes: the system comprises a broadband uniform linear array 1, a multi-channel broadband digital receiver 2 and a broadband signal super-resolution direction-finding device 3;
as shown in fig. 3, the broadband signal super-resolution direction-finding device 3 includes 6 digital signal processors, i.e., DSPs, and adopts fast serial input/output ports, i.e., SRIO ports, to form a multiprocessor system to implement parallel processing. Wherein, the DSP3-1 is a master DSP, and the DSPs 3-2-3-6 are slave DSPs; the broadband signal super-resolution direction-finding device 3 further comprises a CPLD3-7, a PROM3-8, a FLASH3-9, an SRAM3-10, a JTAG3-11, a power supply, a crystal oscillator and a reset.
The digital signal processor adopts TMS320C6678 of Texas Instruments (TI) company, adopts 6 processors for parallel processing, 6 DSPs are connected through SRIO ports, PROM3-8 loads programs to CPLD3-7 after power-on, FLASH3-9 also loads programs to the 6 DSPs (3-1 to 3-6), then the main DSP3-1 starts to receive observed data of J frequency points transmitted by the multichannel broadband digital receiver 2, the observed data are divided into W groups, if J is 30 and W is 6, each DSP can process observed data of U30/6 to 5 frequency points, the main DSP3-1 transmits the observed data processed by other auxiliary DSPs (3-2 to 3-6) to the auxiliary DSPs through the SRIO ports, then each DSP (3-1 to 3-6) solves the problem according to the steps of theoretical derivation, and then 5 auxiliary DSPs (3-2 to 3-6) transmit respective error estimation values to SRIO ports through SRIO ports 3 The host DSP3-1 reuses these results and the combination (38) yields the signal angle of arrival. The SRAM3-10 is responsible for storing data, the JTAG3-11 is responsible for debugging the DSP (3-1 to 3-6), the power supply is responsible for overall power supply, the crystal oscillator is responsible for providing a clock, and the reset is responsible for providing a reset signal.
The fifth concrete implementation mode: this embodiment is described in detail with reference to figures 2 and 4,
this embodiment is a wideband signal detection system and a method for implementing detection according to the first to third embodiments,
as shown in fig. 2, the broadband signal detection system includes: the system comprises a broadband uniform linear array 1, a multi-channel broadband digital receiver 2 and a broadband signal super-resolution direction-finding device 3;
as shown in fig. 4, the broadband signal super-resolution direction-finding device 3 includes 6 digital signal processors, i.e., DSPs, and adopts a shared bus tight coupling mode to form a multiprocessor system to implement parallel processing. Wherein, the DSP3-1 is a master DSP, and the DSPs 3-2-3-6 are slave DSPs; the broadband signal super-resolution direction-finding device 3 further comprises a CPLD3-7, a PROM3-8, a FLASH3-9, an SRAM3-10, a JTAG3-11, a power supply, a crystal oscillator and a reset.
The digital signal processor adopts ADSP-TS201S of Analog Device Instruments (ADI), 6 DSPs are processed in parallel, the 6 DSPs are connected in a tight coupling mode through a shared bus, after the power is on, PROM3-8 loads a program to CPLD3-7 to configure the DSPs (3-1 to 3-6), then FLASH3-9 loads the program to the 6 DSPs (3-1 to 3-6), main DSP3-1 starts to receive observed data of J frequency points transmitted by the multichannel broadband digital receiver 2, the observed data are divided into W groups, if J is 30 and W is 6, each DSP can process observed data of U30/6 which is 5 frequency points, main DSP3-1 transmits other observed data which are processed by the auxiliary DSPs (3-2 to 3-6) to the DSP through the bus, and then each DSP (3-1 to 3-6) performs theoretical derivation solving according to the theoretical derivation steps, then 5 slave DSPs (3-2 to 3-6) transmit respective error estimation values to the master DSP3-1 through a bus, and the master DSP3-1 reuses the results to obtain the signal arrival angle by combining the formula (38). The SRAM3-10 is responsible for storing data, the JTAG3-11 is responsible for debugging the DSP (3-1 to 3-6), the power supply is responsible for overall power supply, the crystal oscillator is responsible for providing a clock, and the reset is responsible for providing a reset signal.
The sixth specific implementation mode: this embodiment is described in detail with reference to figures 2 and 5,
this embodiment is a wideband signal detection system and a method for implementing detection according to the first to third embodiments,
as shown in fig. 2, the broadband signal detection system includes: the system comprises a broadband uniform linear array 1, a multi-channel broadband digital receiver 2 and a broadband signal super-resolution direction-finding device 3;
as shown in fig. 5, the broadband signal super-resolution direction-finding device 3 includes 6 digital signal processors, i.e., DSPs, and adopts a link port cascade loose coupling manner to form a multiprocessor system to implement parallel processing. Wherein, the DSP3-1 is a master DSP, and the DSPs 3-2-3-6 are slave DSPs; the broadband signal super-resolution direction-finding device 3 further comprises a CPLD3-7, a PROM3-8, a FLASH3-9, an SRAM3-10, a JTAG3-11, a power supply, a crystal oscillator and a reset.
The digital signal processor adopts ADSP-TS201S of Analog Device Instruments (ADI), adopts 6 processors to process in parallel, 6 DSPs are connected in a cascade loose coupling mode through link ports, after power-on, PROM3-8 loads programs to CPLD3-7, FLASH3-9 loads programs of the 6 DSPs to main DSP3-1, main DSP3-1 sequentially transmits programs of other slave DSPs (3-2 to 3-6) to the DSPs through the link ports in a first-level and first-level manner, then main DSP3-1 starts to receive observation data of J frequency points transmitted from multi-channel broadband digital receiver 2, divides the observation data into W groups, assuming that J is 30 and W is 6, each DSP can process observation data of U30/6 is 5 frequency points, main DSP3-1 transmits the observation data of other DSPs (3-2 to 3-6) in a first-level manner to the observation data sequentially through a chain, then each DSP (3-1 to 3-6) is solved according to the steps deduced by the theory, then 5 slave DSPs (3-2 to 3-6) successively upload respective error estimation values to a master DSP3-1 through a link port in a first-level and first-level mode, and the master DSP3-1 reuses the results and combines the formula (38) to obtain the signal arrival angle. The SRAM3-10 is responsible for storing data, the JTAG3-11 is responsible for debugging the DSP (3-1 to 3-6), the power supply is responsible for overall power supply, the crystal oscillator is responsible for providing a clock, and the reset is responsible for providing a reset signal.
Claims (3)
1. The array element position error correction method in the broadband signal super-resolution direction finding is characterized by comprising the following steps of:
step 1: establishing an array signal model containing array element position errors:
when array element position error exists in the array, the frequency point fiThe output of the array at is represented as
X'(fi)=A'(fi,α)S(fi)+N(fi),i=1,2,…,J (12)
A'(fiα) is the frequency point f when array element position error existsiAn array flow pattern matrix above; s (f)i) Is a signal sk(t) a signal vector matrix after fourier transformation; n (f)i) Is noise nm(t) noise vector matrix after Fourier transform, mean 0, variance μ2(fi) J is the number of frequency points, α ═ α1,…,αk,…,αK]The arrival direction of K far-field broadband signals incident on a broadband uniform linear array consisting of M omnidirectional array elements is determined;
time frequency point f with array element position erroriA received signal covariance matrix of
R'(fi)=E{X'(fi)(X'(fi))H},i=1,2,…,J (13)
A(fi,α)=[a(fi,α1),…,a(fi,αk),…,a(fi,αK)]Is the frequency point f under the ideal conditioniArray flow pattern matrix ofi,αk) Is the frequency point f under the ideal conditioniAn array steering vector for the k-th signal; k is the number of far-field broadband signals;
when the position of the m-th array element has an error delta dmWhen the method is equivalent to introducing azimuth-dependent phase disturbance into the array steering vector, the method has the following advantages
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mi>a</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mrow> <mo>&lsqb;</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&Delta;&tau;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&Delta;&tau;</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&Delta;&tau;</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>&rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>W</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>W</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>&lsqb;</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&Delta;&tau;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&Delta;&tau;</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&Delta;&tau;</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>&rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
Wherein, W (f)i,αk) Is a frequency point fiUp and direction αkArray element position error disturbance matrix of (a') (f)i,αk) Time frequency point f for indicating array element position erroriAn array steering vector for the k-th signal;
<mrow> <msub> <mi>&Delta;&tau;</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&Delta;d</mi> <mi>m</mi> </msub> </mrow> <mi>c</mi> </mfrac> <msub> <mi>sin&alpha;</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
from direction α for the k signalkWhen the m-th array element is reached, the signal source propagation delay error introduced by the disturbance of the position error of the array element is introduced;
the time frequency point f with array element position erroriAn array flow pattern matrix of
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&alpha;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>&lsqb;</mo> <msup> <mi>a</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msup> <mi>a</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msup> <mi>a</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>K</mi> </msub> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>W</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&alpha;</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&alpha;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
Wherein, W (f)i,α)=[W(fi,α1),…,W(fi,αk),…,W(fi,αK)]Representing frequency point fiAn array element position error disturbance matrix is arranged;
step 2: estimating array signal parameters containing array element position errors:
the search space is first divided into a number of discrete angular gridsCorresponding to the L directions in which the signal may arrive; thereby obtaining a frequency point fiSparse representation of an over-array streaming matrix
<mrow> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>&lsqb;</mo> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover> <mi>&alpha;</mi> <mo>&OverBar;</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover> <mi>&alpha;</mi> <mo>&OverBar;</mo> </mover> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover> <mi>&alpha;</mi> <mo>&OverBar;</mo> </mover> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow>
Wherein,is a frequency point fiCorrespondingly obtaining the time frequency point f with array element position error by the array steering vector of the last ith sparse signaliSparse representation of an over-array streaming matrixd is the array element spacing;is a frequency point fiSparse representation of the position error perturbation matrix of the upper array element,is a frequency point fiArray element position error disturbance matrixes of the upper and the l-th sparse signals,when the ith sparse signal reaches the mth array element, the source propagation delay error is introduced by the disturbance of the position error of the array element, and c is the propagation speed of the electromagnetic wave in vacuum;for existence of array element position error time frequency point fiObtaining the frequency point f when the array element position error exists by the array steering vector of the last ith sparse signaliSparse representation of upper array output signal
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> <mo>)</mo> </mrow> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>N</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> <mo>)</mo> </mrow> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mover> <mi>&Lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>w</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>N</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>J</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
Wherein, Λ (f)i) Is a parameter related to the original signal only;is Λ (f)i) A sparse representation of (c); w (f)i)=[Δd2,…,ΔdM]TRepresenting the position error disturbance vector of the array element, taking the 1 st array element as a position reference point, delta d2,…,ΔdMAre respectively frequency points fiDeviation of the actual position and the measured position of the upper 2 nd array element to the Mth array element;
has a covariance matrix of
<mrow> <msup> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>E</mi> <mo>{</mo> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>}</mo> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>J</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
In the formula (18)Is S (f)i) KP is sampling frequency, and KP represents KP sampling;
wherein,is a sparse matrix, is S (f)iKp) is used in the sparse representation,contains only K non-zero elements,is composed ofIf and only ifTime of flightWherein the elements are not all zero and havel=1,2,…,L,k=1,2, …, K; thus, it isIs regarded as S (f)i) A matrix obtained by adding a plurality of 0 elements; s (f)iKp) is S (f)i) Of the kth signal sampling matrix, Sk(fiKp) is the k signal at frequency fiThe kpth signal sampling value obtained above;
is provided (f)i)=[1(fi),…,l(fi),…,L(fi)]TIs composed ofThe variance of the medium element reflects the energy of the signal, i.e. has
<mrow> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>~</mo> <mi>N</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>&Sigma;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
Wherein, Σ (f)i)=diag((fi) That is to sayObedience mean 0, variance (f)i) (ii) a gaussian distribution of;
according to the formula (18), the frequency f when the position error of the array element existsiHas a probability density of
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>|</mo> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>;</mo> <mi>w</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <msup> <mi>&mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>|</mo> <mi>&pi;</mi> <msup> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mi>K</mi> <mi>P</mi> </mrow> </msup> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <msup> <mi>&mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>|</mo> <mo>|</mo> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> <mo>)</mo> </mrow> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mover> <mi>&Lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>w</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <msubsup> <mo>|</mo> <mn>2</mn> <mn>2</mn> </msubsup> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow>
In combination with (18), (20) and (21)
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>;</mo> <mi>&delta;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mi>w</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <msup> <mi>&mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>|</mo> <mi>&pi;</mi> <mrow> <mo>(</mo> <msup> <mi>&mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> <mi>&Sigma;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mi>K</mi> <mi>P</mi> </mrow> </msup> <mo>&times;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>K</mi> <mi>P</mi> <mo>&times;</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>&mu;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> </mrow> <mi>&Sigma;</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow>
Wherein, IMM is a unit array with M × dimension, wherein M is the number of omnidirectional array elements;
using expectation maximization method to pair w (f)i)、μ2(fi) Andl(fi) Performing iterative estimation to obtain an estimated value Andcorresponding to getAnd
and step 3: by usingAndcorrecting array errors and solving the signal arrival direction;
let X be the vector formed by the sum of all frequency point signals received by the array in a period of observation time, and because the signals of each frequency point have statistical independence, the joint probability density of the signals received by each frequency point is
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mi>P</mi> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>;</mo> <mover> <mi>&delta;</mi> <mo>^</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mover> <mi>w</mi> <mo>^</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>|</mo> <mi>&pi;</mi> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mi>J</mi> <mo>&times;</mo> <mi>K</mi> <mi>P</mi> </mrow> </msup> <munderover> <mi>&Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mo>|</mo> <mrow> <mo>(</mo> <msup> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> <mover> <mi>&Sigma;</mi> <mo>^</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mi>K</mi> <mi>P</mi> </mrow> </msup> <mo>&times;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>K</mi> <mi>P</mi> <mo>&times;</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> </mrow> <mover> <mi>&Sigma;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>35</mn> <mo>)</mo> </mrow> </mrow>
The logarithm at both ends of the pair formula (35) is
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>I</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>P</mi> <mo>(</mo> <mi>X</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>-</mo> <mi>J</mi> <mo>&times;</mo> <mi>K</mi> <mi>P</mi> <mo>&times;</mo> <mi>I</mi> <mi>n</mi> <mi>&pi;</mi> <mo>-</mo> <mi>K</mi> <mi>P</mi> <mo>&times;</mo> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mi>I</mi> <mi>n</mi> <mo>|</mo> <msup> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> <mover> <mi>&Sigma;</mi> <mo>^</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>|</mo> <mo>)</mo> </mrow> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>K</mi> <mi>P</mi> <mo>&times;</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> </mrow> <mover> <mi>&Sigma;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>36</mn> <mo>)</mo> </mrow> </mrow>
Maximizing equation (36) yields the direction of arrival of the signal, i.e., an estimate of the direction of arrival of the signalK is 1,2, …, K, i.e. by
<mrow> <mfrac> <mrow> <mo>&part;</mo> <mi>I</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>P</mi> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>&part;</mo> <mi>&alpha;</mi> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>37</mn> <mo>)</mo> </mrow> </mrow>
Obtaining;
by derivation have
<mrow> <msub> <mover> <mi>&alpha;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mi>arg</mi> <munder> <mi>max</mi> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> </munder> <mo>|</mo> <mi>Re</mi> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>a</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&Omega;</mi> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mover> <mi>&Sigma;</mi> <mo>^</mo> </mover> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&Omega;</mi> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>&times;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mrow> <mo>(</mo> <msup> <mi>a</mi> <mo>&prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> </mrow> <mo>)</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>a</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&Omega;</mi> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mover> <mi>&Sigma;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&Omega;</mi> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mrow> <mo>(</mo> <msup> <mover> <mi>R</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> </mrow> <mo>)</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&Omega;</mi> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mover> <mi>&Sigma;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&Omega;</mi> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>a</mi> <mo>&prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> </mrow> <mo>)</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>a</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>&times;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mover> <mi>&mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>A</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&Omega;</mi> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mover> <mi>&Sigma;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&Omega;</mi> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>&times;</mo> <mfrac> <mrow> <mo>&part;</mo> <msup> <mi>a</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&part;</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>38</mn> <mo>)</mo> </mrow> </mrow>
Wherein Re {. is the real part of the solution {. cndot.); omega-k、Respectively expressed from Ω andremoving the k-th element from the first element; k is 1,2, …, K;
according toIs calculated as Δ d2,…,ΔdMThen, W (f) is obtained from the equations (16) and (15)i,αk) And W (f)iΩ), then array correction is performed to find a' (f)i,αk) And A' (f)i,Ω-k) (ii) a Based on the above parameters and equation (38), an estimate of the direction of arrival of the array-corrected signal can be obtained
2. The method for correcting array element position errors in broadband signal super-resolution direction finding according to claim 1, wherein the specific steps of establishing the array signal model containing the array element position errors in step 1 are as follows:
step 1.1: establishing an ideal array signal model:
provided with K far-field broadband signals sk(t), K is 1,2, …, K, and is incident on a broadband uniform linear array of M omnidirectional array elements, arriving at α ═ α1,…,αk,…,αK]The array element interval is d; far field broadband signal sk(t), broadband signal s for shortk(t);
Taking the 1 st array element as the phase reference point, ideally, the output of the m-th array element is expressed as
<mrow> <msub> <mi>x</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </munderover> <msub> <mi>s</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>&tau;</mi> <mi>m</mi> </msub> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>n</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>M</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein,representing the kth broadband signal sk(t) the time delay of the m-th array element relative to its arrival at the phase reference point, c is the propagation speed of the electromagnetic wave in vacuumDegree, nm(t) Gaussian white noise received by the mth array element;
suppose the frequency range of the wideband signal is fLow,fHigh]The broadband signal is divided into J frequency points by using discrete Fourier transform, and the J frequency points are separated by a narrow-band filter bank, so that the output signal of the filter array of the ith group is expressed as
X(fi)=A(fi,α)S(fi)+N(fi),i=1,2,…,J (2)
Wherein f isLow≤fi≤fHigh,i=1,2,…,J;
Assuming at each frequency point fiHaving performed KP subsampling, X (f)i) Is expressed in matrix form as
X(fi)=[X(fi,1),…,X(fi,kp),…,X(fi,KP)],i=1,2,…,J (3)
Wherein, X (f)iKp) is X (f)i) The kp-th time data sampling matrix of (c),
X(fi,kp)=[X1(fi,kp),…,Xm(fi,kp),…,XM(fi,kp)]T,i=1,2,…,J, (4)
Xm(fikp) is the m-th array element at frequency point fiThe kp-th data sampling value obtained above;
A(fiα) is the ideal case frequency point fiThe array flow pattern matrix on the upper surface,
A(fi,α)=[a(fi,α1),…,a(fi,αk),…,a(fi,αK)],i=1,2,…,J, (5)
a(fi,αk) Is the frequency point f under the ideal conditioniThe array of the top k-th signal leads to the vector,
wherein,is the phase of the kth signal; j is a complex number flag;
S(fi)=[S(fi,1),…,S(fi,kp),…,S(fi,KP)],i=1,2,…,J, (8)
is a signal sk(t) a fourier transformed signal vector matrix, K being 1,2, …, K;
wherein, S (f)iKp) is S (f)i) The kp-th sub-sampling matrix of the signal,
S(fi,kp)=[S1(fi,kp),…Sk(fi,kp),…,SK(fi,kp)]Ti=1,2,…,J (9)
Sk(fikp) is the k signal at frequency fiThe kpth signal sampling value obtained above;
N(fi)=[N(fi,1),…,N(fi,kp),…,N(fi,KP)]i=1,2,…,J (10)
is noise nm(t) noise vector matrix after Fourier transform, mean 0, variance μ2(fi) (ii) a M is 1,2, …, M; wherein, N (f)iKp) is N (f)i) The kp-th time of the noise sampling matrix,
N(fi,kp)=[N1(fi,kp),…,Nm(fi,kp),…,NM(fi,kp)]Ti=1,2,…,J (11)
Nm(fikp) is the m-th array element at frequency point fiThe kp-th noise sampling value obtained above;
step 1.2: establishing an array signal model containing array element position errors on the basis of an ideal array signal model:
when array element position error exists in the array, the frequency point fiThe output of the array at is represented as
X'(fi)=A'(fi,α)S(fi)+N(fi),i=1,2,…,J (12)
Time frequency point f with array element position erroriA received signal covariance matrix of
R'(fi)=E{X'(fi)(X'(fi))H},i=1,2,…,J (13)
In formula (12), A' (f)i,α)=[a'(fi,α1),…,a'(fi,αk),…,a'(fi,αK)]For existence of array element position error time frequency point fiArray flow pattern matrix of (a') (f)i,αk) Steering vectors for the corresponding arrays;
when the position of the m-th array element has an error delta dmWhen the method is equivalent to introducing azimuth-dependent phase disturbance into the array steering vector, the method has the following advantages
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mi>a</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msup> <mrow> <mo>&lsqb;</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&Delta;&tau;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&Delta;&tau;</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&Delta;&tau;</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>&rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>W</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
Wherein,
<mrow> <mi>W</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>&lsqb;</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&Delta;&tau;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&Delta;&tau;</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&Delta;&tau;</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>&rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
is a frequency point fiThe up and arrival direction is αkThe position error of the array element disturbs the matrix;
wherein
<mrow> <msub> <mi>&Delta;&tau;</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&Delta;d</mi> <mi>m</mi> </msub> </mrow> <mi>c</mi> </mfrac> <msub> <mi>sin&alpha;</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
When the kth signal reaches the mth array element, the signal source propagation delay error is introduced by the disturbance of the position error of the array element;
then the array flow pattern matrix in the presence of array element position error is
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&alpha;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>&lsqb;</mo> <msup> <mi>a</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msup> <mi>a</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msup> <mi>a</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&alpha;</mi> <mi>K</mi> </msub> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>W</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&alpha;</mi> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&alpha;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
Wherein W (f)i,α)=[W(fi,α1),…,W(fi,αk),…,W(fi,αK)]Time frequency point f for indicating array element position erroriAnd (3) disturbing the matrix by the position error of the array element.
3. The method for correcting array element position error in broadband signal super-resolution direction finding according to claim 2, wherein the method of maximizing the expectation is adopted in step 2 to pair w (f)i)、μ2(fi) Andl(fi) The specific steps for performing the iterative estimation are as follows:
in the E-step of expectation maximization method, first, the method is performedIs calculated by the distribution function of
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>F</mi> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>;</mo> <mi>&delta;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mi>w</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <msup> <mi>&mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mrow> <mo>&lang;</mo> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <mi>M</mi> <mo>&times;</mo> <mi>K</mi> <mi>P</mi> <mo>&times;</mo> <msup> <mi>In&mu;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>&mu;</mi> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <mo>|</mo> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> <mo>)</mo> </mrow> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mover> <mi>&Lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>w</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <msubsup> <mo>|</mo> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <munderover> <mi>&Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mrow> <mo>(</mo> <mi>K</mi> <mi>P</mi> <mo>&times;</mo> <msub> <mi>In&delta;</mi> <mi>l</mi> </msub> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mo>(</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>K</mi> <mi>P</mi> </mrow> </munderover> <mo>|</mo> <msub> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mi>l</mi> </msub> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>k</mi> <mi>p</mi> <mo>)</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mrow> <msub> <mi>&delta;</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> <mo>&rang;</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow>
Wherein the operator < · > represents the solution condition expectation;
in the M-step of the expectation-maximization method, the distribution functions are respectively obtainedDerivatives of unknown parameters, i.e. pairsSolving each unknown parameter by taking an extreme value;
<mrow> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&part;</mo> <mi>F</mi> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>;</mo> <mi>&delta;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mi>w</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <msup> <mi>&mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&part;</mo> <mi>w</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>2</mn> <msup> <mi>&mu;</mi> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&lsqb;</mo> <mo><</mo> <msup> <mover> <mi>&Lambda;</mi> <mo>&OverBar;</mo> </mover> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mover> <mi>&Lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>></mo> <mi>w</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo><</mo> <msup> <mover> <mi>&Lambda;</mi> <mo>&OverBar;</mo> </mover> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <mi>A</mi> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>></mo> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&part;</mo> <mi>F</mi> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>;</mo> <mi>&delta;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mi>w</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <msup> <mi>&mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&part;</mo> <msup> <mi>&mu;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mi>M</mi> <mo>&times;</mo> <mi>K</mi> <mi>P</mi> </mrow> <mrow> <msup> <mi>&mu;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <msup> <mrow> <mo>(</mo> <msup> <mi>&mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo><</mo> <mo>|</mo> <mo>|</mo> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> <mo>)</mo> </mrow> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <msubsup> <mo>|</mo> <mn>2</mn> <mn>2</mn> </msubsup> <mo>></mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&part;</mo> <mi>F</mi> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>;</mo> <mi>&delta;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mi>w</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <msup> <mi>&mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&part;</mo> <msub> <mi>&delta;</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mi>K</mi> <mi>P</mi> </mrow> <mrow> <msub> <mi>&delta;</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <msubsup> <mi>&delta;</mi> <mi>l</mi> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo><</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>K</mi> <mi>P</mi> </mrow> </munderover> <mo>|</mo> <msub> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mi>l</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>k</mi> <mi>p</mi> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>></mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow>
respectively making the above derivatives be 0, i.e. obtaining the estimated value of each unknown parameter at the p-th iteration
<mrow> <msup> <mi>w</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mo><</mo> <msup> <mover> <mi>&Lambda;</mi> <mo>&OverBar;</mo> </mover> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mover> <mi>&Lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mo>></mo> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo><</mo> <msup> <mover> <mi>&Lambda;</mi> <mo>&OverBar;</mo> </mover> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <mi>A</mi> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>></mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msup> <mrow> <mo>(</mo> <msup> <mi>&mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>M</mi> <mo>&times;</mo> <mi>K</mi> <mi>P</mi> </mrow> </mfrac> <mo><</mo> <mo>|</mo> <mo>|</mo> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msup> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <msubsup> <mo>|</mo> <mn>2</mn> <mn>2</mn> </msubsup> <mo>></mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>&delta;</mi> <mi>l</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>K</mi> <mi>P</mi> </mrow> </mfrac> <mo><</mo> <munderover> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>K</mi> <mi>P</mi> </mrow> </munderover> <mo>|</mo> <msub> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mi>l</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>k</mi> <mi>p</mi> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>></mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> </mrow>
Wherein (p) represents the number of iterations, in equation (27)
<mrow> <mtable> <mtr> <mtd> <mrow> <mo><</mo> <msup> <mover> <mi>&Lambda;</mi> <mo>&OverBar;</mo> </mover> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mover> <mi>&Lambda;</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mo>></mo> <mrow> <mi>r</mi> <mn>1</mn> <mo>,</mo> <mi>r</mi> <mn>2</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>t</mi> <mi>r</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>&Psi;</mi> <mrow> <mi>r</mi> <mn>1</mn> </mrow> <mi>H</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&Psi;</mi> <mrow> <mi>r</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mi>i</mi> </msub> </mrow> <mi>c</mi> </mfrac> <msup> <mrow> <mo>&lsqb;</mo> <msub> <mi>sin&alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>sin&alpha;</mi> <mi>K</mi> </msub> <mo>&rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>)</mo> </mrow> <mo>&times;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mi>O</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msup> <mi>O</mi> <mi>H</mi> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>+</mo> <mi>K</mi> <mi>P</mi> <mo>&times;</mo> <mi>&Xi;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> <msup> <mrow> <mo>(</mo> <mi>A</mi> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mi>i</mi> </msub> </mrow> <mi>c</mi> </mfrac> <msup> <mrow> <mo>&lsqb;</mo> <msub> <mi>sin&alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>sin&alpha;</mi> <mi>K</mi> </msub> <mo>&rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>30</mn> <mo>)</mo> </mrow> </mrow>
Is a matrixRow r1, column r2, where tr [ ·]Representing the movement of a targetCalculating;
in formula (30);
O(fi)=Σ(fi)(A'(fi,Ω))H(μ2(fi)IM+A'(fi,Ω)Σ(fi)(A'(fi,Ω))H)-1X(fi) (31)
is an intermediate variable;
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>&Xi;</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>&Sigma;</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>&Sigma;</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>&mu;</mi> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> </mrow> <mi>&Sigma;</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> <mi>&Sigma;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>32</mn> <mo>)</mo> </mrow> </mrow>
is an intermediate variable;
in formula (27);
<mrow> <mtable> <mtr> <mtd> <mrow> <mo><</mo> <msup> <mover> <mi>&Lambda;</mi> <mo>&OverBar;</mo> </mover> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <mi>A</mi> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>></mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>t</mi> <mi>r</mi> <mo>&lsqb;</mo> <msubsup> <mi>&Psi;</mi> <mi>r</mi> <mi>H</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>X</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mi>O</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mi>A</mi> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mi>i</mi> </msub> </mrow> <mi>c</mi> </mfrac> <msup> <mrow> <mo>&lsqb;</mo> <msub> <mi>sin&alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>sin&alpha;</mi> <mi>K</mi> </msub> <mo>&rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>&rsqb;</mo> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>t</mi> <mi>r</mi> <mo>&lsqb;</mo> <msubsup> <mi>&Psi;</mi> <mi>r</mi> <mi>H</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>O</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msup> <mi>O</mi> <mi>H</mi> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>+</mo> <mi>K</mi> <mi>P</mi> <mo>&times;</mo> <mi>&Xi;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mi>A</mi> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&pi;f</mi> <mi>i</mi> </msub> </mrow> <mi>c</mi> </mfrac> <msup> <mrow> <mo>&lsqb;</mo> <msub> <mi>sin&alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>sin&alpha;</mi> <mi>K</mi> </msub> <mo>&rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>33</mn> <mo>)</mo> </mrow> </mrow>
in the formula (28)
<mrow> <mtable> <mtr> <mtd> <mrow> <mo><</mo> <mo>|</mo> <mo>|</mo> <msup> <mover> <mi>X</mi> <mo>&OverBar;</mo> </mover> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msup> <mover> <mi>S</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <msubsup> <mo>|</mo> <mn>2</mn> <mn>2</mn> </msubsup> <mo>></mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>|</mo> <mo>|</mo> <mi>X</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msup> <mi>O</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <msubsup> <mo>|</mo> <mi>F</mi> <mn>2</mn> </msubsup> <mo>+</mo> <mi>K</mi> <mi>P</mi> <mo>&times;</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msup> <mi>&Xi;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msup> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msup> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>34</mn> <mo>)</mo> </mrow> </mrow>
In formula (33), Ψr(fi) The intermediate variable is a matrix with M × M dimensions, only the elements at the r +1 th row and the r +1 th column are all 1, and the rest elements are all 0;
substitution of equations (30) to (34) into equivalent equations of equations (27) to (28) to degenerate w (f)i) And mu2(fi) Solving;
after several iterations, w (f)i)、μ2(fi) Andl(fi) If the variation of the three estimated values approaches 0, the final estimated value is obtainedAndcorrespond to obtainAnd
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510628070.6A CN105242236B (en) | 2015-09-28 | 2015-09-28 | Sensor position uncertainties bearing calibration in broadband signal super-resolution direction finding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510628070.6A CN105242236B (en) | 2015-09-28 | 2015-09-28 | Sensor position uncertainties bearing calibration in broadband signal super-resolution direction finding |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105242236A CN105242236A (en) | 2016-01-13 |
CN105242236B true CN105242236B (en) | 2017-12-08 |
Family
ID=55039944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510628070.6A Expired - Fee Related CN105242236B (en) | 2015-09-28 | 2015-09-28 | Sensor position uncertainties bearing calibration in broadband signal super-resolution direction finding |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105242236B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106371055B (en) * | 2016-10-26 | 2018-11-09 | 黑龙江大学 | Far and near field width band mixed signal super-resolution direction finding array amplitude phase error method of estimation |
CN110109052B (en) * | 2019-05-23 | 2021-12-31 | 中国人民解放军战略支援部队信息工程大学 | Target direction finding and array element position estimation method under array element position error condition |
TWI739181B (en) * | 2019-10-24 | 2021-09-11 | 國立臺灣大學 | A calibration method for a phased array antenna |
CN113768541B (en) * | 2021-10-27 | 2024-02-13 | 之江实验室 | Method for correcting position error of array element of complex curved surface ultrasonic array transducer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1580813A (en) * | 2004-05-17 | 2005-02-16 | 中国人民解放军空军雷达学院 | Method for conducting array corrction and information source direction finding by using high precision auxiliary array element |
CN103399312A (en) * | 2013-07-15 | 2013-11-20 | 哈尔滨工程大学 | Temporal-spatial joint filtering high-resolution DOA (Direction of Arrival) estimation method based on compressed sensing technology |
CN104698448A (en) * | 2015-04-03 | 2015-06-10 | 西安科技大学 | Conformal array robust angle estimation method based on manifold separation under movement platform |
-
2015
- 2015-09-28 CN CN201510628070.6A patent/CN105242236B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1580813A (en) * | 2004-05-17 | 2005-02-16 | 中国人民解放军空军雷达学院 | Method for conducting array corrction and information source direction finding by using high precision auxiliary array element |
CN103399312A (en) * | 2013-07-15 | 2013-11-20 | 哈尔滨工程大学 | Temporal-spatial joint filtering high-resolution DOA (Direction of Arrival) estimation method based on compressed sensing technology |
CN104698448A (en) * | 2015-04-03 | 2015-06-10 | 西安科技大学 | Conformal array robust angle estimation method based on manifold separation under movement platform |
Non-Patent Citations (2)
Title |
---|
任意平面阵列的相干信号二维波达方向估计方法;甄佳奇 等;《系统工程与电子技术》;20091231;第31卷(第12期);第2841-2843,2858页 * |
虚拟阵列下的相干信号测向算法;甄佳奇 等;《系统工程与电子技术》;20131031;第35卷(第10期);第2032-2036页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105242236A (en) | 2016-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105824002B (en) | Wave arrival direction estimating method based on nested type submatrix array | |
CN104977558B (en) | A kind of distributed source central DOA method of estimation based on Bayes's compressed sensing | |
US20030085832A1 (en) | Digital beamforming radar system and method with super-resolution multiple jammer location | |
CN111046591B (en) | Joint estimation method for sensor amplitude-phase error and target arrival angle | |
CN107870315B (en) | Method for estimating direction of arrival of any array by using iterative phase compensation technology | |
CN104407335B (en) | DOA estimation method of 3-axis cross array | |
CN104076332B (en) | A kind of radar uniform linear array amplitude and the method for estimation of phase place | |
CN105242236B (en) | Sensor position uncertainties bearing calibration in broadband signal super-resolution direction finding | |
CN105259550A (en) | Compressed sensing-based multi-input and multi-output radar two-dimensional angle estimation method | |
CN113835063B (en) | Unmanned aerial vehicle array amplitude and phase error and signal DOA joint estimation method | |
CN105954712A (en) | Multi-target direct positioning method in communication with adio signal complex envelope and carrier phase information | |
CN102662158B (en) | Quick processing method for sensor antenna array received signals | |
CN104793177B (en) | Microphone array direction-finding method based on least square method | |
CN105353338B (en) | Array channel sensor gain and phase uncertainties error calibration method in broadband signal super-resolution direction finding | |
CN103885049A (en) | Meter-wave radar low elevation estimating method based on minimum redundancy linear sparse submatrix | |
Dai et al. | Enhanced second-order off-grid DOA estimation method via sparse reconstruction based on extended coprime array under impulsive noise | |
CN105182280B (en) | Broadband signal super-resolution angle measurement error method of estimation based on the sparse optimization in spatial domain | |
CN105182279B (en) | Broadband signal super-resolution angle measurement error bearing calibration based on the sparse optimization in spatial domain | |
CN105223541B (en) | Mutual coupling existing between elements error calibration method in broadband signal super-resolution direction finding | |
CN115236584A (en) | Meter-wave radar low elevation angle estimation method based on deep learning | |
CN105572629A (en) | Two-dimensional direction measuring method of low operation complexity and applicable to any array structure | |
Luo et al. | Direction-of-arrival estimation using sparse variable projection optimization | |
CN113759303A (en) | Non-grid DOA (angle of arrival) estimation method based on particle swarm optimization | |
CN105182306A (en) | Stable two-dimensional direction of arrival estimation method based on sparse representation | |
CN114460531A (en) | Uniform linear array MUSIC spatial spectrum estimation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171208 Termination date: 20200928 |
|
CF01 | Termination of patent right due to non-payment of annual fee |