CN105242236B - Sensor position uncertainties bearing calibration in broadband signal super-resolution direction finding - Google Patents

Sensor position uncertainties bearing calibration in broadband signal super-resolution direction finding Download PDF

Info

Publication number
CN105242236B
CN105242236B CN201510628070.6A CN201510628070A CN105242236B CN 105242236 B CN105242236 B CN 105242236B CN 201510628070 A CN201510628070 A CN 201510628070A CN 105242236 B CN105242236 B CN 105242236B
Authority
CN
China
Prior art keywords
mrow
msub
msup
mover
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510628070.6A
Other languages
Chinese (zh)
Other versions
CN105242236A (en
Inventor
甄佳奇
王志芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heilongjiang University
Original Assignee
Heilongjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heilongjiang University filed Critical Heilongjiang University
Priority to CN201510628070.6A priority Critical patent/CN105242236B/en
Publication of CN105242236A publication Critical patent/CN105242236A/en
Application granted granted Critical
Publication of CN105242236B publication Critical patent/CN105242236B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

宽带信号超分辨测向中的阵元位置误差校正方法,本发明涉及宽带信号超分辨测向中存在的阵列误差的校正方法。本发明为了解决现有的阵元位置误差校正方法求解高维非线性的优化时存在的运算量大、收敛速度慢的问题和现有的对多小孔径阵列的校正技术不适用于宽带信号的问题。本发明利用各个频点上的信号构建对应的优化函数,之后利用信号的空域稀疏性,通过稀疏贝叶斯学习方法分别对各个频点上的函数进行迭代优化处理,最后对所有频点上的信息进行融合估计出信号到达方向。该方法可以有效的实现阵元位置误差存在时的阵列误差校正,并且利用多片数字信号处理器有效提高算法的运行速度。本发明适用于宽带信号超分辨测向中存在的阵列误差的校正领域。

The invention relates to a method for correcting array element position error in broadband signal super-resolution direction finding, and the invention relates to a method for correcting array error existing in broadband signal super-resolution direction finding. The present invention aims to solve the problems of large amount of computation and slow convergence speed existing in the existing array element position error correction method for high-dimensional nonlinear optimization and the problem that the existing correction technology for multi-small aperture arrays is not suitable for broadband signals. The present invention utilizes the signals on each frequency point to construct corresponding optimization functions, and then utilizes the spatial sparsity of the signals to iteratively optimize the functions on each frequency point through a sparse Bayesian learning method, and finally optimizes the functions on all frequency points The information is fused to estimate the direction of arrival of the signal. This method can effectively realize the array error correction when the array element position error exists, and use multi-chip digital signal processors to effectively improve the running speed of the algorithm. The invention is applicable to the field of correcting array errors existing in broadband signal super-resolution direction finding.

Description

宽带信号超分辨测向中的阵元位置误差校正方法Array element position error correction method in broadband signal super-resolution direction finding

技术领域technical field

本发明涉及宽带信号超分辨测向中存在的阵列误差的校正方法。The invention relates to a method for correcting array errors existing in broadband signal super-resolution direction finding.

背景技术Background technique

超分辨测向是阵列信号处理中的一个重要研究内容,在无线电监测、物联网和电子对抗等领域有着较广泛的应用。目前多数的测向方法都是以精确的掌握阵列流型为前提。而在实际的测向系统当中,由于阵元位置扰动或者测量不准确等原因,经常导致测向估计时伴随着阵元位置误差,这直接导致了很多的超分辨测向方法的性能恶化,甚至失效,所以有必要对其进行校正处理。Super-resolution direction finding is an important research content in array signal processing, and has a wide range of applications in the fields of radio monitoring, Internet of Things and electronic countermeasures. Most of the current direction finding methods are based on the premise of accurately grasping the flow pattern of the array. In the actual direction finding system, due to the disturbance of the position of the array element or the inaccurate measurement, the direction finding estimation is often accompanied by the position error of the array element, which directly leads to the deterioration of the performance of many super-resolution direction finding methods, and even invalid, so it is necessary to correct it.

参数类的校正方法通常可以分为有源校正和自校正。有源校正可通过在空间设置方位已知的辅助信源对阵列扰动参数进行离线估计,而自校正方法通常根据某种优化函数对空间信源的方位与阵列扰动参数联合估计。Friedlander B和Weiss A J基于子空间原理,提出了一种信源方位、阵元间互耦、阵元增益和相位扰动交替迭代估计的阵列自校正技术。但该技术需要求解高维非线性的优化问题,运算量大、收敛速度慢,而且对于均匀线阵来说,阵列扰动参数存在模糊问题。Mavrychev等学者对多小孔径阵列的部分校正技术进行了研究,有效地解决了通常单个小孔径基阵难以满足的多目标分辨和定向精度要求。由于所构造的估计器不需要精确的知道各子阵之间的位置信息,从而避免了伪峰和位置估计误差对方位估计的影响。然而它们只适用于窄带信号,对于宽带信号超分辨测向时的阵元位置误差校正技术,公开发表的文献并不多见。Calibration methods for parametric classes can generally be divided into active calibration and self-calibration. Active correction can estimate array disturbance parameters offline by setting auxiliary sources with known orientation in space, while self-calibration methods usually jointly estimate the orientation of space sources and array disturbance parameters according to some optimization function. Based on the principle of subspace, Friedlander B and Weiss A J proposed an array self-calibration technique for alternate iterative estimation of source azimuth, inter-array mutual coupling, array element gain and phase disturbance. However, this technology needs to solve high-dimensional nonlinear optimization problems, which requires a large amount of calculation and slow convergence speed, and for uniform linear arrays, there are fuzzy problems in the array disturbance parameters. Scholars such as Mavrychev have studied the partial correction technology of multi-small aperture arrays, which effectively solve the multi-target resolution and orientation accuracy requirements that are usually difficult to meet with a single small-aperture array. Since the constructed estimator does not need to accurately know the location information between sub-arrays, the influence of false peaks and location estimation errors on orientation estimation is avoided. However, they are only suitable for narrowband signals, and there are few published literatures on the correction technology of array element position error in super-resolution direction finding of broadband signals.

发明内容Contents of the invention

本发明为了解决现有的阵元位置误差校正方法求解高维非线性的优化时存在的运算量大、收敛速度慢的问题和现有的对多小孔径阵列的校正技术不适用于宽带信号的问题。The present invention aims to solve the problems of large amount of computation and slow convergence speed existing in the existing array element position error correction method for high-dimensional nonlinear optimization and the problem that the existing correction technology for multi-small aperture arrays is not suitable for broadband signals.

宽带信号超分辨测向中的阵元位置误差校正方法,包括下述步骤:A method for correcting array element position errors in broadband signal super-resolution direction finding, comprising the following steps:

步骤1:建立含有阵元位置误差的阵列信号模型:Step 1: Establish an array signal model including array element position error:

当阵列当中存在阵元位置误差时,频点fi上的阵列输出可以表示为When there is an element position error in the array, the array output at frequency f i can be expressed as

X'(fi)=A'(fi,α)S(fi)+N(fi),i=1,2,…,J (12)X'(f i )=A'(f i ,α)S(f i )+N(f i ), i=1,2,...,J (12)

A'(fi,α)为存在阵元位置误差时频点fi上的阵列流型矩阵;S(fi)为信号sk(t)经过傅立叶变换后的信号矢量矩阵;N(fi)为噪声nm(t)经过傅立叶变换后的噪声矢量矩阵,均值为0,方差为μ2(fi);A'(f i ,α) is the array flow pattern matrix at the time-frequency point f i when there is an element position error; S(f i ) is the signal vector matrix of the signal s k (t) after Fourier transform; N(f i ) is the noise vector matrix of the noise n m (t) after Fourier transform, the mean value is 0, and the variance is μ 2 (f i );

存在阵元位置误差时频点fi上的接收信号协方差矩阵为The covariance matrix of the received signal at the time-frequency point fi when there is an element position error is

R'(fi)=E{X'(fi)(X'(fi))H},i=1,2,…,J (13)R'(f i )=E{X'(f i )(X'(f i )) H }, i=1,2,...,J (13)

A(fi,α)=[a(fi1),…,a(fik),…,a(fiK)]为理想情况下频点fi上的阵列流型矩阵,a(fik)为理想情况下频点fi上第k个信号的阵列导向矢量;A(f i ,α)=[a(f i1 ),…,a(f ik ),…,a(f iK ) ] is ideally the Array flow pattern matrix, a(f ik ) is the array steering vector of the kth signal on the frequency point f i under ideal conditions;

当第m个阵元的位置存在误差△dm时,可以等效为阵列导向矢量中引入了方位依赖的相位扰动,则有When there is an error △d m in the position of the mth array element, it can be equivalent to introducing an azimuth-dependent phase disturbance into the array steering vector, then

其中,W(fik)为频点fi上、方向αk的阵元位置误差扰动矩阵,a'(fik)表示存在阵元位置误差时频点fi上第k个信号的阵列导向矢量;Among them, W(f ik ) is the array element position error perturbation matrix in the direction α k at the frequency point f i , a'(f ik ) means that when there is an array element position error array-steering vector for k signals;

为第k个信号从方向αk到达第m个阵元时,由阵元位置误差扰动引入的信源传播时延误差;则存在阵元位置误差时频点fi上的阵列流型矩阵为When the kth signal arrives at the mth array element from the direction α k , the signal source propagation delay error introduced by the disturbance of the array element position error; then the array flow pattern matrix at the time-frequency point fi when there is an array element position error is

A'(fi,α)=[a'(fi1),…,a'(fik),…,a'(fiK)]A'(f i ,α)=[a'(f i1 ),...,a'(f ik ),...,a'(f iK )]

(17)(17)

=W(fi,α)·A(fi,α)=W(f i ,α)·A(f i ,α)

其中,W(fi,α)=[W(fi1),…,W(fik),…,W(fiK)]表示频点fi上的阵元位置误差扰动矩阵;Among them, W(f i ,α)=[W(f i1 ),…,W(f ik ),…,W(f iK )] represents the matrix on the frequency point f i element position error perturbation matrix;

步骤2:对含有阵元位置误差的阵列信号参数进行估计:Step 2: Estimate the array signal parameters including array element position error:

首先将搜索空间划分为若干离散的角度网格对应着信号可能到达的L个方向;从而可得出频点fi上阵列流型矩阵的稀疏表示First, the search space is divided into several discrete angle grids Corresponds to the L directions that the signal may arrive; thus, the sparse representation of the array flow matrix on the frequency point f i can be obtained

其中,为频点fi上第l个稀疏信号的阵列导向矢量,相应的可获得存在阵元位置误差时频点fi上阵列流型矩阵的稀疏表示 为频点fi上的阵元位置误差扰动矩阵的稀疏表示,为频点fi上、第l个稀疏信号的阵元位置误差扰动矩阵,为第l个稀疏信号到达第m个阵元时,由阵元位置误差扰动引入的信源传播时延误差,为存在阵元位置误差时频点fi上第l个稀疏信号的阵列导向矢量,则可得出存在阵元位置误差时频点fi上阵列输出信号的稀疏表示in, is the array-steering vector of the l-th sparse signal on frequency point f i , correspondingly, the sparse representation of the array flow pattern matrix on frequency point f i can be obtained when there is an array element position error is the sparse representation of the element position error perturbation matrix at the frequency point f i , is the array element position error perturbation matrix of the lth sparse signal at frequency f i , When the lth sparse signal arrives at the mth array element, the source propagation delay error introduced by the array element position error disturbance, is the array steering vector of the lth sparse signal on time-frequency point f i with array element position error, then the sparse representation of the array output signal at time-frequency point f i with array element position error can be obtained

其中,Λ(fi)为一个只与原信号有关的参数,与误差无关;为Λ(fi)的稀疏表示;w(fi)=[△d2,…,△dM]T表示阵元位置误差扰动矢量,以第1个阵元作为位置参考点,△d2,…,△dM分别为频点fi上第2个阵元到第M个阵元的真实位置和测量位置的偏差,它们与信号频率fi无关;Among them, Λ(f i ) is a parameter only related to the original signal, and has nothing to do with the error; is the sparse representation of Λ(f i ); w(f i )=[△d 2 ,…,△d M ] T represents the element position error disturbance vector, taking the first array element as the position reference point, △d 2 ,...,△d M are the deviations between the real position and the measured position of the second array element to the Mth array element on the frequency point fi , which have nothing to do with the signal frequency f i ;

的协方差矩阵为 The covariance matrix of is

式(18)中为S(fi)的稀疏表示,In formula (18) is the sparse representation of S(f i ),

其中,为稀疏矩阵,为S(fi,kp)的稀疏表示,中只包含K个非零元素,中的第l个元素,当且仅当中的元素不全为零且有故此可以看成是S(fi)中加入了许多0元素后得到的矩阵;in, is a sparse matrix, which is the sparse representation of S(f i ,kp), contains only K non-zero elements, for The l-th element in , if and only if Time The elements in are not all zero and have Therefore It can be regarded as a matrix obtained by adding many 0 elements to S(f i );

设δ(fi)=[δ1(fi),…,δl(fi),…,δL(fi)]T中元素的方差,反映了信号的能量,即有Suppose δ(f i )=[δ 1 (f i ),…,δ l (f i ),…,δ L (f i )] T is The variance of the elements in reflects the energy of the signal, that is,

其中,Σ(fi)=diag(δ(fi)),即服从均值为0,方差为δ(fi)的高斯分布;Among them, Σ(f i )=diag(δ(f i )), namely Obey the Gaussian distribution with mean value 0 and variance δ(f i );

由于可以看成是S(fi)中加入了许多0元素后得到的向量,所以δ(fi)包含了K个非零元素,并且有K<<L,根据δ(fi),结合w(fi)和噪声方差μ2(fi)估计出从而重构出原信号,同时对误差进行校正;because It can be seen as a vector obtained by adding many 0 elements to S(f i ), so δ(f i ) contains K non-zero elements, and K<<L, according to δ(f i ), combined with w (f i ) and noise variance μ 2 (f i ) to estimate So as to reconstruct the original signal and correct the error at the same time;

根据式(18)可知,存在阵元位置误差时频点fi的阵列输出信号的概率密度为According to formula (18), it can be seen that the probability density of the array output signal of the frequency point fi when there is an array element position error is

结合式(18)、(20)和(21)可得Combining formulas (18), (20) and (21) can be obtained

其中,IM是M×M维的单位阵;Wherein, I M is the unit matrix of M * M dimensions;

采用期望最大化(Expectation Maximization,EM)方法来对w(fi)、μ2(fi)和δl(fi)进行迭代估计,得出估计值对应的可得到以及 Use the Expectation Maximization (EM) method to iteratively estimate w(f i ), μ 2 (f i ) and δ l (f i ), and obtain the estimated value with corresponding available as well as

步骤3:利用对阵列误差进行校正并对信号到达方向求解;Step 3: Take advantage of with Correct the array error and solve the signal arrival direction;

令X为一段观测时间内阵列接收到的所有频点信号的和构成的向量,由于各频点的信号具有统计独立性,因此各频点接收信号的联合概率密度为Let X be a vector composed of the sum of all frequency point signals received by the array within a period of observation time. Since the signals of each frequency point are statistically independent, the joint probability density of the received signals at each frequency point is

对式(35)两端取对数有Taking the logarithm of both ends of the formula (35) has

因此令式(36)最大化即可求得信号到达方向,即信号到达方向的估计值k=1,2,…,K,即可以通过Therefore, by maximizing the formula (36), the direction of arrival of the signal can be obtained, that is, the estimated value of the direction of arrival of the signal k=1,2,...,K, that is, it can pass

求得;obtain;

经过推导有After derivation there are

其中,Re{·}为求{·}的实部;Ω-k分别表示从Ω和中去掉其中的第k个元素;k=1,2,…,K;Among them, Re{·} is to find the real part of {·}; Ω -k , Respectively from Ω and Remove the kth element in it; k=1,2,...,K;

根据的表达式求得△d2,…,△dM,再根据式(16)、(15)求得W(fik)以及W(fi,Ω),然后进行阵列校正求得a'(fik)和A'(fi-k);再根据以上参数和公式(38),能够得到经过阵列校正后的信号到达方向的估计值 according to Calculate △d 2 ,…,△d M from the expressions of △d 2 ,…,△d M , and then calculate W(f ik ) and W(f i ,Ω) according to formulas (16) and (15), and then perform array correction to obtain a'(f ik ) and A'(f i-k ); according to the above parameters and formula (38), the estimated value of the arrival direction of the signal after array correction can be obtained

本发明具有以下有益效果:The present invention has the following beneficial effects:

本发明提出了一种存在阵元位置误差时的宽带信号超分辨测向误差校正方法,利用各个频点上的信号构建对应的优化函数,之后利用信号的空域稀疏性,通过稀疏贝叶斯学习方法分别对各个频点上的函数进行迭代优化处理,最后对所有频点上的信息进行融合估计出信号到达方向。本发明可以有效的实现阵元位置误差存在时的阵列误差校正,当信噪比为10dB,每个频点采样快拍数为40时,精度可达0.6°/σ。The present invention proposes a broadband signal super-resolution direction-finding error correction method when there is an array element position error, using the signals on each frequency point to construct a corresponding optimization function, and then using the spatial sparsity of the signal to learn through sparse Bayesian The method iteratively optimizes the functions on each frequency point respectively, and finally fuses the information on all frequency points to estimate the signal arrival direction. The present invention can effectively realize the array error correction when the array element position error exists, and when the signal-to-noise ratio is 10dB and the sampling snapshot number of each frequency point is 40, the accuracy can reach 0.6°/σ.

而且本发明的方法可以用多片数字信号处理器进行处理,可以有效的提高算法的运行速度。Moreover, the method of the invention can be processed by multi-chip digital signal processors, which can effectively improve the running speed of the algorithm.

附图说明Description of drawings

图1为宽带信号超分辨测向阵列信号模型示意图;Fig. 1 is a schematic diagram of a broadband signal super-resolution direction finding array signal model;

图2为宽带信号探测系统装置图;Fig. 2 is the device diagram of broadband signal detection system;

图3为具体实施方式四的宽带信号超分辨测向装置图;3 is a diagram of a broadband signal super-resolution direction finding device in Embodiment 4;

图4为具体实施方式五的宽带信号超分辨测向装置图;4 is a diagram of a broadband signal super-resolution direction finding device in Embodiment 5;

图5为具体实施方式六的宽带信号超分辨测向装置图。FIG. 5 is a diagram of a broadband signal super-resolution direction finding device according to Embodiment 6. FIG.

具体实施方式detailed description

具体实施方式一:Specific implementation mode one:

宽带信号超分辨测向中的阵元位置误差校正方法,包括下述步骤:A method for correcting array element position errors in broadband signal super-resolution direction finding, comprising the following steps:

步骤1:建立含有阵元位置误差的阵列信号模型:Step 1: Establish an array signal model including array element position error:

当阵列当中存在阵元位置误差时,频点fi上的阵列输出可以表示为When there is an element position error in the array, the array output at frequency f i can be expressed as

X'(fi)=A'(fi,α)S(fi)+N(fi),i=1,2,…,J (12)X'(f i )=A'(f i ,α)S(f i )+N(f i ), i=1,2,...,J (12)

A'(fi,α)为存在阵元位置误差时频点fi上的阵列流型矩阵;S(fi)为信号sk(t)经过傅立叶变换后的信号矢量矩阵;N(fi)为噪声nm(t)经过傅立叶变换后的噪声矢量矩阵,均值为0,方差为μ2(fi);A'(f i ,α) is the array flow pattern matrix at the time-frequency point f i when there is an element position error; S(f i ) is the signal vector matrix of the signal s k (t) after Fourier transform; N(f i ) is the noise vector matrix of the noise n m (t) after Fourier transform, the mean value is 0, and the variance is μ 2 (f i );

存在阵元位置误差时频点fi上的接收信号协方差矩阵为The covariance matrix of the received signal at the time-frequency point fi when there is an element position error is

R'(fi)=E{X'(fi)(X'(fi))H},i=1,2,…,J (13)R'(f i )=E{X'(f i )(X'(f i )) H }, i=1,2,...,J (13)

A(fi,α)=[a(fi1),…,a(fik),…,a(fiK)]为理想情况下频点fi上的阵列流型矩阵,a(fik)为理想情况下频点fi上第k个信号的阵列导向矢量;A(f i ,α)=[a(f i1 ),…,a(f ik ),…,a(f iK ) ] is ideally the Array flow pattern matrix, a(f ik ) is the array steering vector of the kth signal on the frequency point f i under ideal conditions;

当第m个阵元的位置存在误差△dm时,可以等效为阵列导向矢量中引入了方位依赖的相位扰动,则有When there is an error △d m in the position of the mth array element, it can be equivalent to introducing an azimuth-dependent phase disturbance into the array steering vector, then

其中,W(fik)为频点fi上、方向αk的阵元位置误差扰动矩阵,a'(fik)表示存在阵元位置误差时频点fi上第k个信号的阵列导向矢量;Among them, W(f ik ) is the array element position error perturbation matrix in the direction α k at the frequency point f i , a'(f ik ) means that when there is an array element position error array-steering vector for k signals;

为第k个信号从方向αk到达第m个阵元时,由阵元位置误差扰动引入的信源传播时延误差;则存在阵元位置误差时频点fi上的阵列流型矩阵为When the kth signal arrives at the mth array element from the direction α k , the signal source propagation delay error introduced by the disturbance of the array element position error; then the array flow pattern matrix at the time-frequency point fi when there is an array element position error is

A'(fi,α)=[a'(fi1),…,a'(fik),…,a'(fiK)]A'(f i ,α)=[a'(f i1 ),...,a'(f ik ),...,a'(f iK )]

(17)(17)

=W(fi,α)·A(fi,α)=W(f i ,α)·A(f i ,α)

其中,W(fi,α)=[W(fi1),…,W(fik),…,W(fiK)]表示频点fi上的阵元位置误差扰动矩阵;Among them, W(f i ,α)=[W(f i1 ),…,W(f ik ),…,W(f iK )] represents the matrix on the frequency point f i element position error perturbation matrix;

步骤2:对含有阵元位置误差的阵列信号参数进行估计:Step 2: Estimate the array signal parameters including array element position error:

首先将搜索空间划分为若干离散的角度网格对应着信号可能到达的L个方向;从而可得出频点fi上阵列流型矩阵的稀疏表示First, the search space is divided into several discrete angle grids Corresponds to the L directions that the signal may arrive; thus, the sparse representation of the array flow matrix on the frequency point f i can be obtained

其中,为频点fi上第l个稀疏信号的阵列导向矢量,相应的可获得存在阵元位置误差时频点fi上阵列流型矩阵的稀疏表示 为频点fi上的阵元位置误差扰动矩阵的稀疏表示,为频点fi上、第l个稀疏信号的阵元位置误差扰动矩阵,为第l个稀疏信号到达第m个阵元时,由阵元位置误差扰动引入的信源传播时延误差,为存在阵元位置误差时频点fi上第l个稀疏信号的阵列导向矢量,则可得出存在阵元位置误差时频点fi上阵列输出信号的稀疏表示in, is the array-steering vector of the l-th sparse signal on frequency point f i , correspondingly, the sparse representation of the array flow pattern matrix on frequency point f i can be obtained when there is an array element position error is the sparse representation of the element position error perturbation matrix at the frequency point f i , is the array element position error perturbation matrix of the lth sparse signal at frequency f i , When the lth sparse signal arrives at the mth array element, the source propagation delay error introduced by the array element position error disturbance, is the array steering vector of the lth sparse signal on the time-frequency point f i with the array element position error, then the sparse representation of the array output signal at the time-frequency point f i with the array element position error can be obtained

其中,Λ(fi)为一个只与原信号有关的参数,与误差无关;为Λ(fi)的稀疏表示;w(fi)=[△d2,…,△dM]T表示阵元位置误差扰动矢量,以第1个阵元作为位置参考点,△d2,…,△dM分别为频点fi上第2个阵元到第M个阵元的真实位置和测量位置的偏差,它们与信号频率fi无关;Among them, Λ(f i ) is a parameter only related to the original signal, and has nothing to do with the error; is the sparse representation of Λ(f i ); w(f i )=[△d 2 ,…,△d M ] T represents the element position error disturbance vector, taking the first array element as the position reference point, △d 2 ,...,△d M are the deviations between the real position and the measured position of the second array element to the Mth array element on the frequency point fi , which have nothing to do with the signal frequency f i ;

的协方差矩阵为 The covariance matrix of is

式(18)中为S(fi)的稀疏表示,In formula (18) is the sparse representation of S(f i ),

其中,为稀疏矩阵,为S(fi,kp)的稀疏表示,中只包含K个非零元素,中的第l个元素,当且仅当中的元素不全为零且有故此可以看成是S(fi)中加入了许多0元素后得到的矩阵;in, is a sparse matrix, which is the sparse representation of S(f i ,kp), contains only K non-zero elements, for The l-th element in , if and only if Time The elements in are not all zero and have Therefore It can be regarded as a matrix obtained by adding many 0 elements to S(f i );

设δ(fi)=[δ1(fi),…,δl(fi),…,δL(fi)]T中元素的方差,反映了信号的能量,即有Suppose δ(f i )=[δ 1 (f i ),…,δ l (f i ),…,δ L (f i )] T is The variance of the elements in reflects the energy of the signal, that is,

其中,Σ(fi)=diag(δ(fi)),即服从均值为0,方差为δ(fi)的高斯分布;Among them, Σ(f i )=diag(δ(f i )), namely Obey the Gaussian distribution with mean value 0 and variance δ(f i );

由于可以看成是S(fi)中加入了许多0元素后得到的向量,所以δ(fi)包含了K个非零元素,并且有K<<L,根据δ(fi),结合w(fi)和噪声方差μ2(fi)估计出从而重构出原信号,同时对误差进行校正;because It can be regarded as a vector obtained by adding many 0 elements to S(f i ), so δ(f i ) contains K non-zero elements, and K<<L, according to δ(f i ), combined with w (f i ) and noise variance μ 2 (f i ) to estimate So as to reconstruct the original signal and correct the error at the same time;

根据式(18)可知,存在阵元位置误差时频点fi的阵列输出信号的概率密度为According to formula (18), it can be seen that the probability density of the array output signal of the frequency point fi when there is an array element position error is

结合式(18)、(20)和(21)可得Combining formulas (18), (20) and (21) can be obtained

其中,IM是M×M维的单位阵;Wherein, I M is the unit matrix of M * M dimensions;

采用期望最大化(Expectation Maximization,EM)方法来对w(fi)、μ2(fi)和δl(fi)进行迭代估计,得出估计值对应的可得到以及 Use the Expectation Maximization (EM) method to iteratively estimate w(f i ), μ 2 (f i ) and δ l (f i ), and obtain the estimated value with corresponding available as well as

步骤3:利用对阵列误差进行校正并对信号到达方向求解;Step 3: Take advantage of with Correct the array error and solve the signal arrival direction;

令X为一段观测时间内阵列接收到的所有频点信号的和构成的向量,由于各频点的信号具有统计独立性,因此各频点接收信号的联合概率密度为Let X be a vector composed of the sum of all frequency point signals received by the array within a period of observation time. Since the signals of each frequency point are statistically independent, the joint probability density of the received signals at each frequency point is

对式(35)两端取对数有Taking the logarithm of both ends of the formula (35) has

因此令式(36)最大化即可求得信号到达方向,即信号到达方向的估计值k=1,2,…,K,即可以通过Therefore, by maximizing the formula (36), the direction of arrival of the signal can be obtained, that is, the estimated value of the direction of arrival of the signal k=1,2,...,K, that is, it can pass

求得;obtain;

经过推导有After derivation there are

其中,Re{·}为求{·}的实部;Ω-k分别表示从Ω和中去掉其中的第k个元素;k=1,2,…,K;Among them, Re{·} is to find the real part of {·}; Ω -k , Respectively from Ω and Remove the kth element in it; k=1,2,...,K;

根据的表达式求得△d2,…,△dM,再根据式(16)、(15)求得W(fik)以及W(fi,Ω),然后进行阵列校正求得a'(fik)和A'(fi-k);再根据以上参数和公式(38),能够得到经过阵列校正后的信号到达方向的估计值 according to Calculate △d 2 ,…,△d M from the expressions of △d 2 ,…,△d M , and then calculate W(f ik ) and W(f i ,Ω) according to formulas (16) and (15), and then perform array correction to obtain a'(f ik ) and A'(f i-k ); according to the above parameters and formula (38), the estimated value of the arrival direction of the signal after array correction can be obtained

具体实施方式二:Specific implementation mode two:

本实施方式步骤1所述建立含有阵元位置误差的阵列信号模型的具体步骤如下:The specific steps for establishing the array signal model containing the array element position error described in step 1 of this embodiment are as follows:

步骤1.1:建立理想阵列信号模型:Step 1.1: Build an ideal array signal model:

如图1所示,设有K个远场宽带信号sk(t),k=1,2,…,K,入射到M个全向阵元组成的宽带均匀直线阵列上,到达方向为α=[α1,…,αk,…,αK],阵元间距为d;远场宽带信号sk(t),简称宽带信号sk(t);As shown in Figure 1, there are K far-field broadband signals s k (t), k=1, 2,..., K, incident on a broadband uniform linear array composed of M omnidirectional array elements, and the arrival direction is α =[α 1 ,…,α k ,…,α K ], the array element spacing is d; the far-field broadband signal s k (t), referred to as the broadband signal s k (t);

将第1个阵元作为相位参考点,在理想情况下,第m个阵元的输出表示为Taking the first array element as the phase reference point, ideally, the output of the mth array element is expressed as

其中,表示第k个宽带信号sk(t)到达第m个阵元相对于它到达相位参考点的延时,c为电磁波在真空中的传播速度,nm(t)为第m个阵元接收到的高斯白噪声;in, Indicates the delay of the k-th broadband signal s k (t) arriving at the m-th array element relative to its arrival at the phase reference point, c is the propagation speed of electromagnetic waves in vacuum, and n m (t) is the receiving time of the m-th array element to Gaussian white noise;

假设宽带信号的频率范围为[fLow,fHigh],利用离散傅里叶变换将宽带信号分成J个频点,经过窄带滤波器组将它们分开,则第i组滤波器阵列输出信号表示为Assuming that the frequency range of the broadband signal is [f Low , f High ], the broadband signal is divided into J frequency points by discrete Fourier transform, and separated by a narrowband filter bank, then the i-th filter array output signal is expressed as

X(fi)=A(fi,α)S(fi)+N(fi),i=1,2,…,J (2)X(f i )=A(f i ,α)S(f i )+N(f i ), i=1,2,...,J (2)

其中,fLow≤fi≤fHigh,i=1,2,…,J;Among them, f Low ≤ f i ≤ f High , i=1,2,...,J;

假设在每个频点fi上进行了KP次采样,X(fi)的矩阵形式表示为Assuming that KP samples are taken on each frequency point f i , the matrix form of X(f i ) is expressed as

X(fi)=[X(fi,1),…,X(fi,kp),…,X(fi,KP)],i=1,2,…,J (3)X(f i )=[X(f i ,1),...,X(f i ,kp),...,X(f i ,KP)], i=1,2,...,J (3)

其中,X(fi,kp)为X(fi)的第kp次数据采样矩阵,Among them, X(f i ,kp) is the kpth data sampling matrix of X(f i ),

X(fi,kp)=[X1(fi,kp),…,Xm(fi,kp),…,XM(fi,kp)]T,i=1,2,…,J, (4)X(f i ,kp)=[X 1 (f i ,kp),…,X m (f i ,kp),…,X M (f i ,kp)] T ,i=1,2,…, J, (4)

Xm(fi,kp)为第m个阵元在频点fi上得到的第kp次数据采样值;X m (f i , kp) is the kpth data sampling value obtained by the mth array element at the frequency point f i ;

A(fi,α)为理想情况下频点fi上的阵列流型矩阵,A(f i ,α) is ideally the array flow pattern matrix on the frequency point f i ,

A(fi,α)=[a(fi1),…,a(fik),…,a(fiK)],i=1,2,…,J, (5)A(f i ,α)=[a(f i1 ),…,a(f ik ),…,a(f iK )], i=1,2,…,J , (5)

a(fik)为理想情况下频点fi上第k个信号的阵列导向矢量,a(f ik ) is the array steering vector of the kth signal on the frequency point f i under ideal conditions,

其中,是第k个信号的相位;j是复数标志;in, is the phase of the k-th signal; j is a complex sign;

S(fi)=[S(fi,1),…,S(fi,kp),…,S(fi,KP)],i=1,2,…,J, (8)S(f i )=[S(f i ,1),...,S(f i ,kp),...,S(f i ,KP)], i=1,2,...,J, (8)

为信号sk(t)经过傅立叶变换后的信号矢量矩阵,k=1,2,…,K;is the signal vector matrix of signal s k (t) after Fourier transform, k=1,2,...,K;

其中,S(fi,kp)为S(fi)的第kp次信号采样矩阵,Among them, S(f i ,kp) is the kpth signal sampling matrix of S(f i ),

S(fi,kp)=[S1(fi,kp),…Sk(fi,kp),…,SK(fi,kp)]T i=1,2,…,J (9)S(f i ,kp)=[S 1 (f i ,kp),...S k (f i ,kp),...,S K (f i ,kp)] T i=1,2,...,J ( 9)

Sk(fi,kp)为第k个信号在频点fi上得到的第kp次信号采样值;S k (f i , kp) is the kp-th signal sampling value obtained by the k-th signal at the frequency point f i ;

N(fi)=[N(fi,1),…,N(fi,kp),…,N(fi,KP)] i=1,2,…,J (10)N(f i )=[N(f i ,1),…,N(f i ,kp),…,N(f i ,KP)] i=1,2,…,J (10)

为噪声nm(t)经过傅立叶变换后的噪声矢量矩阵,均值为0,方差为μ2(fi);m=1,2,…,M;其中,N(fi,kp)为N(fi)的第kp次噪声采样矩阵,is the noise vector matrix of the noise n m (t) after Fourier transformation, the mean value is 0, and the variance is μ 2 (f i ); m=1,2,...,M; where, N(f i ,kp) is N The kpth noise sampling matrix of (f i ),

N(fi,kp)=[N1(fi,kp),…,Nm(fi,kp),…,NM(fi,kp)]T i=1,2,…,J (11)N(f i ,kp)=[N 1 (f i ,kp),…,N m (f i ,kp),…,N M (f i ,kp)] T i=1,2,…,J (11)

Nm(fi,kp)为第m个阵元在频点fi上得到的第kp次噪声采样值;N m (f i , kp) is the kpth noise sampling value obtained by the mth array element at the frequency point f i ;

步骤1.2:在理想阵列信号模型基础上建立含有阵元位置误差的阵列信号模型:Step 1.2: Based on the ideal array signal model, an array signal model including array element position error is established:

当阵列当中存在阵元位置误差时,频点fi上的阵列输出可以表示为When there is an element position error in the array, the array output at frequency f i can be expressed as

X'(fi)=A'(fi,α)S(fi)+N(fi),i=1,2,…,J (12)X'(f i )=A'(f i ,α)S(f i )+N(f i ), i=1,2,...,J (12)

存在阵元位置误差时频点fi上的接收信号协方差矩阵为The covariance matrix of the received signal at the time-frequency point fi when there is an element position error is

R'(fi)=E{X'(fi)(X'(fi))H},i=1,2,…,J (13)R'(f i )=E{X'(f i )(X'(f i )) H }, i=1,2,...,J (13)

式(12)中,A'(fi,α)=[a'(fi1),…,a'(fik),…,a'(fiK)]为存在阵元位置误差时频点fi上的阵列流型矩阵,a'(fik)为对应的阵列导向矢量;In formula (12), A'(f i ,α)=[a'(f i1 ),...,a'(f ik ),...,a'(f iK )] is the array flow pattern matrix at the time-frequency point f i where there is an array element position error, and a'(f ik ) is the corresponding array steering vector;

当第m个阵元的位置存在误差△dm时,可以等效为阵列导向矢量中引入了方位依赖的相位扰动,则有When there is an error △d m in the position of the mth array element, it can be equivalent to introducing an azimuth-dependent phase disturbance into the array steering vector, then

其中,in,

为频点fi上、到达方向为αk的阵元位置误差扰动矩阵;is the array element position error perturbation matrix at frequency f i and direction of arrival α k ;

其中in

为第k个信号到达第m个阵元时,由阵元位置误差扰动引入的信源传播时延误差;When the kth signal arrives at the mth array element, the source propagation delay error introduced by the disturbance of the array element position error;

则存在阵元位置误差时的阵列流型矩阵为Then the array flow pattern matrix when there is an element position error is

A'(fi,α)=[a'(fi1),…,a'(fik),…,a'(fiK)]A'(f i ,α)=[a'(f i1 ),...,a'(f ik ),...,a'(f iK )]

(17)(17)

=W(fi,α)·A(fi,α)=W(f i ,α)·A(f i ,α)

其中W(fi,α)=[W(fi1),…,W(fik),…,W(fiK)]表示存在阵元位置误差时频点fi上的阵元位置误差扰动矩阵。Where W(f i ,α)=[W(f i1 ),…,W(f ik ),…,W(f iK )] means that there is a time-frequency point where there is an element position error Array element position error perturbation matrix on f i .

其它步骤和参数与具体实施方式一相同。Other steps and parameters are the same as in the first embodiment.

具体实施方式三:Specific implementation mode three:

本实施方式步骤2中所述的采用期望最大化方法来对w(fi)、μ2(fi)和δl(fi)进行迭代估计的具体步骤如下:The specific steps for iteratively estimating w(f i ), μ 2 (f i ) and δ l (f i ) using the expectation maximization method described in step 2 of this embodiment are as follows:

在期望最大化方法中的E-step步中,首先对的分布函数进行计算In the E-step step in the expectation maximization method, the first Calculate the distribution function of

其中运算符<·>表示求解条件期望;The operator <·> represents the expectation of the solution condition;

在期望最大化方法中的M-step步中,分别求取分布函数对各未知参数的导数,即对取极值来对各未知参数求解;In the M-step step in the expectation maximization method, the distribution functions are obtained respectively Derivatives for each unknown parameter, that is, for Take extreme values to solve for each unknown parameter;

分别令以上的导数为0,即可求得第p次迭代时各个未知参数的估计值Let the above derivatives be 0 respectively, then the estimated value of each unknown parameter at the pth iteration can be obtained

其中(p)代表迭代次数,式(27)中where (p) represents the number of iterations, in formula (27)

为矩阵第r1行、r2列的元素,其中tr[·]表示求迹运算;for the matrix The elements in row r1 and column r2, where tr[·] represents the trace operation;

式(30)中;In formula (30);

O(fi)=Σ(fi)(A'(fi,Ω))H2(fi)IM+A'(fi,Ω)Σ(fi)(A'(fi,Ω))H)-1X(fi) (31)O(f i )=Σ(f i )(A'(f i ,Ω)) H2 (f i )I M +A'(f i ,Ω)Σ(f i )(A'(f i ,Ω)) H ) -1 X(f i ) (31)

为中间变量;is an intermediate variable;

Ξ(fi)Ξ(f i )

(32)(32)

=Σ(fi)-Σ(fi)(A'(fi,Ω))H2(fi)IM+A'(fi,Ω)Σ(fi)(A'(fi,Ω))H)-1A'(fi,Ω)Σ(fi)=Σ(f i )-Σ(f i )(A'(f i ,Ω)) H2 (f i )I M +A'(f i ,Ω)Σ(f i )(A'( f i ,Ω)) H ) -1 A'(f i ,Ω)Σ(f i )

为中间变量;is an intermediate variable;

式(27)中;In formula (27);

式(28)中In formula (28)

式(33)中,Ψr(fi)为中间变量,为M×M维的矩阵,只有在第r+1行、r+1列处的元素全为1,其余元素全为0;In formula (33), Ψ r (f i ) is an intermediate variable, which is an M×M dimensional matrix, only the elements at row r+1 and column r+1 are all 1, and the rest of the elements are all 0;

由于直接利用式(27)~(28)计算w(fi)和μ2(fi)比较复杂,因此可将式(30)~(34)代入式(27)~(28)中对等式进行化简并对w(fi)和μ2(fi)求解;Since it is more complicated to calculate w(f i ) and μ 2 (f i ) directly using formulas (27)~(28), formulas (30)~(34) can be substituted into formulas (27)~(28) and equivalent Simplify the formula and solve for w(f i ) and μ 2 (f i );

当迭代若干步后,w(fi)、μ2(fi)和δl(fi)三个量估计值的变化趋于0,此时可认为它们已经收敛,则可得出最后的估计值对应得到以及 After iterating several steps, the changes of the estimated values of w(f i ), μ 2 (f i ) and δ l (f i ) tend to 0, and they can be considered to have converged at this time, then the final estimated value with correspond to get as well as

其它步骤和参数与具体实施方式二相同。Other steps and parameters are the same as in the second embodiment.

具体实施方式四:参照图2和图3具体说明本实施方式,Specific Embodiment Four: This embodiment is described in detail with reference to FIG. 2 and FIG. 3 ,

本实施方式为实现具体实施方式一至三所述方法的宽带信号探测系统及实现探测的方法,This implementation mode is a broadband signal detection system and a detection method for implementing the methods described in the first to third specific implementation modes.

如图2所示,宽带信号探测系统包括:宽带均匀直线阵列1、多通道宽带数字接收机2和宽带信号超分辨测向装置3;As shown in Figure 2, the broadband signal detection system includes: a broadband uniform linear array 1, a multi-channel broadband digital receiver 2 and a broadband signal super-resolution direction finding device 3;

如图3所示,宽带信号超分辨测向装置3包括6片数字信号处理器,即DSP,采用快速串行输入输出口,即SRIO口,组成多处理器系统实现并行处理。其中,DSP3-1为主DSP,DSP3-2~DSP3-6为从DSP;宽带信号超分辨测向装置3还包括CPLD3-7、PROM3-8、FLASH3-9、SRAM3-10、JTAG3-11、电源、晶振和复位。As shown in Figure 3, the broadband signal super-resolution direction finding device 3 includes 6 pieces of digital signal processors, ie DSP, using fast serial input and output ports, ie SRIO port, to form a multi-processor system to realize parallel processing. Among them, DSP3-1 is the main DSP, and DSP3-2~DSP3-6 are slave DSPs; the broadband signal super-resolution direction finding device 3 also includes CPLD3-7, PROM3-8, FLASH3-9, SRAM3-10, JTAG3-11, Power, Crystal Oscillator and Reset.

数字信号处理器采用Texas Instruments(TI)公司的TMS320C6678,采用6片处理器并行处理,6片DSP通过SRIO口连接,上电后PROM3-8首先将程序加载给CPLD3-7,FLASH3-9也将程序加载给这6块DSP(3-1~3-6),之后主DSP3-1开始接收多通道宽带数字接收机2传来的J个频点的观测数据,把它们分为W组,假设J=30,W=6,则每片DSP可以处理U=30/6=5个频点的观测数据,主DSP3-1通过SRIO口将其它从DSP(3-2~3-6)负责处理的观测数据传递给它们,之后每个DSP(3-1~3-6)都按照以上理论推导的步骤进行求解,之后5片从DSP(3-2~3-6)将各自的误差估计值通过SRIO口传给主DSP3-1,主DSP3-1再利用这些结果,结合式(38)得出信号到达角度。其中SRAM3-10负责存储数据,JTAG3-11负责对DSP(3-1~3-6)进行调试,电源负责整体供电,晶振负责提供时钟,复位负责提供复位信号。The digital signal processor adopts TMS320C6678 of Texas Instruments (TI) company, adopts 6 processors for parallel processing, and 6 DSPs are connected through SRIO ports. After power on, PROM3-8 first loads the program to CPLD3-7, and FLASH3-9 The program is loaded to these 6 DSPs (3-1~3-6), and then the main DSP3-1 starts to receive the observation data of J frequency points from the multi-channel wideband digital receiver 2, and divides them into W groups, assuming J=30, W=6, then each piece of DSP can process the observation data of U=30/6=5 frequency points, and the main DSP3-1 is responsible for processing other slave DSPs (3-2~3-6) through the SRIO port After that, each DSP (3-1 ~ 3-6) will solve the problem according to the steps of theoretical derivation above, and then the 5 chips will get their error estimates from DSP (3-2 ~ 3-6) It is transmitted to the main DSP3-1 through the SRIO port, and the main DSP3-1 uses these results again to obtain the signal arrival angle by combining formula (38). Among them, SRAM3-10 is responsible for storing data, JTAG3-11 is responsible for debugging DSP (3-1~3-6), power supply is responsible for overall power supply, crystal oscillator is responsible for providing clock, and reset is responsible for providing reset signal.

具体实施方式五:参照图2和图4具体说明本实施方式,Specific Embodiment Five: This embodiment is described in detail with reference to FIG. 2 and FIG. 4 ,

本实施方式为实现具体实施方式一至三所述方法的宽带信号探测系统及实现探测的方法,This implementation mode is a broadband signal detection system and a detection method for implementing the methods described in the first to third specific implementation modes.

如图2所示,宽带信号探测系统包括:宽带均匀直线阵列1、多通道宽带数字接收机2和宽带信号超分辨测向装置3;As shown in Figure 2, the broadband signal detection system includes: a broadband uniform linear array 1, a multi-channel broadband digital receiver 2 and a broadband signal super-resolution direction finding device 3;

如图4所示,宽带信号超分辨测向装置3包括6片数字信号处理器,即DSP,采用共享总线紧耦合方式组成多处理器系统实现并行处理。其中,DSP3-1为主DSP,DSP3-2~DSP3-6为从DSP;宽带信号超分辨测向装置3还包括CPLD3-7、PROM3-8、FLASH3-9、SRAM3-10、JTAG3-11、电源、晶振和复位。As shown in FIG. 4 , the broadband signal super-resolution direction finding device 3 includes 6 digital signal processors, ie, DSPs, which form a multi-processor system to realize parallel processing by using shared bus tightly coupled. Among them, DSP3-1 is the main DSP, and DSP3-2~DSP3-6 are slave DSPs; the broadband signal super-resolution direction finding device 3 also includes CPLD3-7, PROM3-8, FLASH3-9, SRAM3-10, JTAG3-11, Power, Crystal Oscillator and Reset.

数字信号处理器采用Analog Device Instruments(ADI)公司的ADSP-TS201S,采用6片DSP并行处理,6片DSP通过共享总线紧耦合方式连接,上电后PROM3-8首先将程序加载给CPLD3-7对DSP(3-1~3-6)进行配置,之后FLASH3-9将程序加载给这6块DSP(3-1~3-6),主DSP3-1开始接收多通道宽带数字接收机2传来的J个频点的观测数据,把它们分为W组,假设J=30,W=6,则每片DSP可以处理U=30/6=5个频点的观测数据,主DSP3-1通过总线将其它从DSP(3-2~3-6)负责处理的观测数据传递给它们,之后每个DSP(3-1~3-6)都按照以上理论推导的步骤进行求解,之后5片从DSP(3-2~3-6)将各自的误差估计值通过总线传给主DSP3-1,主DSP3-1再利用这些结果,结合式(38)得出信号到达角度。其中SRAM3-10负责存储数据,JTAG3-11负责对DSP(3-1~3-6)进行调试,电源负责整体供电,晶振负责提供时钟,复位负责提供复位信号。The digital signal processor adopts the ADSP-TS201S of Analog Devices Instruments (ADI), and adopts 6 DSPs for parallel processing, and the 6 DSPs are connected through a shared bus tightly coupled. After power-on, PROM3-8 first loads the program to CPLD3-7 pair The DSP (3-1~3-6) is configured, and then FLASH3-9 loads the program to these 6 DSPs (3-1~3-6), and the main DSP3-1 starts to receive the multi-channel broadband digital receiver 2. The observed data of J frequency points are divided into W groups, assuming J=30, W=6, then each DSP can process the observed data of U=30/6=5 frequency points, and the main DSP3-1 passes The bus transmits the observation data that other slave DSPs (3-2~3-6) are responsible for processing to them, and then each DSP (3-1~3-6) solves according to the steps of the above theoretical derivation, and then the 5 slaves DSPs (3-2~3-6) transmit their respective error estimation values to the main DSP3-1 through the bus, and the main DSP3-1 uses these results again to obtain the signal arrival angle by combining formula (38). Among them, SRAM3-10 is responsible for storing data, JTAG3-11 is responsible for debugging DSP (3-1~3-6), power supply is responsible for overall power supply, crystal oscillator is responsible for providing clock, and reset is responsible for providing reset signal.

具体实施方式六:参照图2和图5具体说明本实施方式,Specific embodiment six: This embodiment is described in detail with reference to Fig. 2 and Fig. 5 ,

本实施方式为实现具体实施方式一至三所述方法的宽带信号探测系统及实现探测的方法,This implementation mode is a broadband signal detection system and a detection method for implementing the methods described in the first to third specific implementation modes.

如图2所示,宽带信号探测系统包括:宽带均匀直线阵列1、多通道宽带数字接收机2和宽带信号超分辨测向装置3;As shown in Figure 2, the broadband signal detection system includes: a broadband uniform linear array 1, a multi-channel broadband digital receiver 2 and a broadband signal super-resolution direction finding device 3;

如图5所示,宽带信号超分辨测向装置3包括6片数字信号处理器,即DSP,采用链路口级联松耦合方式组成多处理器系统实现并行处理。其中,DSP3-1为主DSP,DSP3-2~DSP3-6为从DSP;宽带信号超分辨测向装置3还包括CPLD3-7、PROM3-8、FLASH3-9、SRAM3-10、JTAG3-11、电源、晶振和复位。As shown in FIG. 5 , the broadband signal super-resolution direction finding device 3 includes 6 digital signal processors, ie DSPs, which are composed of a multi-processor system by cascading and loosely coupling link ports to realize parallel processing. Among them, DSP3-1 is the main DSP, and DSP3-2~DSP3-6 are slave DSPs; the broadband signal super-resolution direction finding device 3 also includes CPLD3-7, PROM3-8, FLASH3-9, SRAM3-10, JTAG3-11, Power, Crystal Oscillator and Reset.

数字信号处理器采用Analog Device Instruments(ADI)公司的ADSP-TS201S,采用6片处理器并行处理,6片DSP通过链路口级联松耦合方式连接,上电后PROM3-8首先将程序加载给CPLD3-7,FLASH3-9将这6片DSP的程序加载给主DSP3-1,主DSP3-1再依次将其它从DSP(3-2~3-6)的程序通过链路口一级一级传给它们,之后主DSP3-1开始接收多通道宽带数字接收机2传来的J个频点的观测数据,把它们分为W组,假设J=30,W=6,则每片DSP可以处理U=30/6=5个频点的观测数据,主DSP3-1再通过链路口将其它DSP(3-2~3-6)负责处理的观测数据一级一级逐次传递给它们,之后每个DSP(3-1~3-6)都按照以上理论推导的步骤进行求解,之后5片从DSP(3-2~3-6)将各自的误差估计值通过链路口一级一级逐次上传到主DSP3-1,主DSP3-1再利用这些结果,结合式(38)得出信号到达角度。其中SRAM3-10负责存储数据,JTAG3-11负责对DSP(3-1~3-6)进行调试,电源负责整体供电,晶振负责提供时钟,复位负责提供复位信号。The digital signal processor adopts the ADSP-TS201S of Analog Devices Instruments (ADI), and uses 6 processors for parallel processing. The 6 DSPs are connected through the link port cascading and loose coupling. CPLD3-7, FLASH3-9 load the programs of these 6 DSPs to the master DSP3-1, and the master DSP3-1 sequentially loads the programs of other slave DSPs (3-2~3-6) through the link port level by level Pass them, main DSP3-1 starts to receive the observation data of J frequency points that multi-channel broadband digital receiver 2 transmits later, they are divided into W group, assuming J=30, W=6, then every chip DSP can Process the observation data of U=30/6=5 frequency points, and the main DSP3-1 passes the observation data that other DSPs (3-2~3-6) are responsible for processing to them one by one through the link port. After that, each DSP (3-1~3-6) will solve the problem according to the steps of the above theoretical derivation, and then the 5 chips will send their error estimates from the DSP (3-2~3-6) through the link port level by level. The stages are uploaded to the main DSP3-1 one by one, and the main DSP3-1 uses these results again to obtain the signal arrival angle by combining formula (38). Among them, SRAM3-10 is responsible for storing data, JTAG3-11 is responsible for debugging DSP (3-1~3-6), power supply is responsible for overall power supply, crystal oscillator is responsible for providing clock, and reset is responsible for providing reset signal.

Claims (3)

1. The array element position error correction method in the broadband signal super-resolution direction finding is characterized by comprising the following steps of:
step 1: establishing an array signal model containing array element position errors:
when array element position error exists in the array, the frequency point fiThe output of the array at is represented as
X'(fi)=A'(fi,α)S(fi)+N(fi),i=1,2,…,J (12)
A'(fiα) is the frequency point f when array element position error existsiAn array flow pattern matrix above; s (f)i) Is a signal sk(t) a signal vector matrix after fourier transformation; n (f)i) Is noise nm(t) noise vector matrix after Fourier transform, mean 0, variance μ2(fi) J is the number of frequency points, α ═ α1,…,αk,…,αK]The arrival direction of K far-field broadband signals incident on a broadband uniform linear array consisting of M omnidirectional array elements is determined;
time frequency point f with array element position erroriA received signal covariance matrix of
R'(fi)=E{X'(fi)(X'(fi))H},i=1,2,…,J (13)
A(fi,α)=[a(fi1),…,a(fik),…,a(fiK)]Is the frequency point f under the ideal conditioniArray flow pattern matrix ofik) Is the frequency point f under the ideal conditioniAn array steering vector for the k-th signal; k is the number of far-field broadband signals;
when the position of the m-th array element has an error delta dmWhen the method is equivalent to introducing azimuth-dependent phase disturbance into the array steering vector, the method has the following advantages
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mi>a</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&amp;Delta;&amp;tau;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&amp;Delta;&amp;tau;</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&amp;Delta;&amp;tau;</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>W</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>W</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&amp;Delta;&amp;tau;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&amp;Delta;&amp;tau;</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&amp;Delta;&amp;tau;</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
Wherein, W (f)ik) Is a frequency point fiUp and direction αkArray element position error disturbance matrix of (a') (f)ik) Time frequency point f for indicating array element position erroriAn array steering vector for the k-th signal;
<mrow> <msub> <mi>&amp;Delta;&amp;tau;</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;Delta;d</mi> <mi>m</mi> </msub> </mrow> <mi>c</mi> </mfrac> <msub> <mi>sin&amp;alpha;</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
from direction α for the k signalkWhen the m-th array element is reached, the signal source propagation delay error introduced by the disturbance of the position error of the array element is introduced;
the time frequency point f with array element position erroriAn array flow pattern matrix of
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>&amp;lsqb;</mo> <msup> <mi>a</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msup> <mi>a</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msup> <mi>a</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>K</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>W</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
Wherein, W (f)i,α)=[W(fi1),…,W(fik),…,W(fiK)]Representing frequency point fiAn array element position error disturbance matrix is arranged;
step 2: estimating array signal parameters containing array element position errors:
the search space is first divided into a number of discrete angular gridsCorresponding to the L directions in which the signal may arrive; thereby obtaining a frequency point fiSparse representation of an over-array streaming matrix
<mrow> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>&amp;lsqb;</mo> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;OverBar;</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;OverBar;</mo> </mover> <mi>l</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mover> <mi>&amp;alpha;</mi> <mo>&amp;OverBar;</mo> </mover> <mi>L</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow>
Wherein,is a frequency point fiCorrespondingly obtaining the time frequency point f with array element position error by the array steering vector of the last ith sparse signaliSparse representation of an over-array streaming matrixd is the array element spacing;is a frequency point fiSparse representation of the position error perturbation matrix of the upper array element,is a frequency point fiArray element position error disturbance matrixes of the upper and the l-th sparse signals,when the ith sparse signal reaches the mth array element, the source propagation delay error is introduced by the disturbance of the position error of the array element, and c is the propagation speed of the electromagnetic wave in vacuum;for existence of array element position error time frequency point fiObtaining the frequency point f when the array element position error exists by the array steering vector of the last ith sparse signaliSparse representation of upper array output signal
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> <mo>)</mo> </mrow> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>N</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> <mo>)</mo> </mrow> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mover> <mi>&amp;Lambda;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>w</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>N</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>J</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
Wherein, Λ (f)i) Is a parameter related to the original signal only;is Λ (f)i) A sparse representation of (c); w (f)i)=[Δd2,…,ΔdM]TRepresenting the position error disturbance vector of the array element, taking the 1 st array element as a position reference point, delta d2,…,ΔdMAre respectively frequency points fiDeviation of the actual position and the measured position of the upper 2 nd array element to the Mth array element;
has a covariance matrix of
<mrow> <msup> <mover> <mi>R</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>E</mi> <mo>{</mo> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>}</mo> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>J</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
In the formula (18)Is S (f)i) KP is sampling frequency, and KP represents KP sampling;
wherein,is a sparse matrix, is S (f)iKp) is used in the sparse representation,contains only K non-zero elements,is composed ofIf and only ifTime of flightWherein the elements are not all zero and havel=1,2,…,L,k=1,2, …, K; thus, it isIs regarded as S (f)i) A matrix obtained by adding a plurality of 0 elements; s (f)iKp) is S (f)i) Of the kth signal sampling matrix, Sk(fiKp) is the k signal at frequency fiThe kpth signal sampling value obtained above;
is provided (f)i)=[1(fi),…,l(fi),…,L(fi)]TIs composed ofThe variance of the medium element reflects the energy of the signal, i.e. has
<mrow> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>~</mo> <mi>N</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>&amp;Sigma;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
Wherein, Σ (f)i)=diag((fi) That is to sayObedience mean 0, variance (f)i) (ii) a gaussian distribution of;
according to the formula (18), the frequency f when the position error of the array element existsiHas a probability density of
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>|</mo> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>;</mo> <mi>w</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>|</mo> <mi>&amp;pi;</mi> <msup> <mover> <mi>&amp;mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mi>K</mi> <mi>P</mi> </mrow> </msup> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>|</mo> <mo>|</mo> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> <mo>)</mo> </mrow> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mover> <mi>&amp;Lambda;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>w</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <msubsup> <mo>|</mo> <mn>2</mn> <mn>2</mn> </msubsup> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow>
In combination with (18), (20) and (21)
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>;</mo> <mi>&amp;delta;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mi>w</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>|</mo> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> <mi>&amp;Sigma;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mi>K</mi> <mi>P</mi> </mrow> </msup> <mo>&amp;times;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>K</mi> <mi>P</mi> <mo>&amp;times;</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> </mrow> <mi>&amp;Sigma;</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mover> <mi>R</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow>
Wherein, IMM is a unit array with M × dimension, wherein M is the number of omnidirectional array elements;
using expectation maximization method to pair w (f)i)、μ2(fi) Andl(fi) Performing iterative estimation to obtain an estimated value Andcorresponding to getAnd
and step 3: by usingAndcorrecting array errors and solving the signal arrival direction;
let X be the vector formed by the sum of all frequency point signals received by the array in a period of observation time, and because the signals of each frequency point have statistical independence, the joint probability density of the signals received by each frequency point is
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mi>P</mi> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>;</mo> <mover> <mi>&amp;delta;</mi> <mo>^</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mover> <mi>w</mi> <mo>^</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mover> <mi>&amp;mu;</mi> <mo>^</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>|</mo> <mi>&amp;pi;</mi> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mi>J</mi> <mo>&amp;times;</mo> <mi>K</mi> <mi>P</mi> </mrow> </msup> <munderover> <mi>&amp;Pi;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mo>|</mo> <mrow> <mo>(</mo> <msup> <mover> <mi>&amp;mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> <mover> <mi>&amp;Sigma;</mi> <mo>^</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mi>K</mi> <mi>P</mi> </mrow> </msup> <mo>&amp;times;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>exp</mi> <mo>{</mo> <mo>-</mo> <mi>K</mi> <mi>P</mi> <mo>&amp;times;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mover> <mi>&amp;mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> </mrow> <mover> <mi>&amp;Sigma;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mover> <mi>R</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>35</mn> <mo>)</mo> </mrow> </mrow>
The logarithm at both ends of the pair formula (35) is
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>I</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>P</mi> <mo>(</mo> <mi>X</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>-</mo> <mi>J</mi> <mo>&amp;times;</mo> <mi>K</mi> <mi>P</mi> <mo>&amp;times;</mo> <mi>I</mi> <mi>n</mi> <mi>&amp;pi;</mi> <mo>-</mo> <mi>K</mi> <mi>P</mi> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mi>I</mi> <mi>n</mi> <mo>|</mo> <msup> <mover> <mi>&amp;mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> <mover> <mi>&amp;Sigma;</mi> <mo>^</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>|</mo> <mo>)</mo> </mrow> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>K</mi> <mi>P</mi> <mo>&amp;times;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mover> <mi>&amp;mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> </mrow> <mover> <mi>&amp;Sigma;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mover> <mi>R</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>36</mn> <mo>)</mo> </mrow> </mrow>
Maximizing equation (36) yields the direction of arrival of the signal, i.e., an estimate of the direction of arrival of the signalK is 1,2, …, K, i.e. by
<mrow> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>I</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>P</mi> <mo>(</mo> <mi>X</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mrow> <mo>&amp;part;</mo> <mi>&amp;alpha;</mi> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>37</mn> <mo>)</mo> </mrow> </mrow>
Obtaining;
by derivation have
<mrow> <msub> <mover> <mi>&amp;alpha;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mi>arg</mi> <munder> <mi>max</mi> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> </munder> <mo>|</mo> <mi>Re</mi> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>a</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mover> <mi>&amp;mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;Omega;</mi> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;Sigma;</mi> <mo>^</mo> </mover> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;Omega;</mi> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>&amp;times;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mrow> <mo>(</mo> <msup> <mi>a</mi> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> </mrow> <mo>)</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>a</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mover> <mi>&amp;mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;Omega;</mi> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mover> <mi>&amp;Sigma;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;Omega;</mi> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mover> <mi>R</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mrow> <mo>(</mo> <msup> <mover> <mi>R</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> </mrow> <mo>)</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mover> <mi>&amp;mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;Omega;</mi> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mover> <mi>&amp;Sigma;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;Omega;</mi> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>a</mi> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> </mrow> <mo>)</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>a</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;times;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mover> <mi>&amp;mu;</mi> <mo>^</mo> </mover> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>A</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;Omega;</mi> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mover> <mi>&amp;Sigma;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;Omega;</mi> <mrow> <mo>-</mo> <mi>k</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>&amp;times;</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msup> <mi>a</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>38</mn> <mo>)</mo> </mrow> </mrow>
Wherein Re {. is the real part of the solution {. cndot.); omega-kRespectively expressed from Ω andremoving the k-th element from the first element; k is 1,2, …, K;
according toIs calculated as Δ d2,…,ΔdMThen, W (f) is obtained from the equations (16) and (15)ik) And W (f)iΩ), then array correction is performed to find a' (f)ik) And A' (f)i-k) (ii) a Based on the above parameters and equation (38), an estimate of the direction of arrival of the array-corrected signal can be obtained
2. The method for correcting array element position errors in broadband signal super-resolution direction finding according to claim 1, wherein the specific steps of establishing the array signal model containing the array element position errors in step 1 are as follows:
step 1.1: establishing an ideal array signal model:
provided with K far-field broadband signals sk(t), K is 1,2, …, K, and is incident on a broadband uniform linear array of M omnidirectional array elements, arriving at α ═ α1,…,αk,…,αK]The array element interval is d; far field broadband signal sk(t), broadband signal s for shortk(t);
Taking the 1 st array element as the phase reference point, ideally, the output of the m-th array element is expressed as
<mrow> <msub> <mi>x</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </munderover> <msub> <mi>s</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>&amp;tau;</mi> <mi>m</mi> </msub> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>n</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>M</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein,representing the kth broadband signal sk(t) the time delay of the m-th array element relative to its arrival at the phase reference point, c is the propagation speed of the electromagnetic wave in vacuumDegree, nm(t) Gaussian white noise received by the mth array element;
suppose the frequency range of the wideband signal is fLow,fHigh]The broadband signal is divided into J frequency points by using discrete Fourier transform, and the J frequency points are separated by a narrow-band filter bank, so that the output signal of the filter array of the ith group is expressed as
X(fi)=A(fi,α)S(fi)+N(fi),i=1,2,…,J (2)
Wherein f isLow≤fi≤fHigh,i=1,2,…,J;
Assuming at each frequency point fiHaving performed KP subsampling, X (f)i) Is expressed in matrix form as
X(fi)=[X(fi,1),…,X(fi,kp),…,X(fi,KP)],i=1,2,…,J (3)
Wherein, X (f)iKp) is X (f)i) The kp-th time data sampling matrix of (c),
X(fi,kp)=[X1(fi,kp),…,Xm(fi,kp),…,XM(fi,kp)]T,i=1,2,…,J, (4)
Xm(fikp) is the m-th array element at frequency point fiThe kp-th data sampling value obtained above;
A(fiα) is the ideal case frequency point fiThe array flow pattern matrix on the upper surface,
A(fi,α)=[a(fi1),…,a(fik),…,a(fiK)],i=1,2,…,J, (5)
a(fik) Is the frequency point f under the ideal conditioniThe array of the top k-th signal leads to the vector,
wherein,is the phase of the kth signal; j is a complex number flag;
S(fi)=[S(fi,1),…,S(fi,kp),…,S(fi,KP)],i=1,2,…,J, (8)
is a signal sk(t) a fourier transformed signal vector matrix, K being 1,2, …, K;
wherein, S (f)iKp) is S (f)i) The kp-th sub-sampling matrix of the signal,
S(fi,kp)=[S1(fi,kp),…Sk(fi,kp),…,SK(fi,kp)]Ti=1,2,…,J (9)
Sk(fikp) is the k signal at frequency fiThe kpth signal sampling value obtained above;
N(fi)=[N(fi,1),…,N(fi,kp),…,N(fi,KP)]i=1,2,…,J (10)
is noise nm(t) noise vector matrix after Fourier transform, mean 0, variance μ2(fi) (ii) a M is 1,2, …, M; wherein, N (f)iKp) is N (f)i) The kp-th time of the noise sampling matrix,
N(fi,kp)=[N1(fi,kp),…,Nm(fi,kp),…,NM(fi,kp)]Ti=1,2,…,J (11)
Nm(fikp) is the m-th array element at frequency point fiThe kp-th noise sampling value obtained above;
step 1.2: establishing an array signal model containing array element position errors on the basis of an ideal array signal model:
when array element position error exists in the array, the frequency point fiThe output of the array at is represented as
X'(fi)=A'(fi,α)S(fi)+N(fi),i=1,2,…,J (12)
Time frequency point f with array element position erroriA received signal covariance matrix of
R'(fi)=E{X'(fi)(X'(fi))H},i=1,2,…,J (13)
In formula (12), A' (f)i,α)=[a'(fi1),…,a'(fik),…,a'(fiK)]For existence of array element position error time frequency point fiArray flow pattern matrix of (a') (f)ik) Steering vectors for the corresponding arrays;
when the position of the m-th array element has an error delta dmWhen the method is equivalent to introducing azimuth-dependent phase disturbance into the array steering vector, the method has the following advantages
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mi>a</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&amp;Delta;&amp;tau;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&amp;Delta;&amp;tau;</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&amp;Delta;&amp;tau;</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>a</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>W</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
Wherein,
<mrow> <mi>W</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&amp;Delta;&amp;tau;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&amp;Delta;&amp;tau;</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>,</mo> <mo>...</mo> <mo>,</mo> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>i</mi> </msub> <msub> <mi>&amp;Delta;&amp;tau;</mi> <mi>M</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </msup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
is a frequency point fiThe up and arrival direction is αkThe position error of the array element disturbs the matrix;
wherein
<mrow> <msub> <mi>&amp;Delta;&amp;tau;</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;Delta;d</mi> <mi>m</mi> </msub> </mrow> <mi>c</mi> </mfrac> <msub> <mi>sin&amp;alpha;</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
When the kth signal reaches the mth array element, the signal source propagation delay error is introduced by the disturbance of the position error of the array element;
then the array flow pattern matrix in the presence of array element position error is
<mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>&amp;lsqb;</mo> <msup> <mi>a</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msup> <mi>a</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msup> <mi>a</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;alpha;</mi> <mi>K</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>W</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
Wherein W (f)i,α)=[W(fi1),…,W(fik),…,W(fiK)]Time frequency point f for indicating array element position erroriAnd (3) disturbing the matrix by the position error of the array element.
3. The method for correcting array element position error in broadband signal super-resolution direction finding according to claim 2, wherein the method of maximizing the expectation is adopted in step 2 to pair w (f)i)、μ2(fi) Andl(fi) The specific steps for performing the iterative estimation are as follows:
in the E-step of expectation maximization method, first, the method is performedIs calculated by the distribution function of
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>F</mi> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>;</mo> <mi>&amp;delta;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mi>w</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mrow> <mo>&amp;lang;</mo> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <mi>M</mi> <mo>&amp;times;</mo> <mi>K</mi> <mi>P</mi> <mo>&amp;times;</mo> <msup> <mi>In&amp;mu;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>&amp;mu;</mi> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <mo>|</mo> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> <mo>)</mo> </mrow> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mover> <mi>&amp;Lambda;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>w</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <msubsup> <mo>|</mo> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>J</mi> </munderover> <mrow> <mo>(</mo> <mi>K</mi> <mi>P</mi> <mo>&amp;times;</mo> <msub> <mi>In&amp;delta;</mi> <mi>l</mi> </msub> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mo>(</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>K</mi> <mi>P</mi> </mrow> </munderover> <mo>|</mo> <msub> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mi>l</mi> </msub> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>k</mi> <mi>p</mi> <mo>)</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mrow> <msub> <mi>&amp;delta;</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> <mo>&amp;rang;</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow>
Wherein the operator < · > represents the solution condition expectation;
in the M-step of the expectation-maximization method, the distribution functions are respectively obtainedDerivatives of unknown parameters, i.e. pairsSolving each unknown parameter by taking an extreme value;
<mrow> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>F</mi> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>;</mo> <mi>&amp;delta;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mi>w</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>w</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>2</mn> <msup> <mi>&amp;mu;</mi> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mo>&lt;</mo> <msup> <mover> <mi>&amp;Lambda;</mi> <mo>&amp;OverBar;</mo> </mover> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mover> <mi>&amp;Lambda;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&gt;</mo> <mi>w</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>&lt;</mo> <msup> <mover> <mi>&amp;Lambda;</mi> <mo>&amp;OverBar;</mo> </mover> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <mi>A</mi> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>&gt;</mo> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>F</mi> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>;</mo> <mi>&amp;delta;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mi>w</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mi>M</mi> <mo>&amp;times;</mo> <mi>K</mi> <mi>P</mi> </mrow> <mrow> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <msup> <mrow> <mo>(</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>&lt;</mo> <mo>|</mo> <mo>|</mo> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> <mo>)</mo> </mrow> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <msubsup> <mo>|</mo> <mn>2</mn> <mn>2</mn> </msubsup> <mo>&gt;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>F</mi> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>;</mo> <mi>&amp;delta;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <mi>w</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>,</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;delta;</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mi>K</mi> <mi>P</mi> </mrow> <mrow> <msub> <mi>&amp;delta;</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <msubsup> <mi>&amp;delta;</mi> <mi>l</mi> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&lt;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>K</mi> <mi>P</mi> </mrow> </munderover> <mo>|</mo> <msub> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mi>l</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>k</mi> <mi>p</mi> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>&gt;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>26</mn> <mo>)</mo> </mrow> </mrow>
respectively making the above derivatives be 0, i.e. obtaining the estimated value of each unknown parameter at the p-th iteration
<mrow> <msup> <mi>w</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mo>&lt;</mo> <msup> <mover> <mi>&amp;Lambda;</mi> <mo>&amp;OverBar;</mo> </mover> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mover> <mi>&amp;Lambda;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mo>&gt;</mo> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>&lt;</mo> <msup> <mover> <mi>&amp;Lambda;</mi> <mo>&amp;OverBar;</mo> </mover> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <mi>A</mi> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>&gt;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>27</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msup> <mrow> <mo>(</mo> <msup> <mi>&amp;mu;</mi> <mn>2</mn> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>M</mi> <mo>&amp;times;</mo> <mi>K</mi> <mi>P</mi> </mrow> </mfrac> <mo>&lt;</mo> <mo>|</mo> <mo>|</mo> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msup> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <msubsup> <mo>|</mo> <mn>2</mn> <mn>2</mn> </msubsup> <mo>&gt;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>28</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>&amp;delta;</mi> <mi>l</mi> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>K</mi> <mi>P</mi> </mrow> </mfrac> <mo>&lt;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>K</mi> <mi>P</mi> </mrow> </munderover> <mo>|</mo> <msub> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mi>l</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>k</mi> <mi>p</mi> <mo>)</mo> </mrow> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>&gt;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>29</mn> <mo>)</mo> </mrow> </mrow>
Wherein (p) represents the number of iterations, in equation (27)
<mrow> <mtable> <mtr> <mtd> <mrow> <mo>&lt;</mo> <msup> <mover> <mi>&amp;Lambda;</mi> <mo>&amp;OverBar;</mo> </mover> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mover> <mi>&amp;Lambda;</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mo>&gt;</mo> <mrow> <mi>r</mi> <mn>1</mn> <mo>,</mo> <mi>r</mi> <mn>2</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>t</mi> <mi>r</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>&amp;Psi;</mi> <mrow> <mi>r</mi> <mn>1</mn> </mrow> <mi>H</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;Psi;</mi> <mrow> <mi>r</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>i</mi> </msub> </mrow> <mi>c</mi> </mfrac> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>sin&amp;alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>sin&amp;alpha;</mi> <mi>K</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>)</mo> </mrow> <mo>&amp;times;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>(</mo> <mi>O</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msup> <mi>O</mi> <mi>H</mi> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>+</mo> <mi>K</mi> <mi>P</mi> <mo>&amp;times;</mo> <mi>&amp;Xi;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> <msup> <mrow> <mo>(</mo> <mi>A</mi> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>i</mi> </msub> </mrow> <mi>c</mi> </mfrac> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>sin&amp;alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>sin&amp;alpha;</mi> <mi>K</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>30</mn> <mo>)</mo> </mrow> </mrow>
Is a matrixRow r1, column r2, where tr [ ·]Representing the movement of a targetCalculating;
in formula (30);
O(fi)=Σ(fi)(A'(fi,Ω))H2(fi)IM+A'(fi,Ω)Σ(fi)(A'(fi,Ω))H)-1X(fi) (31)
is an intermediate variable;
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>&amp;Xi;</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>&amp;Sigma;</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;Sigma;</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>&amp;mu;</mi> <mrow> <mo>-</mo> <mn>2</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mi>M</mi> </msub> <mo>+</mo> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> </mrow> <mi>&amp;Sigma;</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mi>H</mi> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> <mi>&amp;Sigma;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>32</mn> <mo>)</mo> </mrow> </mrow>
is an intermediate variable;
in formula (27);
<mrow> <mtable> <mtr> <mtd> <mrow> <mo>&lt;</mo> <msup> <mover> <mi>&amp;Lambda;</mi> <mo>&amp;OverBar;</mo> </mover> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <mi>A</mi> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>&gt;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mi>t</mi> <mi>r</mi> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;Psi;</mi> <mi>r</mi> <mi>H</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>X</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mi>O</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mi>A</mi> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>i</mi> </msub> </mrow> <mi>c</mi> </mfrac> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>sin&amp;alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>sin&amp;alpha;</mi> <mi>K</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>&amp;rsqb;</mo> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>t</mi> <mi>r</mi> <mo>&amp;lsqb;</mo> <msubsup> <mi>&amp;Psi;</mi> <mi>r</mi> <mi>H</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>A</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>O</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msup> <mi>O</mi> <mi>H</mi> </msup> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>+</mo> <mi>K</mi> <mi>P</mi> <mo>&amp;times;</mo> <mi>&amp;Xi;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mi>A</mi> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> <mi>d</mi> <mi>i</mi> <mi>a</mi> <mi>g</mi> <mo>(</mo> <mrow> <mfrac> <mrow> <mi>j</mi> <mn>2</mn> <msub> <mi>&amp;pi;f</mi> <mi>i</mi> </msub> </mrow> <mi>c</mi> </mfrac> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>sin&amp;alpha;</mi> <mn>1</mn> </msub> <mo>,</mo> <mn>...</mn> <mo>,</mo> <msub> <mi>sin&amp;alpha;</mi> <mi>K</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>33</mn> <mo>)</mo> </mrow> </mrow>
in the formula (28)
<mrow> <mtable> <mtr> <mtd> <mrow> <mo>&lt;</mo> <mo>|</mo> <mo>|</mo> <msup> <mover> <mi>X</mi> <mo>&amp;OverBar;</mo> </mover> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msup> <mover> <mi>S</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <msubsup> <mo>|</mo> <mn>2</mn> <mn>2</mn> </msubsup> <mo>&gt;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mo>|</mo> <mo>|</mo> <mi>X</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msup> <mi>O</mi> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <msubsup> <mo>|</mo> <mi>F</mi> <mn>2</mn> </msubsup> <mo>+</mo> <mi>K</mi> <mi>P</mi> <mo>&amp;times;</mo> <mi>t</mi> <mi>r</mi> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msup> <mi>&amp;Xi;</mi> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> <msup> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mrow> <msup> <mi>A</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>&amp;Omega;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> </msup> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>34</mn> <mo>)</mo> </mrow> </mrow>
In formula (33), Ψr(fi) The intermediate variable is a matrix with M × M dimensions, only the elements at the r +1 th row and the r +1 th column are all 1, and the rest elements are all 0;
substitution of equations (30) to (34) into equivalent equations of equations (27) to (28) to degenerate w (f)i) And mu2(fi) Solving;
after several iterations, w (f)i)、μ2(fi) Andl(fi) If the variation of the three estimated values approaches 0, the final estimated value is obtainedAndcorrespond to obtainAnd
CN201510628070.6A 2015-09-28 2015-09-28 Sensor position uncertainties bearing calibration in broadband signal super-resolution direction finding Expired - Fee Related CN105242236B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510628070.6A CN105242236B (en) 2015-09-28 2015-09-28 Sensor position uncertainties bearing calibration in broadband signal super-resolution direction finding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510628070.6A CN105242236B (en) 2015-09-28 2015-09-28 Sensor position uncertainties bearing calibration in broadband signal super-resolution direction finding

Publications (2)

Publication Number Publication Date
CN105242236A CN105242236A (en) 2016-01-13
CN105242236B true CN105242236B (en) 2017-12-08

Family

ID=55039944

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510628070.6A Expired - Fee Related CN105242236B (en) 2015-09-28 2015-09-28 Sensor position uncertainties bearing calibration in broadband signal super-resolution direction finding

Country Status (1)

Country Link
CN (1) CN105242236B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106371055B (en) * 2016-10-26 2018-11-09 黑龙江大学 Far and near field width band mixed signal super-resolution direction finding array amplitude phase error method of estimation
CN110109052B (en) * 2019-05-23 2021-12-31 中国人民解放军战略支援部队信息工程大学 Target direction finding and array element position estimation method under array element position error condition
TWI739181B (en) * 2019-10-24 2021-09-11 國立臺灣大學 A calibration method for a phased array antenna
CN113768541B (en) * 2021-10-27 2024-02-13 之江实验室 Method for correcting position error of array element of complex curved surface ultrasonic array transducer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1580813A (en) * 2004-05-17 2005-02-16 中国人民解放军空军雷达学院 Method for conducting array corrction and information source direction finding by using high precision auxiliary array element
CN103399312A (en) * 2013-07-15 2013-11-20 哈尔滨工程大学 Temporal-spatial joint filtering high-resolution DOA (Direction of Arrival) estimation method based on compressed sensing technology
CN104698448A (en) * 2015-04-03 2015-06-10 西安科技大学 Conformal array robust angle estimation method based on manifold separation under movement platform

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1580813A (en) * 2004-05-17 2005-02-16 中国人民解放军空军雷达学院 Method for conducting array corrction and information source direction finding by using high precision auxiliary array element
CN103399312A (en) * 2013-07-15 2013-11-20 哈尔滨工程大学 Temporal-spatial joint filtering high-resolution DOA (Direction of Arrival) estimation method based on compressed sensing technology
CN104698448A (en) * 2015-04-03 2015-06-10 西安科技大学 Conformal array robust angle estimation method based on manifold separation under movement platform

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
任意平面阵列的相干信号二维波达方向估计方法;甄佳奇 等;《系统工程与电子技术》;20091231;第31卷(第12期);第2841-2843,2858页 *
虚拟阵列下的相干信号测向算法;甄佳奇 等;《系统工程与电子技术》;20131031;第35卷(第10期);第2032-2036页 *

Also Published As

Publication number Publication date
CN105242236A (en) 2016-01-13

Similar Documents

Publication Publication Date Title
CN109116293B (en) A method for estimation of direction of arrival based on off-grid sparse Bayes
CN111046591B (en) Joint Estimation Method of Sensor Amplitude and Phase Error and Target Arrival Angle
CN105068041A (en) Single-base MIMO radar angle estimation method based on covariance vector sparse representation under cross coupling condition
CN105242236B (en) Sensor position uncertainties bearing calibration in broadband signal super-resolution direction finding
CN109061554A (en) A kind of target angle of arrival estimation method updated based on spatial spreading grid dynamic
CN106546948A (en) Based on far field source direction-finding method in the far and near field width band mixing source of amplitude phase error array
CN107870315B (en) A Method for Estimating Direction of Arrival Arbitrary Array Using Iterative Phase Compensation Technique
CN112881972A (en) Direction-of-arrival estimation method based on neural network under array model error
CN110109050A (en) The DOA estimation method of unknown mutual coupling under nested array based on sparse Bayesian
US11681006B2 (en) Method for jointly estimating gain-phase error and direction of arrival (DOA) based on unmanned aerial vehicle (UAV) array
CN112379327A (en) Two-dimensional DOA estimation and cross coupling correction method based on rank loss estimation
CN103049003B (en) A kind of two dimension weighting vector tracking of the coherent signal based on parallel even linear array and device
WO2022188336A1 (en) Sparse-reconstruction-based direction-of-arrival estimation method in case of gain-phase error
CN106526529A (en) Sparse representation-based direction-of-arrival estimation method in mismatched condition of steering vectors
CN105353338B (en) Array channel sensor gain and phase uncertainties error calibration method in broadband signal super-resolution direction finding
CN112130111A (en) A single-shot 2D DOA estimation method in a large-scale uniform cross array
CN106501765A (en) A kind of Maximum Likelihood DOA Estimation based on quadratic sum and Semidefinite Programming
CN103926555A (en) Method for testing amplitude and phase response of antenna array receiver through non-circular signals
CN105182280B (en) Broadband signal super-resolution angle measurement error method of estimation based on the sparse optimization in spatial domain
CN105182279B (en) Broadband signal super-resolution angle measurement error bearing calibration based on the sparse optimization in spatial domain
CN105223541B (en) Mutual coupling existing between elements error calibration method in broadband signal super-resolution direction finding
CN113381793B (en) Coherent information source estimation-oriented non-grid direction-of-arrival estimation method
CN112763972B (en) Sparse representation-based double parallel line array two-dimensional DOA estimation method and computing equipment
Li et al. BSBL-based DOA and polarization estimation with linear spatially separated polarization sensitive array
Xiaochuan et al. Grid evolution: An iterative reweighted algorithm for off-grid DOA estimation with gain/phase uncertainties

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171208

Termination date: 20200928