CN105241843B - 一种波导界面反射波临界角的近似计算方法 - Google Patents

一种波导界面反射波临界角的近似计算方法 Download PDF

Info

Publication number
CN105241843B
CN105241843B CN201510557209.2A CN201510557209A CN105241843B CN 105241843 B CN105241843 B CN 105241843B CN 201510557209 A CN201510557209 A CN 201510557209A CN 105241843 B CN105241843 B CN 105241843B
Authority
CN
China
Prior art keywords
wave
critical angle
incidence
angle
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510557209.2A
Other languages
English (en)
Other versions
CN105241843A (zh
Inventor
张永刚
张健雪
焦林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Tiandao Marine Science And Technology Co Ltd
Original Assignee
Dalian Tiandao Marine Science And Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Tiandao Marine Science And Technology Co Ltd filed Critical Dalian Tiandao Marine Science And Technology Co Ltd
Priority to CN201510557209.2A priority Critical patent/CN105241843B/zh
Publication of CN105241843A publication Critical patent/CN105241843A/zh
Application granted granted Critical
Publication of CN105241843B publication Critical patent/CN105241843B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种波导界面反射波临界角的近似计算方法,其特征还在于包括如下步骤:首先判定当前入射波的传播类型;若波由高速度介质(层)向低速度介质(层)传播,即c>c,其中c为传播速度,c为波在高速度介质(层)中的传播速度,c为波在低速度介质(层)中的传播速度;根据当前波的类型,获取对于该波的界面折射率n,由该折射率n确定当前波的个数m;应用如下公式计算得出所述高速介质(层)绝对反射临界角。由于采用了上述技术方案,本发明可以有效的计算波导界面反射波临界角,通过与传统算法比较,本发明的方法具有更高的精度和更少的计算步骤。

Description

一种波导界面反射波临界角的近似计算方法
技术领域
本发明涉及绝对和相对反射临界角的计算方法、。涉及专利分类号G01测量;测试G01N借助于测定材料的化学或物理性质来测试或分析材料G01N21/00利用光学手段,即利用红外光、可见光或紫外光来测试或分析材料G01N21/17入射光根据所测试的材料性质而改变的系统G01N21/41折射率;影响相位的性质,例如光程长度。
背景技术
一、波导成因和波的反射临界角特性结构
在任何不同介质界面,只要两种介质对波传播有波速差,哪怕很小波速差,都会形成波导现象。波导成因取决于这个界面或过渡带在什么角度的入射波会被反射。
为了说明波何时能被反射,反射波临界角特性结构,以光波出入水来举例说明。
对空气介质而言,如图1所示:
为了说明波何时能被反射,反射波临界角特性结构,这里还是以光波出入水来举例说明。
对空气介质而言,如图1所示:
当入射角θ大于79°时,光波被界面反射回空气中呈绝对陷获,绝对陷获。当入射角53°<θ<79°时,此时光波既有折射入水的波能又有反射回空气波能。反射波能多少随着入射角度呈线性变化。
当入射角θ小于53°时,光波为折射波,大部分能量折射入水。
同样对水介质而言,如图2所示:
当入射角θ大于47°时,光波呈反射波形态回水中,光波被绝对陷获。
当入射角36°<θ<47°时,为共振区,此时光波既有反射波也有折射到空气中的波能。反射波能从36°角开始随着角度增加逐渐增大直至47°角时,入射波能全部反射。
当入射角θ小于36°时,波能全部折射到空气中。
上述可知,在任何界面或过渡带形成波导现象,都存在两个波导陷获区,
一个是绝对波能陷获区,临界角为绝对临界角
一个是相对或部分波能陷获区,临界角为相对临界角。
陷获波能多少取决于入射角与陷获临界角和共振临界角关系。
二、在自然环境中经常出现大气波导和海洋声波导等现象,其对船载雷达和声纳超视距探测有着绝定性作用。
在实际的航道工程实践中,经常看以观察到,由于航道开挖,当入射浪向与航道夹角过小时,波浪就会被反射,并在防波浪堤前与直接入射波浪叠加堆积,形成异常大波况。同样航道里的波浪,也会在航道另一侧反射堆积。因此说从浅水射向深水波有反射堆积现象,从深水射向浅水波也有反射堆积现象。
类似的现象,也出现在随后大气波导研究中,研究过程中发现稳定层结的大气结构中出现逆温层时,从海面上船载雷达平行与水平海面射出的电磁波,由于地球曲率效应,水平射来的电磁波以一个很小角度(大约0.1°左右)与逆温层界面相交,导致电磁波被反射回海面,从而船载雷达能够探测到视距以外的超视距目标,这就是大气波导效应。
大气波导是电磁波从低气温空气层向高气温空气层入射,而沙漠中海市蜃楼现象形成波导效应是从高气温空气层向低气温空气层入射。
同样海洋中声传播也有同样效应的海洋声波导和盲区现象。当近海局部海域出现季节性跃层(如夏季中国黄渤海冷水团),由于跃层作用,此时海面声纳很难探测到数百米之外水中跃层下目标,而水中跃层下声纳或水听器也很难听到数百米外的海面船只所发出的声响。这与正常的声纳作用距离大于10公里相差甚远。
因此不论是水波还是电磁波、声波,只要有波的传播速度差异界面存在,哪怕差值很小,实验证明,当入射波与界面夹角足够小时,就会有反射波存在。不论是从波速率小介质层向波速率大介质层传播,还是从波速率大介质层向波速率小介质层传播,都存在一个反射临界角。
而传统Snell定理(1663年)计算波的反射临界角时,要求折射角为90°时的出物质光波的入射角为波的反射临界角,而向物质入射的光波无反射临界角,所有波能都折射进物质中。这是一个错误概念,虽然人们一直在使用,并写进了中学课本广泛普及。但从水中入射到空气折射波,永远达不到折射角为90°的折射波,就是说人们从水中从来也看不到海面上远处船只和海面目标。对于波动而言,只要入射波与界面夹角足够小,界面两边都会有“打水漂效应”(stone skimming)的反弹波存在。
电磁波和声波在波导中能否全部被陷获或部分被陷获以及被陷获能量多少,取决于波导界面波的反射临界角的大小。
发明内容
本发明针对以上问题的提出,而研制的一种波导界面反射波临界角的近似计算方法,包括如下步骤:
—判定当前入射波的传播类型;若波由高速度介质(层)向低速度介质(层)传播,即c>c,其中c为传播速度,c为波在高速度介质(层)中的传播速度,c为波在低速度介质(层)中的传播速度;
—根据当前波的类型,获取对于该波的界面折射率n,由该折射率n确定当前波的个数m;
—应用如下公式计算得出所述高速介质(层)绝对反射临界角:
式中,m由折射率n确定,其中:当n≤1.25时,取整数;若n≥1.25,m=1;
更进一步的,若波由低速度介质(层)向高速度介质(层)传播,绝对反射临界角计算方法如下:
—应用所述公式
计算得出所述高速介质(层)绝对反射临界角;
—然后利用Snell定理
求出低速率介质(层)绝对反射临界角。
当波导界面同时存在折射和反射时,开始出现反射波时入射角为相对反射临界角也叫共振临界角,应用如下公式计算得出相对反射临界角,m为波的个数,n为折射率:
式中,m由折射率n确定,当n≤1.25时,若n≥1.25,m=1。
若n<1,则计算作为当前波入射界面的折射率。
附图说明
为了更清楚的说明本发明的实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为背景技术中波由空气射入水中的临界角类型示意图
图2为背景技术中波由水射入空气中的临界角类型示意图
具体实施方式
为使本发明的实施例的目的、技术方案和优点更加清楚,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整的描述:
实施例1,为了简要说明以光波出水m=1,n=1.3333为例。出水绝对反射临界角为47°20`,相对反射临界角为36°43`。即当在水中入射角小于36°43`时,波能全部穿过界面折射到空气中。当在水中入射角36°43`<θ<47°20`时,为共振区间,此时光波既有反射回水中波能也有折射到空气中波能。随角度增大反射波能呈线性增大直至47°20`时全反射。当在水中入射角大于47°20`时,光波波能全部反射回水中。
实施例2,以海洋声波导的应用为例。在海洋局部季节性跃层(如夏季中国黄渤海冷水团)出现,当跃层初期波导较弱m=40,n=1.0063时,此时绝对反射临界角为89°38`,相对反射临界角为88°35`,则水面声纳声射线与跃层界面最大夹角为:绝对反射夹角为:0°22`,相对反射夹角为:1°35`。如果跃层界面水深20米,则水平距离分别为:3436米和806米。就是说水下目标(跃层界面以下)距船水平距离小于806米时,目标能清晰探测到;当目标距船在806米到3436米逐渐增大时,目标信号逐渐减弱,直至大于3436米处时,目标信号全部丢失。像这样海上试验案例很多,试验数据大都与计算数据吻合较好,误差仅有15%左右。
实施例3,以航道开挖对海浪反射工程设计为例。令水深为h,开挖后的航道水深为H,浅水波传播速度为当H=13.米和h=11.米,可求出N=1.0987,m=2。利用本文算法可计算出,从航道里的入射波传播的到航道边缘时,绝对反射临界角为83°38`,相对反射临界角79°05。再利用Snell定理可得到,航道外直接入射到航道边缘的海浪绝对反射临界角为64°47`,相对反射临界角为63°21`。因此说当入射波与航道夹角小于25°13`时的波能全部被反射,仅仅开挖水深只差两米。这个结果与参考文献1实验结果基本一致。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (1)

1.一种波导界面反射波临界角的近似计算方法,其特征还在于包括如下步骤:
—判定当前入射波的传播类型;若波由高速度介质层向低速度介质层传播,即c>c,其中c为传播速度,c为波在高速度介质层中的传播速度,c为波在低速度介质层中的传播速度;
—根据当前波的类型,获取对于该波的界面折射率n,由该折射率n确定当前波的个数m;
—应用如下公式计算得出所述高速介质层绝对反射临界角:
式中,m由折射率n确定,其中:当n≤1.25时,取整数;若n≥1.25,m=1;
若波由低速度介质层向高速度介质层传播,绝对反射临界角计算方法如下:
—应用所述公式
计算得出所述高速介质层绝对反射临界角;
—然后利用Snell定理
求出低速率介质层绝对反射临界角;
—当波导界面同时存在折射和反射时,开始出现反射波时入射角为相对反射临界角也叫共振临界角,应用如下公式计算得出相对反射临界角,m为波的个数,n为折射率:
式中,m由折射率n确定,当n≤1.25时,若n≥1.25,m=1;
若n<1,则计算作为当前波入射界面的折射率;
入射波的入射角小于相对反射临界角时,入射波处于折射区内,在该区域内入射的入射波,波能全部折射;当入射波的入射角大于相对反射临界角且小于绝对反射临界角时,入射波处于共振区内,在该区域内入射的入射波,波能既有反射也有折射;当入射波的入射角大于绝对反射临界角时,入射波处于陷获区内,在该区域内入射的入射波,波能全部反射。
CN201510557209.2A 2015-09-02 2015-09-02 一种波导界面反射波临界角的近似计算方法 Active CN105241843B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510557209.2A CN105241843B (zh) 2015-09-02 2015-09-02 一种波导界面反射波临界角的近似计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510557209.2A CN105241843B (zh) 2015-09-02 2015-09-02 一种波导界面反射波临界角的近似计算方法

Publications (2)

Publication Number Publication Date
CN105241843A CN105241843A (zh) 2016-01-13
CN105241843B true CN105241843B (zh) 2018-12-21

Family

ID=55039565

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510557209.2A Active CN105241843B (zh) 2015-09-02 2015-09-02 一种波导界面反射波临界角的近似计算方法

Country Status (1)

Country Link
CN (1) CN105241843B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018068249A1 (en) * 2016-10-13 2018-04-19 Yonggang Zhang Algorithms of resonance wave reflectivity through interface of the transition zone
CN109142272B (zh) * 2018-07-28 2020-06-09 华中科技大学 提高光电传感阵列测量折射率过程中数据处理精度的方法
CN113835098B (zh) * 2021-09-16 2023-12-12 青岛海洋科技中心 激光水深测量系统及方法

Also Published As

Publication number Publication date
CN105241843A (zh) 2016-01-13

Similar Documents

Publication Publication Date Title
Figlus et al. Wave overtopping and overwash of dunes
Blenkinsopp et al. Measurements of the time-varying free-surface profile across the swash zone obtained using an industrial LIDAR
CN105241843B (zh) 一种波导界面反射波临界角的近似计算方法
RU2358289C1 (ru) Способ и система обнаружения объектов при гидролокации
Fuchs et al. Solitary impulse wave transformation to overland flow
CN107810406A (zh) 通过界面波的反射率计算方法
An et al. Detecting local scour using contact image sensors
CN114706125B (zh) 一种基于广角反射信息的潜山裂缝储层预测方法及系统
CN102508247A (zh) 基于射线声学的三维倾斜海底参数快速测量方法
Shih et al. Characteristics of wave attenuation due to roughness of stepped obstacles
CN104568846A (zh) 基于布里渊散射海水盐跃层的二维扫描探测法
RU2125278C1 (ru) Способ измерения расстояния до контролируемого объекта (его варианты)
Grünthal et al. Monitoring of coastal processes by using airborne laser scanning data
CN109190182A (zh) 一种油膜覆盖非线性海面的电磁散射建模方法
Godin et al. Travel-time statistics for signals scattered at a rough surface
GODIN A 2-D description of sound propagation in a horizontally-inhomogeneous ocean
Shiba Layered model sound speed profile estimation
BR102015019261A2 (pt) métodos e sistemas para operar fontes marinhas a fim de evitar os efeitos do ar na água
Ainslie et al. Propagation of underwater sound
Karlsson Uncertainties introduced by the ocean surface when conducting airborne lidar bathymetry surveys
Blonigen et al. Backscattering enhancements for tilted solid plastic cylinders in water due to the caustic merging transition: Observations and theory
Chaves et al. Shallow Water Acoustic Propagation at Arraial do Cabo, Brazil
Jensen Propagation and signal modeling
Petrov et al. Transformation of the modal structure of acoustical field in course of the sound propagation from continental shelf to the deep ocean
RU1793336C (ru) Способ дистанционного определени показател поглощени жидких сред

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant