CN105241474B - A kind of tilting configuration inertial navigation system scaling method - Google Patents
A kind of tilting configuration inertial navigation system scaling method Download PDFInfo
- Publication number
- CN105241474B CN105241474B CN201410326080.XA CN201410326080A CN105241474B CN 105241474 B CN105241474 B CN 105241474B CN 201410326080 A CN201410326080 A CN 201410326080A CN 105241474 B CN105241474 B CN 105241474B
- Authority
- CN
- China
- Prior art keywords
- accelerometer
- axis
- gyro
- gyroscope
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000011159 matrix material Substances 0.000 claims abstract description 14
- 238000010606 normalization Methods 0.000 claims description 18
- 238000009434 installation Methods 0.000 claims description 8
- 238000013178 mathematical model Methods 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N ferric oxide Chemical compound O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims 2
- FFNMBRCFFADNAO-UHFFFAOYSA-N pirenzepine hydrochloride Chemical compound [H+].[H+].[Cl-].[Cl-].C1CN(C)CCN1CC(=O)N1C2=NC=CC=C2NC(=O)C2=CC=CC=C21 FFNMBRCFFADNAO-UHFFFAOYSA-N 0.000 claims 1
- 230000009466 transformation Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
Landscapes
- Navigation (AREA)
- Gyroscopes (AREA)
Abstract
本发明属于导航技术领域,涉及一种敏感轴斜置的惯导系统的标定方法。本发明技术方案通过采用归一正交化的方法,把斜置的陀螺、加速度计敏感轴通过方向余弦矩阵转换到弹体轴上,使得虚拟的陀螺坐标系、加速度计坐标系与真实的弹体系重合,从而法解决了敏感轴斜置的惯导系统的参数辨识问题。The invention belongs to the technical field of navigation and relates to a calibration method of an inertial navigation system with a sensitive axis tilted. The technical solution of the present invention adopts the normalized orthogonalization method to convert the inclined gyroscope and accelerometer sensitive axis to the body axis through the direction cosine matrix, so that the virtual gyroscope coordinate system and the accelerometer coordinate system are consistent with the real elastic body axis. The system coincides, so the method solves the parameter identification problem of the inertial navigation system with the sensitive axis tilted.
Description
技术领域technical field
本发明属于导航技术领域,涉及一种敏感轴斜置的惯导系统的标定方法。The invention belongs to the technical field of navigation and relates to a calibration method of an inertial navigation system with a sensitive axis tilted.
背景技术Background technique
捷联惯导系统通常采用余度技术提高系统的可靠性和精度,惯性敏感器件多采用倾斜配置。而对于非冗余的惯性导航系统,其敏感器件也可以采用斜置,其优点在于可以扩大载体三个轴方向的角速度和加速度测量范围,节省惯性器件的安装空间。但是这种安装方式给惯测装置的标定带来了困难。常规的标定方法要求惯性器件沿正交的载体坐标系安装,通过转台上的位置试验、速率试验,辨识惯性器件的各项参数。Strapdown inertial navigation systems usually use redundancy technology to improve system reliability and accuracy, and inertial sensitive devices are mostly configured with tilt. For the non-redundant inertial navigation system, the sensitive components can also be placed obliquely, which has the advantage of expanding the angular velocity and acceleration measurement range of the three axes of the carrier and saving the installation space of the inertial components. However, this installation method brings difficulties to the calibration of the inertial measurement device. The conventional calibration method requires the inertial device to be installed along the orthogonal carrier coordinate system, and the parameters of the inertial device are identified through the position test and speed test on the turntable.
因此,亟需研制一种斜置构型惯导系统标定方法,既可以在捷联惯导系统或非冗余的惯性导航系统中倾斜配置惯性敏感器件,又可以准确、快速辨识敏感轴斜置的惯导系统的各项参数,方便对惯导系统进行标定。Therefore, there is an urgent need to develop a calibration method for oblique configuration inertial navigation systems, which can not only configure the inertial sensitive devices obliquely in the strapdown inertial navigation system or non-redundant inertial navigation system, but also accurately and quickly identify the oblique position of the sensitive axis. The parameters of the inertial navigation system are convenient for calibrating the inertial navigation system.
发明内容Contents of the invention
本发明的目的在于提供一种斜置构型惯导系统标定方法,从而准确、快速辨识敏感轴斜置的惯导系统的各项参数。The purpose of the present invention is to provide a calibration method for an inertial navigation system with an oblique configuration, so as to accurately and quickly identify various parameters of an inertial navigation system with an oblique sensitive axis.
为了实现这一目的,本发明采取的技术方案如下:In order to realize this object, the technical scheme that the present invention takes is as follows:
一种斜置构型惯导系统标定方法,具体包括以下步骤:A method for calibrating an inertial navigation system in an oblique configuration, specifically comprising the following steps:
一、对惯导系统陀螺仪、加速度计进行配置1. Configure the gyroscope and accelerometer of the inertial navigation system
设置惯导系统三个非正交的陀螺仪分别为G1、G2、G3,三个正交的弹体轴分别为OXb、OYb、OZb;陀螺仪的三个输入轴OG1、OG2、OG3均匀分布在以+OYb为中心,与+OYb轴的夹角为α的圆锥面上,相邻的陀螺仪的两个输入轴在OXbZb平面内的投影夹角为120°,其中,OG1在OXbZb平面内的投影与+OXb重合;Set the three non-orthogonal gyroscopes of the inertial navigation system as G 1 , G 2 , and G 3 , and the three orthogonal projectile axes as OX b , OY b , and OZ b ; the three input axes of the gyroscope OG 1. OG 2 and OG 3 are evenly distributed on the conical surface with +OY b as the center and the angle between the +OY b axis and the +OY b axis is α. The two input axes of the adjacent gyroscopes are in the OX b Z b plane The included angle of projection is 120°, wherein, the projection of OG 1 in the OX b Z b plane coincides with +OX b ;
三个非正交的加速度计分别为A1、A2、A3,加速度计的三个输入轴OA1、OA2、OA3均匀分布在以+OYb为中心,与+OYb轴夹角为β的圆锥面上,相邻的加速度计的两个输入轴在OXbZb平面内的投影夹角为120°,其中,OA1在OXbZb平面内的投影与+OXb重合;The three non-orthogonal accelerometers are A 1 , A 2 , and A 3 , and the three input axes OA 1 , OA 2 , and OA 3 of the accelerometer are evenly distributed in the center of +OY b , and are clamped with +OY b axis. On the conical surface with angle β, the projection angle between the two input axes of adjacent accelerometers in the OX b Z b plane is 120°, where the projection of OA 1 in the OX b Z b plane is the same as +OX b coincide;
其中,α+β=90°;在本具体实施例中:α为54.73°,β为35.27°。Wherein, α+β=90°; in this specific embodiment: α is 54.73°, and β is 35.27°.
二、分别对陀螺仪、加速度计输出归一化2. Normalize the output of the gyroscope and accelerometer respectively
设定陀螺仪G1、G2、G3,加速度计A1、A2、A3输出的量纲均为LSB/s;Set the output dimensions of gyroscopes G 1 , G 2 , G 3 , and accelerometers A 1 , A 2 , and A 3 to be LSB/s;
在标定之前,将陀螺仪的输出量纲转化为°/s,加速度计的输出量纲转化g;Before calibration, the output dimension of the gyroscope is converted into °/s, and the output dimension of the accelerometer is converted into g;
陀螺仪、加速度计的输出归一化公式如下:The output normalization formula of gyroscope and accelerometer is as follows:
式中:In the formula:
——陀螺仪G1、G2、G3原始输出脉冲数,单位:LSB/s; ——the number of original output pulses of gyroscopes G 1 , G 2 , and G 3 , unit: LSB/s;
——陀螺仪G1、G2、G3零位,单位:LSB/s; ——Gyroscope G 1 , G 2 , G 3 zero position, unit: LSB/s;
——陀螺仪G1、G2、G3标度因数,单位:(LSB/s)/(°/s); —— Gyroscope G 1 , G 2 , G 3 scale factor, unit: (LSB/s)/(°/s);
Ngx1、Ng2、Ng3——陀螺仪G1、G2、G3归一化后输出,单位:°/s;N gx1 , N g2 , N g3 ——the normalized output of gyroscopes G 1 , G 2 , G 3 , unit: °/s;
——加速度计A1、A2、A3原始输出脉冲数,单位:LSB/s; ——Number of original output pulses of accelerometers A 1 , A 2 , A 3 , unit: LSB/s;
——加速度计A1、A2、A3零位,单位:LSB/s; —— zero position of accelerometers A 1 , A 2 , A 3 , unit: LSB/s;
——加速度计A1、A2、A3标度因数,单位:(LSB/s)/g; ——accelerometer A 1 , A 2 , A 3 scale factor, unit: (LSB/s)/g;
Na1、Na2、Na3——加速度计A1、A2、A3归一化后输出,单位:g;N a1 , N a2 , N a3 —— output of accelerometers A 1 , A 2 , A 3 after normalization, unit: g;
归一化处理之后,陀螺仪G1、G2、G3加速度计A1、A2、A3输出仍然是非正交的;After the normalization process, the outputs of the gyroscopes G 1 , G 2 , G 3 accelerometers A 1 , A 2 , A 3 are still non-orthogonal;
三、陀螺仪、加速度计输出正交化3. Orthogonalization of gyroscope and accelerometer output
(3.1)对陀螺仪输出正交化(3.1) Orthogonalization of gyroscope output
确定O-XbYbZb与O-G1G2G3之间的转换矩阵:Determine the transformation matrix between OX b Y b Z b and OG 1 G 2 G 3 :
式中:In the formula:
O-Ng1Ng2Ng3——步骤二中得到的陀螺仪G1、G2、G3归一化后输出;ON g1 N g2 N g3 ——the output of the gyroscopes G 1 , G 2 , and G 3 obtained in step 2 after normalization;
O-NgxNgyNgz——与弹体系O-XbYbZb重合的、虚拟陀螺坐标系;ON gx N gy N gz ——virtual gyroscope coordinate system coincident with missile system OX b Y b Z b ;
经过如上公式,非正交的陀螺坐标系O-G1G2G3通过转换矩阵Tg转化到成正交的虚拟陀螺坐标系O-NgxNgyNgz;After the above formula, the non-orthogonal gyro coordinate system OG 1 G 2 G 3 is transformed into an orthogonal virtual gyro coordinate system ON gx N gy N gz through the transformation matrix T g ;
(3.2)对加速度计输出正交化(3.2) Orthogonalize the accelerometer output
确定O-XbYbZb与O-A1A2A3之间的转换矩阵:Determine the transformation matrix between OX b Y b Z b and OA 1 A 2 A 3 :
式中:In the formula:
O-Na1Na2Na3——步骤二中得到的加速度计A1、A2、A3归一化后输出;ON a1 N a2 N a3 ——The accelerometers A 1 , A 2 , and A 3 obtained in step 2 are output after normalization;
O-NaxNayNaz——与弹体系O-XbYbZb重合的、虚拟的加速度计坐标系;ON ax N ay N az ——virtual accelerometer coordinate system coincident with missile system OX b Y b Z b ;
经过如上公式,非正交的加速度计坐标系O-A1A2A3通过转换矩阵Ta转化到成正交的虚拟加速度计坐标系O-NaxNayNaz;After the above formula, the non-orthogonal accelerometer coordinate system OA 1 A 2 A 3 is transformed into an orthogonal virtual accelerometer coordinate system ON ax N ay N az through the transformation matrix Ta;
四、确定惯导系统数学模型4. Determine the mathematical model of the inertial navigation system
归一正交化后,惯导系统数学模型如下:After normalization and orthogonalization, the mathematical model of the inertial navigation system is as follows:
式中:In the formula:
Ngx,Ngy,Ngz——陀螺通道在虚拟陀螺坐标系中各坐标轴上的输出;N gx , N gy , N gz ——the output of the gyro channel on each coordinate axis in the virtual gyro coordinate system;
Dfx,Dfy,Dfz——陀螺通道在虚拟陀螺坐标系中各坐标轴上的常值漂移;D fx , D fy , D fz ——the constant value drift of the gyro channel on each coordinate axis in the virtual gyro coordinate system;
Sgx,Sgy,Sgz——陀螺通道在虚拟陀螺坐标系中各坐标轴上的标度因数;S gx , S gy , S gz ——the scale factor of the gyro channel on each coordinate axis in the virtual gyro coordinate system;
Kgij——i轴方向对j陀螺仪的安装误差系数;K gij ——the installation error coefficient of the i-axis direction to the j gyroscope;
Dix——X轴向线运动对X轴上陀螺输出的影响;D ix ——the influence of the X-axis linear motion on the gyro output on the X-axis;
Diy——X轴向线运动对Y轴上陀螺输出的影响;D iy ——the influence of the X-axis linear motion on the gyro output on the Y-axis;
Diz——X轴向线运动对Z轴上陀螺输出的影响;D iz ——the influence of X-axis linear motion on Z-axis gyro output;
Dox——Y轴向线运动对X轴上陀螺输出的影响;D ox ——the influence of the Y-axis linear motion on the gyro output on the X-axis;
Doy——Y轴向线运动对Y轴上陀螺输出的影响;D oy ——the influence of the Y-axis linear motion on the gyro output on the Y-axis;
Doz——Y轴向线运动对Z轴上陀螺输出的影响;D oz ——the influence of Y-axis linear motion on Z-axis gyro output;
Dsx——Z轴向线运动对X轴上陀螺输出的影响;D sx ——the influence of the Z-axis linear motion on the gyro output on the X-axis;
Dsy——Z轴向线运动对Y轴上陀螺输出的影响;D sy ——the influence of Z-axis linear motion on Y-axis gyro output;
Dsz——Z轴向线运动对Z轴上陀螺输出的影响;D sz ——the influence of Z-axis linear motion on Z-axis gyro output;
式中:In the formula:
Nax,Nay,Naz——加速度计通道在虚拟的加速度计坐标系各坐标轴上的脉冲输出;N ax ,N ay ,N az ——the pulse output of the accelerometer channel on each coordinate axis of the virtual accelerometer coordinate system;
Kax0,Kay0,Kaz0——加速度计通道在虚拟的加速度计坐标系各坐标轴上的偏值;K ax0 ,K ay0 ,K az0 ——the offset value of the accelerometer channel on each coordinate axis of the virtual accelerometer coordinate system;
Kaij——i轴对j加速度计通道的安装误差系数;K aij ——the installation error coefficient of the i-axis to the j accelerometer channel;
Ka1x,Ka1y,Ka1z——加速度计通道在虚拟的加速度计坐标系各坐标轴上的标度因数。K a1x ,K a1y ,K a1z ——scale factors of the accelerometer channel on each coordinate axis of the virtual accelerometer coordinate system.
进一步的,如上所述的一种斜置构型惯导系统标定方法,其中:α为54.73°,β为35.27°。Further, a calibration method for an oblique configuration inertial navigation system as described above, wherein: α is 54.73°, and β is 35.27°.
本发明技术方案的有益效果在于,通过采用归一正交化的方法,把斜置的陀螺、加速度计敏感轴通过方向余弦矩阵转换到弹体轴上,使得虚拟的陀螺坐标系、加速度计坐标系与真实的弹体系重合,从而法解决了敏感轴斜置的惯导系统的参数辨识问题。The beneficial effect of the technical solution of the present invention is that, by adopting the normalized orthogonalization method, the inclined gyroscope and the accelerometer sensitive axis are converted to the projectile body axis through the direction cosine matrix, so that the virtual gyroscope coordinate system and the accelerometer coordinate system The system coincides with the real missile system, thus solving the parameter identification problem of the inertial navigation system with the sensitive axis tilted.
具体实施方式Detailed ways
下面结合具体实施例对本发明技术方案进行详细说明。The technical solutions of the present invention will be described in detail below in conjunction with specific embodiments.
一种斜置构型惯导系统标定方法,具体包括以下步骤:A method for calibrating an inertial navigation system in an oblique configuration, specifically comprising the following steps:
一、对惯导系统陀螺仪、加速度计进行配置1. Configure the gyroscope and accelerometer of the inertial navigation system
设置惯导系统三个非正交的陀螺仪分别为G1、G2、G3,三个正交的弹体轴分别为OXb、OYb、OZb;陀螺仪的三个输入轴OG1、OG2、OG3均匀分布在以+OYb为中心,与+OYb轴的夹角为α的圆锥面上,相邻的陀螺仪的两个输入轴在OXbZb平面内的投影夹角为120°,其中,OG1在OXbZb平面内的投影与+OXb重合;Set the three non-orthogonal gyroscopes of the inertial navigation system as G 1 , G 2 , and G 3 , and the three orthogonal projectile axes as OX b , OY b , and OZ b ; the three input axes of the gyroscope OG 1. OG 2 and OG 3 are evenly distributed on the conical surface with +OY b as the center and the angle between the +OY b axis and the +OY b axis is α. The two input axes of the adjacent gyroscopes are in the OX b Z b plane The included angle of projection is 120°, wherein, the projection of OG 1 in the OX b Z b plane coincides with +OX b ;
三个非正交的加速度计分别为A1、A2、A3,加速度计的三个输入轴OA1、OA2、OA3均匀分布在以+OYb为中心,与+OYb轴夹角为β的圆锥面上,相邻的加速度计的两个输入轴在OXbZb平面内的投影夹角为120°,其中,OA1在OXbZb平面内的投影与+OXb重合;The three non-orthogonal accelerometers are A 1 , A 2 , and A 3 , and the three input axes OA 1 , OA 2 , and OA 3 of the accelerometer are evenly distributed in the center of +OY b , and are clamped with +OY b axis. On the conical surface with angle β, the projection angle between the two input axes of adjacent accelerometers in the OX b Z b plane is 120°, where the projection of OA 1 in the OX b Z b plane is the same as +OX b coincide;
其中,α+β=90°;Among them, α+β=90°;
二、分别对陀螺仪、加速度计输出归一化2. Normalize the output of the gyroscope and accelerometer respectively
设定陀螺仪G1、G2、G3,加速度计A1、A2、A3输出的量纲均为LSB/s;Set the output dimensions of gyroscopes G 1 , G 2 , G 3 , and accelerometers A 1 , A 2 , and A 3 to be LSB/s;
在标定之前,将陀螺仪的输出量纲转化为°/s,加速度计的输出量纲转化g;Before calibration, the output dimension of the gyroscope is converted into °/s, and the output dimension of the accelerometer is converted into g;
陀螺仪、加速度计的输出归一化公式如下:The output normalization formula of gyroscope and accelerometer is as follows:
式中:In the formula:
——陀螺仪G1、G2、G3原始输出脉冲数,单位:LSB/s; ——the number of original output pulses of gyroscopes G 1 , G 2 , and G 3 , unit: LSB/s;
——陀螺仪G1、G2、G3零位,单位:LSB/s; ——Gyroscope G 1 , G 2 , G 3 zero position, unit: LSB/s;
——陀螺仪G1、G2、G3标度因数,单位:(LSB/s)/(°/s); —— Gyroscope G 1 , G 2 , G 3 scale factor, unit: (LSB/s)/(°/s);
Ngx1、Ng2、Ng3——陀螺仪G1、G2、G3归一化后输出,单位:°/s;N gx1 , N g2 , N g3 ——the normalized output of gyroscopes G 1 , G 2 , G 3 , unit: °/s;
——加速度计A1、A2、A3原始输出脉冲数,单位:LSB/s; ——Number of original output pulses of accelerometers A 1 , A 2 , A 3 , unit: LSB/s;
——加速度计A1、A2、A3零位,单位:LSB/s; —— zero position of accelerometers A 1 , A 2 , A 3 , unit: LSB/s;
——加速度计A1、A2、A3标度因数,单位:(LSB/s)/g; ——accelerometer A 1 , A 2 , A 3 scale factor, unit: (LSB/s)/g;
Na1、Na2、Na3——加速度计A1、A2、A3归一化后输出,单位:g;N a1 , N a2 , N a3 —— output of accelerometers A 1 , A 2 , A 3 after normalization, unit: g;
归一化处理之后,陀螺仪G1、G2、G3加速度计A1、A2、A3输出仍然是非正交的;After the normalization process, the outputs of the gyroscopes G 1 , G 2 , G 3 accelerometers A 1 , A 2 , A 3 are still non-orthogonal;
三、陀螺仪、加速度计输出正交化3. Orthogonalization of gyroscope and accelerometer output
(3.1)对陀螺仪输出正交化(3.1) Orthogonalization of gyroscope output
确定O-XbYbZb与O-G1G2G3之间的转换矩阵:Determine the transformation matrix between OX b Y b Z b and OG 1 G 2 G 3 :
式中:In the formula:
O-Ng1Ng2Ng3——步骤二中得到的陀螺仪G1、G2、G3归一化后输出;ON g1 N g2 N g3 ——the output of the gyroscopes G 1 , G 2 , and G 3 obtained in step 2 after normalization;
O-NgxNgyNgz——与弹体系O-XbYbZb重合的、虚拟陀螺坐标系;ON gx N gy N gz ——virtual gyroscope coordinate system coincident with missile system OX b Y b Z b ;
经过如上公式,非正交的陀螺坐标系O-G1G2G3通过转换矩阵Tg转化到成正交的虚拟陀螺坐标系O-NgxNgyNgz;After the above formula, the non-orthogonal gyro coordinate system OG 1 G 2 G 3 is transformed into an orthogonal virtual gyro coordinate system ON gx N gy N gz through the transformation matrix T g ;
(3.2)对加速度计输出正交化(3.2) Orthogonalize the accelerometer output
确定O-XbYbZb与O-A1A2A3之间的转换矩阵:Determine the transformation matrix between OX b Y b Z b and OA 1 A 2 A 3 :
式中:In the formula:
O-Na1Na2Na3——步骤二中得到的加速度计A1、A2、A3归一化后输出;ON a1 N a2 N a3 ——The accelerometers A 1 , A 2 , and A 3 obtained in step 2 are output after normalization;
O-NaxNayNaz——与弹体系O-XbYbZb重合的、虚拟的加速度计坐标系;ON ax N ay N az ——virtual accelerometer coordinate system coincident with missile system OX b Y b Z b ;
经过如上公式,非正交的加速度计坐标系O-A1A2A3通过转换矩阵Ta转化到成正交的虚拟加速度计坐标系O-NaxNayNaz;After the above formula, the non-orthogonal accelerometer coordinate system OA 1 A 2 A 3 is transformed into an orthogonal virtual accelerometer coordinate system ON ax N ay N az through the transformation matrix Ta;
四、确定惯导系统数学模型4. Determine the mathematical model of the inertial navigation system
归一正交化后,惯导系统数学模型如下:After normalization and orthogonalization, the mathematical model of the inertial navigation system is as follows:
式中:In the formula:
Ngx,Ngy,Ngz——陀螺通道在虚拟陀螺坐标系中各坐标轴上的输出;N gx , N gy , N gz ——the output of the gyro channel on each coordinate axis in the virtual gyro coordinate system;
Dfx,Dfy,Dfz——陀螺通道在虚拟陀螺坐标系中各坐标轴上的常值漂移;D fx , D fy , D fz ——the constant value drift of the gyro channel on each coordinate axis in the virtual gyro coordinate system;
Sgx,Sgy,Sgz——陀螺通道在虚拟陀螺坐标系中各坐标轴上的标度因数;S gx , S gy , S gz ——the scale factor of the gyro channel on each coordinate axis in the virtual gyro coordinate system;
Kgij——i轴方向对j陀螺仪的安装误差系数;K gij ——the installation error coefficient of the i-axis direction to the j gyroscope;
Dix——X轴向线运动对X轴上陀螺输出的影响;D ix ——the influence of the X-axis linear motion on the gyro output on the X-axis;
Diy——X轴向线运动对Y轴上陀螺输出的影响;D iy ——the influence of the X-axis linear motion on the gyro output on the Y-axis;
Diz——X轴向线运动对Z轴上陀螺输出的影响;D iz ——the influence of X-axis linear motion on Z-axis gyro output;
Dox——Y轴向线运动对X轴上陀螺输出的影响;D ox ——the influence of the Y-axis linear motion on the gyro output on the X-axis;
Doy——Y轴向线运动对Y轴上陀螺输出的影响;D oy ——the influence of the Y-axis linear motion on the gyro output on the Y-axis;
Doz——Y轴向线运动对Z轴上陀螺输出的影响;D oz ——the influence of Y-axis linear motion on Z-axis gyro output;
Dsx——Z轴向线运动对X轴上陀螺输出的影响;D sx ——the influence of the Z-axis linear motion on the gyro output on the X-axis;
Dsy——Z轴向线运动对Y轴上陀螺输出的影响;D sy ——the influence of Z-axis linear motion on Y-axis gyro output;
Dsz——Z轴向线运动对Z轴上陀螺输出的影响;D sz ——the influence of Z-axis linear motion on Z-axis gyro output;
式中:In the formula:
Nax,Nay,Naz——加速度计通道在虚拟的加速度计坐标系各坐标轴上的脉冲输出;N ax ,N ay ,N az ——the pulse output of the accelerometer channel on each coordinate axis of the virtual accelerometer coordinate system;
Kax0,Kay0,Kaz0——加速度计通道在虚拟的加速度计坐标系各坐标轴上的偏值;K ax0 ,K ay0 ,K az0 ——the offset value of the accelerometer channel on each coordinate axis of the virtual accelerometer coordinate system;
Kaij——i轴对j加速度计通道的安装误差系数;K aij ——the installation error coefficient of the i-axis to the j accelerometer channel;
Ka1x,Ka1y,Ka1z——加速度计通道在虚拟的加速度计坐标系各坐标轴上的标度因数。K a1x ,K a1y ,K a1z ——scale factors of the accelerometer channel on each coordinate axis of the virtual accelerometer coordinate system.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410326080.XA CN105241474B (en) | 2014-07-10 | 2014-07-10 | A kind of tilting configuration inertial navigation system scaling method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410326080.XA CN105241474B (en) | 2014-07-10 | 2014-07-10 | A kind of tilting configuration inertial navigation system scaling method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105241474A CN105241474A (en) | 2016-01-13 |
CN105241474B true CN105241474B (en) | 2018-06-26 |
Family
ID=55039203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410326080.XA Active CN105241474B (en) | 2014-07-10 | 2014-07-10 | A kind of tilting configuration inertial navigation system scaling method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105241474B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106705995A (en) * | 2016-11-23 | 2017-05-24 | 极翼机器人(上海)有限公司 | Calibration method of MEMS gyroscope g value sensitive coefficient |
CN106767917B (en) * | 2016-12-08 | 2019-09-27 | 中国人民解放军国防科学技术大学 | A Modeling Method for Calibration Error Model of Inclined Redundant Inertial Navigation System |
CN107607116A (en) * | 2017-10-30 | 2018-01-19 | 北京理工大学 | A kind of high dynamic Inertial Measurement Unit |
CN111561948B (en) * | 2019-12-05 | 2023-07-28 | 北京计算机技术及应用研究所 | System-level calibration method for four-axis redundant strapdown inertial navigation |
CN114061620B (en) * | 2021-11-09 | 2024-05-10 | 武汉华中天易星惯科技有限公司 | Four-redundancy inertial navigation discrete calibration method and calibration system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102997932A (en) * | 2011-09-15 | 2013-03-27 | 北京自动化控制设备研究所 | Method for eliminating shaking impact of rotation table during high precision inertial navigation system calibration |
CN103697918A (en) * | 2013-12-26 | 2014-04-02 | 北京航天时代光电科技有限公司 | Calibration method for fiber-optic gyroscope inertial measurement device with three orthogonalized axes and one inclined axis |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030033850A1 (en) * | 2001-08-09 | 2003-02-20 | Challoner A. Dorian | Cloverleaf microgyroscope with electrostatic alignment and tuning |
US8265826B2 (en) * | 2003-03-20 | 2012-09-11 | Hemisphere GPS, LLC | Combined GNSS gyroscope control system and method |
-
2014
- 2014-07-10 CN CN201410326080.XA patent/CN105241474B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102997932A (en) * | 2011-09-15 | 2013-03-27 | 北京自动化控制设备研究所 | Method for eliminating shaking impact of rotation table during high precision inertial navigation system calibration |
CN103697918A (en) * | 2013-12-26 | 2014-04-02 | 北京航天时代光电科技有限公司 | Calibration method for fiber-optic gyroscope inertial measurement device with three orthogonalized axes and one inclined axis |
Non-Patent Citations (2)
Title |
---|
光学捷联惯组系数基准一致性转换方法的研究;戚红向等;《航天控制》;20110430;第29卷(第2期);第15-22页 * |
捷联惯性传感器多余度配置的误差标定技术研究;华冰等;《传感器技术》;20051231;第24卷(第5期);第31-33页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105241474A (en) | 2016-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105241474B (en) | A kind of tilting configuration inertial navigation system scaling method | |
CN108592952B (en) | Simultaneous calibration of multi-MIMU errors based on lever arm compensation and forward and reverse rate | |
CN101887068B (en) | Calibration compensation method for triaxial vector sensor and biaxial vector sensor | |
CN105203129B (en) | A kind of inertial nevigation apparatus Initial Alignment Method | |
CN108458714B (en) | A method for solving Euler angles without gravitational acceleration in attitude detection system | |
CN106767917B (en) | A Modeling Method for Calibration Error Model of Inclined Redundant Inertial Navigation System | |
CN103940425B (en) | A kind of magnetic inertia combines Strapdown inertial measurement method | |
CN105910606B (en) | A kind of adjustment in direction method based on angular speed difference | |
JP2007278759A (en) | Inclination angle calculation method and system | |
CN102735231B (en) | Method for improving precision of fiber optic gyroscope (FOG) north-seeker | |
CN103900571B (en) | A kind of carrier posture measuring method based on the rotary-type SINS of inertial coodinate system | |
CN1932444B (en) | Attitude measurement method suitable for high-speed rotating body | |
CN107063254B (en) | Gesture resolving method for gyros and geomagnetic combination | |
CN102322860B (en) | Sensor tilting inertia measurement unit structure | |
CN106556384B (en) | A kind of compensation for calibrating errors method of electronic compass in tubular video camera | |
CN102788596B (en) | Spot calibration method of rotary strap-down inertial navigation system with unknown carrier attitude | |
CN103940445B (en) | A kind of single-shaft-rotation inertial navigation system inertial device error compensation method | |
CN103776450B (en) | It is applicable to semi-strapdown type inertia measurement and the navigation algorithm of High Rotation Speed flying body | |
CN104697521A (en) | Method for measuring posture and angle speed of high-speed rotating body by gyro redundant oblique configuration mode | |
CN109186634B (en) | MEMS inertial measurement unit navigation performance measurement method and device | |
CN104677355B (en) | Virtual gyro and method based on Multi-sensor Fusion | |
CN105277210B (en) | A kind of any installation multiaxis Gyro scaling method | |
CN103968848A (en) | Navigation method and navigation system based on inertial sensor | |
CN106708088B (en) | Coordinate calculation method and device, flight control method and system and unmanned aerial vehicle | |
CN105303201B (en) | Method and system for handwriting recognition based on motion induction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |