CN105236482A - A Quaternary Sulfur Antimony Compound ACuSb2S4 Semiconductor Material - Google Patents
A Quaternary Sulfur Antimony Compound ACuSb2S4 Semiconductor Material Download PDFInfo
- Publication number
- CN105236482A CN105236482A CN201510556601.5A CN201510556601A CN105236482A CN 105236482 A CN105236482 A CN 105236482A CN 201510556601 A CN201510556601 A CN 201510556601A CN 105236482 A CN105236482 A CN 105236482A
- Authority
- CN
- China
- Prior art keywords
- semiconductor material
- antimony compound
- acusb
- sulfur
- quaternary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 56
- 239000000463 material Substances 0.000 title claims abstract description 51
- YPMOSINXXHVZIL-UHFFFAOYSA-N sulfanylideneantimony Chemical group [Sb]=S YPMOSINXXHVZIL-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 239000010949 copper Substances 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims abstract description 11
- 239000002202 Polyethylene glycol Substances 0.000 claims abstract description 9
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 9
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims abstract description 8
- 229910052792 caesium Inorganic materials 0.000 claims abstract description 8
- 229910052802 copper Inorganic materials 0.000 claims abstract description 8
- 230000003287 optical effect Effects 0.000 claims abstract description 8
- 238000002360 preparation method Methods 0.000 claims abstract description 8
- 229910052701 rubidium Inorganic materials 0.000 claims abstract description 8
- 239000002904 solvent Substances 0.000 claims abstract description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims abstract description 6
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims abstract description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052783 alkali metal Inorganic materials 0.000 claims abstract description 4
- -1 alkali metal cations Chemical class 0.000 claims abstract description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000000843 powder Substances 0.000 claims abstract description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Chemical compound [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 claims description 8
- CPRMKOQKXYSDML-UHFFFAOYSA-M rubidium hydroxide Chemical group [OH-].[Rb+] CPRMKOQKXYSDML-UHFFFAOYSA-M 0.000 claims description 8
- 239000012153 distilled water Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000013078 crystal Substances 0.000 abstract description 23
- 238000000034 method Methods 0.000 abstract description 12
- 238000006243 chemical reaction Methods 0.000 abstract description 11
- 239000002994 raw material Substances 0.000 abstract description 5
- 150000001450 anions Chemical group 0.000 abstract description 2
- 238000005303 weighing Methods 0.000 abstract 1
- 238000004729 solvothermal method Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000009028 cell transition Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002050 diffraction method Methods 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000004467 single crystal X-ray diffraction Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000002076 thermal analysis method Methods 0.000 description 2
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000007777 multifunctional material Substances 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 229910002059 quaternary alloy Inorganic materials 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Abstract
本发明公开了一种四元硫锑化合物ACuSb2S4半导体材料。本发明的四元硫锑化合物,其化学组成式为ACuSb2S4,其中A为平衡阴离子骨架的碱金属阳离子Rb、Cs中的一种。其具体制备过程包括:称取物质的量之比为1:2:0.5:2的适量碱金属氢氧化物、铜单质、锑粉、硫粉,以水合肼和聚乙二醇为溶剂,在160℃下反应7天,得到黑红色块状晶体。本方法具有操作过程简单,原料成本低,反应条件温和等优点。采用本方法得到的四元硫锑化合物属于单斜晶系,C2/c(No.15)空间群,具有新型三维开放骨架结构,能带约1.7eV,是一种窄禁带半导体材料,可用于制备光学半导体器件。The invention discloses a quaternary sulfur antimony compound ACuSb 2 S 4 semiconductor material. The quaternary sulfur-antimony compound of the present invention has a chemical composition formula of ACuSb 2 S 4 , wherein A is one of the alkali metal cations Rb and Cs that balance the anion skeleton. Its specific preparation process includes: weighing an appropriate amount of alkali metal hydroxide, copper elemental substance, antimony powder, and sulfur powder in a ratio of 1:2:0.5:2, using hydrazine hydrate and polyethylene glycol as solvents, and React at 160°C for 7 days to obtain black-red blocky crystals. The method has the advantages of simple operation process, low cost of raw materials, mild reaction conditions and the like. The quaternary sulfur-antimony compound obtained by this method belongs to the monoclinic system, C2/c (No.15) space group, has a new three-dimensional open framework structure, and has an energy band of about 1.7eV. It is a narrow bandgap semiconductor material and can be used for the preparation of optical semiconductor devices.
Description
技术领域 technical field
本发明涉及一种四元硫锑化合物ACuSb2S4半导体材料,属于无机半导体材料领域。 The invention relates to a quaternary sulfur-antimony compound ACuSb 2 S 4 semiconductor material, which belongs to the field of inorganic semiconductor materials.
背景技术 Background technique
随着全球科技的快速发展,当今世界已经进入了电子信息时代。半导体材料是构成许多固态电子器件的基体材料,在光通讯设备、信息储存、处理、加工及显示方面都有重要应用,如半导体激光器、二极管。半导体集成电路、半导体储存器和光电二极管等等。它是能源、信息、航空航天、电子技术必不可少的一种功能材料,在电子信息材料中占有极其重要的地位。半导体工业大发展水平是衡量一个国家先进程度的重要标志之一。 With the rapid development of global science and technology, the world today has entered the electronic information age. Semiconductor materials are the matrix materials that constitute many solid-state electronic devices, and have important applications in optical communication equipment, information storage, processing, processing and display, such as semiconductor lasers and diodes. Semiconductor integrated circuits, semiconductor memory and photodiodes, etc. It is an indispensable functional material for energy, information, aerospace, and electronic technology, and occupies an extremely important position in electronic information materials. The development level of the semiconductor industry is one of the important symbols to measure the advanced level of a country.
硫锑化合物具有非常复杂的结构,丰富的物理和化学性质,在光电材料、分子识别与催化、离子交换、非线性光学材料(NLO)、化学传感器以及半导体等领域具有潜在的应用价值,是近年来研究较多的无机多功能材料之一。由于V族金属Sb(Ⅲ)离子含有立体化学活跃的5S2孤对电子,与S元素形成一级结构单元SbSx(x=3,4,5)。在碱性环境下,一级结构单元SbSx互相聚合形成聚阴离子,再配位金属离子,调控物质的几何结构,丰富了物理化学性能。 Sulfur-antimony compounds have very complex structures, rich physical and chemical properties, and have potential application values in the fields of optoelectronic materials, molecular recognition and catalysis, ion exchange, nonlinear optical materials (NLO), chemical sensors, and semiconductors. One of the most studied inorganic multifunctional materials. Since the group V metal Sb(Ⅲ) ion contains stereochemically active 5S 2 lone pair electrons, it forms the primary structural unit SbS x (x=3,4,5) with S element. In an alkaline environment, the primary structural units SbS x polymerize with each other to form polyanions, and then coordinate metal ions to regulate the geometric structure of the material and enrich the physical and chemical properties.
本世纪以来,中低温溶剂热合成方法在固态化学合成方面得到了越来越多的关注。溶剂热反应是合成硫锑化合物的有效方法。溶剂热合成体系一般处于非理想平衡状态,在高温高压下,合成反应的溶剂处于临界或者近临界状态,反应物在溶剂中的物理和化学性能有较大的改变,使溶剂热化学反应大大不同于常态,由此合成出来的功能材料或晶体,在性能方面具有自身的优良特性。但是因为反应在水热釜中进行难以控制,所以反应的可重复性不佳。根据研究人员多年的实践发现,溶剂热合成方法主要受到以下因素的影响:1)溶剂的极性、粘度、临界温度,2)反应温度,3)阳离子半径,4)反应时间等。通过控制溶剂热的反应过程,达到优化实验、制备新型产物的目的。 Since this century, middle and low temperature solvothermal synthesis methods have received more and more attention in solid-state chemical synthesis. Solvothermal reaction is an effective method for the synthesis of sulfur antimony compounds. The solvothermal synthesis system is generally in a non-ideal equilibrium state. Under high temperature and high pressure, the solvent of the synthesis reaction is in a critical or near-critical state, and the physical and chemical properties of the reactants in the solvent change greatly, which makes the thermochemical reaction of the solvent greatly different. In the normal state, the functional materials or crystals synthesized from this have their own excellent characteristics in terms of performance. However, because the reaction is difficult to control in a hydrothermal tank, the reproducibility of the reaction is not good. According to the researchers' many years of practice, the solvothermal synthesis method is mainly affected by the following factors: 1) polarity, viscosity, and critical temperature of the solvent, 2) reaction temperature, 3) cation radius, 4) reaction time, etc. By controlling the solvothermal reaction process, the purpose of optimizing experiments and preparing new products is achieved.
目前为止,只合成了4个四元硫锑化合物A-Cu-Sb-S(A=Na、K、Rb、Cs)。1996年,J. E. Jerome和J. W. Kolis等人通过超临界乙二胺的方法合成得到了Na2CuSbS3(J. E. Jerome, J. W. Kolis, et al. Eur. J. Solid State Inorg. Chem., 33, 765 (1996).),是第一个被报道的四元硫锑化合物A-Cu-Sb-S(A=Na、K、Rb、Cs);在2005年,B. Deng和J. A. Ibers等人借助溶剂法得到了K2CuSbS3(B. Deng, J. A. Ibers, et al.J. Solid State Chem., 178, 3169 (2005).)。近来,Y. L. An等人采用溶剂热方法,成功合成得到Rb2Cu2Sb2S5和 Cs2Cu2Sb2S5 (Y. L. An, et al.Inorg. Chem., 53, 4856 (2014).)。但这四种化合物的微观空间结构都是二维层状,在四元体系A-Cu-Sb-S(A=Na、K、Rb、Cs)中,至今还没有一维和三维的晶体结构。因此寻找合适的反应条件,研发结构新颖及能隙适当的四元硫锑化合物半导体材料,制备太阳能电池过渡层材料等光学半导体器件,对于发展半导体光电等相关产业都具有重要的现实意义。 So far, only four quaternary sulfur antimony compounds A-Cu-Sb-S (A=Na, K, Rb, Cs) have been synthesized. In 1996, JE Jerome and JW Kolis et al synthesized Na 2 CuSbS 3 by supercritical ethylenediamine (JE Jerome, JW Kolis, et al. Eur. J. Solid State Inorg. Chem., 33 , 765 ( 1996).), is the first reported quaternary sulfur antimony compound A-Cu-Sb-S (A=Na, K, Rb, Cs); in 2005, B. Deng and JA Ibers et al. K 2 CuSbS 3 was obtained by the method (B. Deng, JA Ibers, et al. J. Solid State Chem., 178 , 3169 (2005).). Recently, YL An et al. successfully synthesized Rb 2 Cu 2 Sb 2 S 5 and Cs 2 Cu 2 Sb 2 S 5 using a solvothermal method (YL An, et al. Inorg. Chem., 53 , 4856 (2014). ). However, the microscopic spatial structures of these four compounds are all two-dimensional layered. In the quaternary system A-Cu-Sb-S (A=Na, K, Rb, Cs), there is no one-dimensional and three-dimensional crystal structure. Therefore, finding suitable reaction conditions, developing quaternary sulfur-antimony compound semiconductor materials with novel structures and appropriate energy gaps, and preparing optical semiconductor devices such as solar cell transition layer materials are of great practical significance for the development of semiconductor optoelectronics and other related industries.
发明内容 Contents of the invention
本发明的目的在于解决现有技术中存在的问题,并提供一种四元硫锑化合物ACuSb2S4半导体材料。具体技术方案如下: The purpose of the present invention is to solve the problems existing in the prior art and provide a quaternary sulfur-antimony compound ACuSb 2 S 4 semiconductor material. The specific technical scheme is as follows:
一种四元硫锑化合物ACuSb2S4半导体材料中的四元硫锑化合物的化学组成式为ACuSb2S4,其中A为碱金属阳离子Rb、Cs中的一种。 A quaternary sulfur-antimony compound ACuSb 2 S 4 The chemical composition formula of the quaternary sulfur-antimony compound in the semiconductor material is ACuSb 2 S 4 , wherein A is one of the alkali metal cations Rb and Cs.
所述的四元硫锑化合物ACuSb2S4半导体材料属于单斜晶系,C2/c(No.15)空间群,具有三维开放骨架结构。 The quaternary sulfur-antimony compound ACuSb 2 S 4 semiconductor material belongs to monoclinic system, C2/c (No.15) space group, and has a three-dimensional open framework structure.
所述的四元硫锑化合物ACuSb2S4半导体材料的能隙为1.70eV。 The energy gap of the quaternary sulfur antimony compound ACuSb 2 S 4 semiconductor material is 1.70eV.
本发明的另一目的是提供一种所述的四元硫锑化合物ACuSb2S4半导体材料的制备方法,具体制备过程如下:称取物质的量之比为1:2:0.5:2的碱金属氢氧化物、铜单质、锑粉和硫粉,以水合肼和聚乙二醇为溶剂进行溶解,在160℃下反应7天后,冷却,再分别用蒸馏水和乙醇各洗涤两次,即可得到四元硫锑化合物半导体材料;其中碱金属氢氧化物为RbOH或CsOH。 Another object of the present invention is to provide a kind of preparation method of described quaternary sulfur-antimony compound ACuSb 2 S 4 semiconductor material, the specific preparation process is as follows: Weigh the alkali whose amount ratio is 1:2:0.5:2 Metal hydroxide, copper element, antimony powder and sulfur powder are dissolved in hydrazine hydrate and polyethylene glycol as solvents, reacted at 160°C for 7 days, cooled, and then washed twice with distilled water and ethanol respectively. A quaternary sulfur-antimony compound semiconductor material is obtained; wherein the alkali metal hydroxide is RbOH or CsOH.
所述的水合肼和聚乙二醇的混合比例为1:4。 The mixing ratio of the hydrazine hydrate and polyethylene glycol is 1:4.
本发明的又一目的是提供一种所述四元硫锑化合物ACuSb2S4半导体材料用于制备光学半导体器件。 Another object of the present invention is to provide the quaternary sulfur-antimony compound ACuSb 2 S 4 semiconductor material for preparing optical semiconductor devices.
与现有技术相比,本发明具有以下有益效果:本发明采用一步溶剂热法制备,操作过程简单,原料成本低,反应条件温和等优点。采用本方法得到的四元硫锑化合物属于单斜晶系,C2/c(No.15)空间群,具有三维开放骨架结构,能带约1.7eV,是一种窄禁带半导体材料,可用于制备光学半导体器件。 Compared with the prior art, the present invention has the following beneficial effects: the present invention is prepared by a one-step solvothermal method, has the advantages of simple operation process, low cost of raw materials, mild reaction conditions and the like. The quaternary sulfur-antimony compound obtained by this method belongs to the monoclinic system, C2/c (No.15) space group, has a three-dimensional open framework structure, and has an energy band of about 1.7eV. It is a narrow bandgap semiconductor material and can be used in Fabrication of optical semiconductor devices.
附图说明 Description of drawings
图1(a)为半导体材料RbCuSb2S4的晶体形貌图; Figure 1(a) is the crystal morphology diagram of the semiconductor material RbCuSb 2 S 4 ;
图1(b)为半导体材料CsCuSb2S4的晶体形貌图; Figure 1(b) is the crystal morphology diagram of the semiconductor material CsCuSb 2 S 4 ;
图2(a)为半导体材料RbCuSb2S4的EDS图谱; Figure 2(a) is the EDS spectrum of the semiconductor material RbCuSb 2 S 4 ;
图2(b)为半导体材料CsCuSb2S4的EDS图谱; Figure 2(b) is the EDS spectrum of the semiconductor material CsCuSb 2 S 4 ;
图3(a)为半导体材料RbCuSb2S4的X射线粉末衍射图与单晶模拟衍射图,横坐标表示衍射角度,纵坐标表示强度; Figure 3(a) is the X-ray powder diffraction pattern and single crystal simulation diffraction pattern of the semiconductor material RbCuSb 2 S 4 , the abscissa represents the diffraction angle, and the ordinate represents the intensity;
图3(b)为半导体材料CsCuSb2S4的X射线粉末衍射图与单晶模拟衍射图,横坐标表示衍射角度,纵坐标表示强度; Figure 3(b) is the X-ray powder diffraction pattern and single crystal simulation diffraction pattern of the semiconductor material CsCuSb 2 S 4 , the abscissa represents the diffraction angle, and the ordinate represents the intensity;
图4为半导体材料RbCuSb2S4分子的单晶结构图; Fig. 4 is the single crystal structure figure of semiconductor material RbCuSb 2 S 4 molecule;
图5(a)为半导体材料RbCuSb2S4的固态紫外可见吸收光谱,横坐标表示波长,纵坐标表示吸光度; Figure 5(a) is the solid-state ultraviolet-visible absorption spectrum of the semiconductor material RbCuSb 2 S 4 , the abscissa indicates the wavelength, and the ordinate indicates the absorbance;
图5(b)为半导体材料CsCuSb2S4的固态紫外可见吸收光谱,横坐标表示波长,纵坐标表示吸光度; Figure 5(b) is the solid-state UV-visible absorption spectrum of the semiconductor material CsCuSb 2 S 4 , the abscissa represents the wavelength, and the ordinate represents the absorbance;
图6(a)为半导体材料RbCuSb2S4的热分析曲线,横坐标表示温度,纵坐标表示重量百分数; Figure 6(a) is the thermal analysis curve of the semiconductor material RbCuSb 2 S 4 , the abscissa indicates the temperature, and the ordinate indicates the weight percentage;
图6(b)为半导体材料CsCuSb2S4的热分析曲线,横坐标表示温度,纵坐标表示重量百分数。 Figure 6(b) is the thermal analysis curve of the semiconductor material CsCuSb 2 S 4 , the abscissa indicates the temperature, and the ordinate indicates the weight percentage.
具体实施方式 detailed description
下面结合附图和具体实施例对本发明做进一步说明。 The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
四元硫锑化合物ACuSb2S4半导体材料化学组成式为ACuSb2S4,其中A为平衡阴离子骨架的碱金属阳离子Rb、Cs中的一种。 The chemical composition formula of the quaternary sulfur-antimony compound ACuSb 2 S 4 semiconductor material is ACuSb 2 S 4 , where A is one of the alkali metal cations Rb and Cs that balance the anion skeleton.
四元硫锑化合物ACuSb2S4半导体材料属于单斜晶系,C2/c(No.15)空间群,具有新型三维开放骨架结构。 The quaternary sulfur-antimony compound ACuSb 2 S 4 semiconductor material belongs to the monoclinic system, C2/c (No.15) space group, and has a new three-dimensional open framework structure.
四元硫锑化合物ACuSb2S4半导体材料的制备方法是:称取物质的量之比为1:2:0.5:2的适量碱金属氢氧化物、铜单质、锑粉、硫粉,以水合肼和聚乙二醇为溶剂,在160℃下反应7天后,冷却,再分别用蒸馏水和乙醇各洗涤两次,即可得到四元硫锑化合物半导体材料;其中碱金属氢氧化物为RbOH或CsOH。 The preparation method of the quaternary sulfur-antimony compound ACuSb 2 S 4 semiconductor material is: Weigh an appropriate amount of alkali metal hydroxide, copper element, antimony powder, and sulfur powder with a ratio of 1:2:0.5:2 to hydrate Hydrazine and polyethylene glycol are used as solvents, reacted at 160°C for 7 days, cooled, and then washed twice with distilled water and ethanol respectively to obtain a quaternary sulfur-antimony compound semiconductor material; wherein the alkali metal hydroxide is RbOH or CsOH.
上述制备方法种,水合肼和聚乙二醇的混合比例为1:4。 In the above preparation method, the mixing ratio of hydrazine hydrate and polyethylene glycol is 1:4.
四元硫锑化合物ACuSb2S4半导体材料能隙约1.70eV,是一种窄禁带半导体材料,可用于制备光学半导体器件,光学半导体器件为太阳能电池过渡层材料。 The quaternary sulfur antimony compound ACuSb 2 S 4 semiconductor material has an energy gap of about 1.70eV, is a narrow band gap semiconductor material, and can be used to prepare optical semiconductor devices, which are solar cell transition layer materials.
在本发明中,若非特指,所有的设备和原料等均是从市场直接购得,未经进一步处理的。下述实施例中的方法,如无特别说明,均为本领域常规方法。 In the present invention, unless otherwise specified, all equipment and raw materials are directly purchased from the market without further processing. The methods in the following examples, unless otherwise specified, are conventional methods in the art.
实施例Example 11 ::
RbCuSb2S4晶体: RbCuSb 2 S 4 crystal:
称取初始原料RbOH 1.0 mmol (0.103g)、Cu 2.0 mmol(0.128g)、Sb2S30.5 mmol (0.170g)和S 2.0 mmol(0.064g)放入水热釜中,再加入水合肼0.5 mL和聚乙二醇2.0 mL,将水热釜置于160 ℃下反应7天。反应结束后,打开水热釜,取出产物,分别用蒸馏水和无水乙醇各洗涤2次,得到黑红色块状晶体,产率为70%(以铜为准),晶粒尺寸200*300 μm(见图1 a)。经单晶X射线衍射分析,该晶体组成式为RbCuSb2S4,属于单斜晶系,空间群是C2/c(No.15),a=7.3272(6) Å,b=11.1628(8) Å,c=10.7849(8) Å,α=90°,β=105.748(8)°,γ=90°,Z=4,V=849.01(11) Å3,晶体结构图如4所示。EDX元素分析表明晶体只含Rb、Cu、Sb、S四种元素,且各元素含量比与单晶衍射分析结果一致(见图2 a)。XRD分析得到的晶体是纯相,并且与理论结果相一致(见图3a)。UV-vis图谱测得半导体材料能隙为1.71 eV(见图5 a)。TG图谱说明了半导体材料的热稳定性能优异,至500℃不分解(见图6 a)。 Weigh the initial raw materials RbOH 1.0 mmol (0.103g), Cu 2.0 mmol (0.128g), Sb 2 S 3 0.5 mmol (0.170g) and S 2.0 mmol (0.064g) into a hydrothermal kettle, then add hydrazine hydrate 0.5 mL and 2.0 mL of polyethylene glycol, and the reaction was carried out at 160 °C for 7 days in a hydrothermal kettle. After the reaction, open the hydrothermal kettle, take out the product, and wash twice with distilled water and absolute ethanol respectively to obtain black-red block crystals with a yield of 70% (based on copper) and a grain size of 200*300 μm (See Figure 1a). According to single crystal X-ray diffraction analysis, the crystal composition formula is RbCuSb 2 S 4 , which belongs to the monoclinic crystal system, and the space group is C2/c (No.15), a=7.3272(6) Å, b=11.1628(8) Å, c=10.7849(8) Å, α=90°, β=105.748(8)°, γ=90°, Z=4, V=849.01(11) Å 3 , the crystal structure is shown in 4. EDX elemental analysis shows that the crystal contains only four elements: Rb, Cu, Sb, and S, and the content ratio of each element is consistent with the result of single crystal diffraction analysis (see Figure 2 a). The crystals obtained by XRD analysis are phase-pure and consistent with the theoretical results (see Figure 3a). The energy gap of semiconductor material measured by UV-vis spectrum is 1.71 eV (see Figure 5 a). The TG spectrum shows that the semiconductor material has excellent thermal stability and does not decompose up to 500 °C (see Figure 6 a).
实施例Example 22 ::
CsCuSb2S4晶体: CsCuSb 2 S 4 crystal:
称取初始原料CsOH 1.0 mmol (0.150g)、Cu 2.0 mmol(0.128g)、Sb2S30.5 mmol (0.170g)和S 2.0 mmol(0.064g)放入水热釜中,再加入水合肼0.5 mL和聚乙二醇2.0 mL,将水热釜置于160 ℃下反应7天。反应结束后,打开水热釜,取出产物,分别用蒸馏水和无水乙醇各洗涤2次,得到黑红色块状晶体,产率为58%(以铜为准),晶粒尺寸250*300μm(见图1 b)。经单晶X射线衍射分析,该晶体组成式为CsCuSb2S4,属于单斜晶系,空间群是C2/c(No.15),a=7.5859(7) Å,b=11.1225(9) Å,c=10.8286(10) Å,α=90°,β=105.364(9)°,γ=90°,Z=4,V=881.00(14) Å3。EDX元素分析表明晶体只含Cs、Cu、Sb、S四种元素,且各元素含量比与单晶衍射分析结果一致(见图2 b)。XRD分析得到的晶体是纯相,并且与理论结果相一致(见图3b)。UV-vis图谱测得半导体材料能隙为1.70 eV(见图5 b)。TG图谱说明了半导体材料的热稳定性能优异,至500℃不分解(见图6 b)。 Weigh the initial raw materials CsOH 1.0 mmol (0.150g), Cu 2.0 mmol (0.128g), Sb 2 S 3 0.5 mmol (0.170g) and S 2.0 mmol (0.064g) into a hydrothermal kettle, then add hydrazine hydrate 0.5 mL and 2.0 mL of polyethylene glycol, and the reaction was carried out at 160 °C for 7 days in a hydrothermal kettle. After the reaction was over, the hydrothermal kettle was opened, the product was taken out, and the product was washed twice with distilled water and absolute ethanol respectively to obtain black-red block crystals with a yield of 58% (based on copper) and a grain size of 250*300 μm ( See Figure 1 b). According to single crystal X-ray diffraction analysis, the crystal composition formula is CsCuSb 2 S 4 , which belongs to the monoclinic crystal system, and the space group is C2/c (No.15), a=7.5859(7) Å, b=11.1225(9) Å, c=10.8286(10) Å, α=90°, β=105.364(9)°, γ=90°, Z=4, V=881.00(14) Å 3 . EDX elemental analysis shows that the crystal contains only four elements: Cs, Cu, Sb, and S, and the content ratio of each element is consistent with the result of single crystal diffraction analysis (see Figure 2 b). The crystals obtained by XRD analysis are phase-pure and consistent with the theoretical results (see Figure 3b). The energy gap of the semiconductor material measured by UV-vis spectrum is 1.70 eV (see Figure 5 b). The TG spectrum shows that the semiconductor material has excellent thermal stability and does not decompose up to 500 °C (see Figure 6 b).
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510556601.5A CN105236482A (en) | 2015-09-02 | 2015-09-02 | A Quaternary Sulfur Antimony Compound ACuSb2S4 Semiconductor Material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510556601.5A CN105236482A (en) | 2015-09-02 | 2015-09-02 | A Quaternary Sulfur Antimony Compound ACuSb2S4 Semiconductor Material |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105236482A true CN105236482A (en) | 2016-01-13 |
Family
ID=55034371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510556601.5A Pending CN105236482A (en) | 2015-09-02 | 2015-09-02 | A Quaternary Sulfur Antimony Compound ACuSb2S4 Semiconductor Material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105236482A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105525354A (en) * | 2016-01-29 | 2016-04-27 | 浙江大学 | Quaternary thioarsenate compound semiconductor material as well as preparation method and application thereof |
CN105696080A (en) * | 2016-01-29 | 2016-06-22 | 浙江大学 | Quaternary chalcogenide semiconductor material, and preparation method and application thereof |
CN106423215A (en) * | 2016-08-03 | 2017-02-22 | 浙江大学 | Bacteriostatic and preservative quaternary sulfide semiconductor photocatalytic material for coastal concrete structure, preparation method and application thereof |
CN109778317A (en) * | 2019-01-24 | 2019-05-21 | 中国科学院福建物质结构研究所 | A kind of quaternary non-core sulfide crystal material and its preparation method and application |
CN111847508A (en) * | 2019-04-24 | 2020-10-30 | 上海电机学院 | A kind of In-based semiconductor material, preparation method and application |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104451887A (en) * | 2014-11-28 | 2015-03-25 | 遵义师范学院 | A class of infrared nonlinear optical crystal Ln8Sb2S15 and its preparation method |
WO2015068683A1 (en) * | 2013-11-07 | 2015-05-14 | 積水化学工業株式会社 | Coating material for forming semiconductors, semiconductor thin film, thin film solar cell and method for manufacturing thin film solar cell |
CN104862782A (en) * | 2015-03-31 | 2015-08-26 | 浙江大学 | Quaternary sulfide semiconductor material, and preparation method and application thereof |
-
2015
- 2015-09-02 CN CN201510556601.5A patent/CN105236482A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015068683A1 (en) * | 2013-11-07 | 2015-05-14 | 積水化学工業株式会社 | Coating material for forming semiconductors, semiconductor thin film, thin film solar cell and method for manufacturing thin film solar cell |
CN104451887A (en) * | 2014-11-28 | 2015-03-25 | 遵义师范学院 | A class of infrared nonlinear optical crystal Ln8Sb2S15 and its preparation method |
CN104862782A (en) * | 2015-03-31 | 2015-08-26 | 浙江大学 | Quaternary sulfide semiconductor material, and preparation method and application thereof |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105525354A (en) * | 2016-01-29 | 2016-04-27 | 浙江大学 | Quaternary thioarsenate compound semiconductor material as well as preparation method and application thereof |
CN105696080A (en) * | 2016-01-29 | 2016-06-22 | 浙江大学 | Quaternary chalcogenide semiconductor material, and preparation method and application thereof |
CN107779956A (en) * | 2016-01-29 | 2018-03-09 | 浙江大学 | A kind of quaternary thioarsenate compound semiconductor materials and its production and use |
CN107779956B (en) * | 2016-01-29 | 2019-10-11 | 浙江大学 | A quaternary thioarsenate compound semiconductor material and its preparation method and application |
CN106423215A (en) * | 2016-08-03 | 2017-02-22 | 浙江大学 | Bacteriostatic and preservative quaternary sulfide semiconductor photocatalytic material for coastal concrete structure, preparation method and application thereof |
CN106423215B (en) * | 2016-08-03 | 2019-02-22 | 浙江大学 | Quaternary sulfide semiconductor photocatalytic material for antibacterial and anti-corrosion of seaside concrete structure, preparation method and application thereof |
CN109778317A (en) * | 2019-01-24 | 2019-05-21 | 中国科学院福建物质结构研究所 | A kind of quaternary non-core sulfide crystal material and its preparation method and application |
CN111847508A (en) * | 2019-04-24 | 2020-10-30 | 上海电机学院 | A kind of In-based semiconductor material, preparation method and application |
CN111847508B (en) * | 2019-04-24 | 2022-11-18 | 上海电机学院 | A kind of In-based semiconductor material and its preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Robot-accelerated perovskite investigation and discovery | |
CN105236482A (en) | A Quaternary Sulfur Antimony Compound ACuSb2S4 Semiconductor Material | |
Yang et al. | Structural modulation of anionic group architectures by cations to optimize SHG effects: a facile route to new NLO materials in the ATCO3F (A= K, Rb; T= Zn, Cd) series | |
Huang et al. | Band gap insensitivity to large chemical pressures in ternary bismuth iodides for photovoltaic applications | |
CN107723799B (en) | A kind of quaternary sulfide semiconductor material and its preparation method and application | |
Zheng et al. | Crystalline mixed halide halobismuthates and their induced second harmonic generation | |
Zhou et al. | AMgPO 4· 6H 2 O (A= Rb, Cs): strong SHG responses originated from orderly PO 4 groups | |
Bai et al. | A Rare‐Earth Selenite with Unexpectedly Well‐Balanced Ultraviolet Nonlinear Optical Functionality, Sc (HSeO3) 3 | |
Yuan et al. | Deep ultraviolet-transparent materials with strong second-harmonic response | |
Bie et al. | Molecular design of three-dimensional metal-free A (NH4) X3 perovskites for photovoltaic applications | |
Gągor et al. | Periodic and incommensurately modulated phases in a (2-methylimidazolium) tetraiodobismuthate (iii) thermochromic organic–inorganic hybrid | |
Kim et al. | α-ScVSe2O8, β-ScVSe2O8, and ScVTe2O8: new quaternary mixed metal oxides composed of only second-order Jahn–Teller distortive cations | |
Wu et al. | Alkali metal–alkaline earth metal borate crystal LiBa 3 (OH)(B 9 O 16)[B (OH) 4] as a new deep-UV nonlinear optical material | |
Li et al. | Noncentrosymmetric (C3H7N6) 6 (H2PO4) 4 (HPO4)· 4H2O and centrosymmetric (C3H7N6) 2SO4· 2H2O: exploration of acentric structure by combining planar and tetrahedral motifs via hydrogen bonds | |
Fan et al. | New tartratoborates: Synthesis, structure, and characterization of non-centrosymmetric ASr [C 4 H 2 O 6 B (OH) 2]· 4H 2 O (A= K+, Rb+) | |
Liu et al. | A new nonlinear optical sulfate of layered structure: Cs2Zn2 (SO4) 3 | |
Xu et al. | Rb 3 In (SO 4) 3: a defluorinated mixed main-group metal sulfate for ultraviolet transparent nonlinear optical materials with a large optical band gap | |
Zhang et al. | Deep eutectic solvents synthesis of A2Sb (C2O4) Cl3 (A= NH4, K, Rb) with superior optical performance | |
Wang et al. | LaTeBO 5: a new borotellurite with a large birefringence activated by the highly distorted [Te (iv) O 4] group | |
Liang et al. | Metal methanesulfonates with mixed anionic groups with large band gaps and enhanced birefringence | |
Han et al. | A lead bromide organic–inorganic hybrid perovskite material showing reversible dual phase transition and robust SHG switching | |
Guo et al. | Dual Monomeric Inorganic Units Constructed Bright Emissive Zero-Dimensional Antimony Chlorides with Solvent-Induced Reversible Structural Transition | |
Kshirsagar et al. | Pivotal Role of A-Site Cations in Tailoring the Band-Edge States, Optical Properties, and Stability of 0D Hybrid Indium Chlorides | |
Ju et al. | Chirality triggered biferroicity in a 3D rubidium based perovskite | |
Zhang et al. | Organic cation-directed modulation of emissions in zero-dimensional hybrid tin bromides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160113 |