New! View global litigation for patent families

CN105227006A - Novel circuit for permanent-magnet synchronous motor by using electronic components - Google Patents

Novel circuit for permanent-magnet synchronous motor by using electronic components Download PDF

Info

Publication number
CN105227006A
CN105227006A CN 201510585807 CN201510585807A CN105227006A CN 105227006 A CN105227006 A CN 105227006A CN 201510585807 CN201510585807 CN 201510585807 CN 201510585807 A CN201510585807 A CN 201510585807A CN 105227006 A CN105227006 A CN 105227006A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
element
circuit
system
permanent
magnet
Prior art date
Application number
CN 201510585807
Other languages
Chinese (zh)
Inventor
孙黎霞
李云峰
温正赓
Original Assignee
河海大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention discloses a novel circuit for a permanent-magnet synchronous motor by using electronic components. A permanent-magnet synchronous motor (PMSM) system circuit comprises three sub systems; the circuit comprises a multiplication element, a reverse-phase element, an addition element and an integration element of a state variable; and the circuit is achieved on the system by the electronic components of an operational amplifier, a capacitor, a resistor and an analogue multiplier according to the multiplication element, the reverse-phase element, the addition element and the integration element. In the novel circuit for the permanent-magnet synchronous motor by using electronic components, provided by the invention, the addition element and the integration element in the PMSM system can be simultaneously achieved by an operational and amplification circuit, the number of the operational and amplification circuits is reduced, and the circuit structure of the system is simplified; the system parameter is changed only by adjusting a variable resistor; the process of an output variable of a PMSM changed to chaos from a stable state can be easily observed; and a creative method is provided for deep understanding of abundance dynamic behaviors of the PMSM system.

Description

一种采用电子元器件实现永磁同步电机的新型电路 Using a Novel electronic circuit components to achieve PMSM

技术领域 FIELD

[0001] 本发明涉及一种采用电子元器件实现永磁同步电机的新型电路,属于电子电路设计技术领域。 [0001] The present invention relates to a new type of electronic circuit components to achieve permanent magnet synchronous motor, belonging to the technical field of electronic circuit design.

背景技术 Background technique

[0002] 永磁同步电动机因其具有噪声低、功率密度高、体积小、效率高等优点,在工业机器人、半导体生产等工业领域中得到了广泛的运用。 [0002] The permanent magnet synchronous motor because of its low noise, high power density, small size, high efficiency, obtained in the industrial field of industrial robots, semiconductor manufacturing and the like widely used. PMSM是一个非线性、强耦合的系统,在参数处于特定的区域时会出现转矩和转速的间歇振荡、控制性能不稳定等混沌现象,因此, 对PMSM进行混沌分析有很重要的现实意义。 PMSM is a non-linear, strong coupling system, there will be intermittent oscillating torque and speed at the time of the parameters in a particular area, such as chaos in unstable control performance, therefore, to analyze chaotic PMSM has a very important practical significance.

[0003] 在dq坐标轴下,PMSM的数学模型可写为 [0003] In the dq coordinate axes, the mathematical model of the PMSM can be written as

Figure CN105227006AD00031

[0005] 式中,变量id、iq分别为d轴、q轴定子电流,ω为机械角速度,变量ud、uq分别为d轴、q轴电压定子电压,np为磁极对数,Jeq为转动惯量,β为粘滞摩擦系数,TL为负载转矩,Ψγ为转子永磁体磁链,R表示定子绕组,Ld、Lq分别为d轴、q轴定子电感。 [0005] In the formula, variable id, iq are d-axis, q-axis stator current, [omega] is the mechanical angular speed, variable ud, uq are the d-axis, q-axis voltage of the stator voltage, np is the number of pole pairs, JEQ moment of inertia , β is the viscous friction coefficient, TL is load torque, Ψγ flux of the permanent magnet rotor, R represents a stator winding, Ld, Lq are the d-axis, q-axis stator inductance. 通过仿射变换和时间尺度变换将式(1)变化为无量纲的状态方程: By the time scale transformation and affine transformation formula (1) is changed to dimensionless equation of state:

Figure CN105227006AD00032

[0008] 系统⑵的平衡点满足: [0008] The balance system ⑵ satisfied:

Figure CN105227006AD00041

[0010] 式中,pp和rP为系统平衡点。 [0010] wherein, pp rP and the equilibrium point for the system.

[0011] 对于^ =乃=Q的情形,可以看作PMSM运行一段时间后突然断电,无输入电压和空载的情况。 [0011] for ^ = Q = is the case, the PMSM can be seen as a sudden power failure for some time, no input voltage and the no load situation. 由式(3)可求出这种情况下系统的三个平衡点为: Three equilibrium point represented by the formula (3) can be determined for this case the system:

Figure CN105227006AD00042

[0013] 式中,S。 [0013] In the formula, S. 为系统的零解平衡点,S i、S2为非平凡平衡点。 Solutions zero equilibrium system, S i, S2 is non-trivial equilibrium. 对于两非平凡平衡点来说, 其对应的雅克比矩阵的特征多项式为: For two nontrivial equilibrium point, the corresponding Jacobian matrix characteristic polynomial:

[0014] D ( λ ) = λ 3+ (2+ σ ) λ 2+ ( σ + γ ) λ +2 σ ( γ -1) (5) [0014] D (λ) = λ 3+ (2+ σ) λ 2+ (σ + γ) λ +2 σ (γ -1) (5)

[0015] 式中,λ为特征多项式的特征根。 [0015] In the formula, λ is the characteristic roots of the characteristic polynomial. 由式(5)可得,当PMSM参数 By the formula (5) can be obtained, when PMSM parameters

Figure CN105227006AD00043

时,对应于两个非平凡平衡点的特征值为: When, corresponding to the equilibrium point of two non-trivial eigenvalues:

Figure CN105227006AD00044

[0017] 由于λΐ为负实数,λ2、λ3为两个纯虚数。 [0017] Since λΐ negative real number, λ2, λ3 two pure imaginary number. 所以,当γ = "时,两个平衡点都为不稳定平衡点,式(2)对应的线性化方程将产生Hopf分支;当γ > yh时,三个平衡点都将变得不稳定,系统将进入混沌状态。 Therefore, when = "when gamma], two equilibrium points are unstable equilibrium point, the formula (2) linear equations corresponding to the generated Hopf bifurcation; when γ> yh, all three equilibrium point becomes unstable, the system will enter a chaotic state.

[0018] 当〇= 5. 46时,γ h= 14. 93。 [0018] When square = 5. 46, γ h = 14. 93. 令初始条件 So that the initial conditions

Figure CN105227006AD00045

取γ = 8,利用Matlab/Simulink软件,仿真结果如图1所示,系统处于稳定状态;γ = 14. 36,仿真结果如图2所示,系统处于极限环状态;γ = 40,的仿真结果如图3-6所示,系统处于混沌状态。 Simulation of γ = 40, the; take γ = 8, using software Matlab / Simulink simulation results shown in Figure 1, the system is stable; γ = 14. 36, the simulation results shown in Figure 2, the system is in state Limit Cycle The results shown in Figure 3-6, the system is chaotic.

发明内容 SUMMARY

[0019] 目的:为了克服现有技术中存在的不足,本发明提供一种采用电子元器件实现永磁同步电机的新型电路。 [0019] Objective: To overcome the deficiencies present in the prior art, the present invention provides a new type of electronic circuit components implemented PMSM.

[0020] 技术方案:为解决上述技术问题,本发明采用的技术方案为: [0020] Technical Solution: To solve the above technical problem, the technical solution adopted by the invention is:

[0021 ] -种采用电子元器件实现永磁同步电机的新型电路,PMSM系统电路包含三个子系统,所述电路包括状态变量的乘法环节、反相环节、加法和积分环节。 [0021] - the use of new types of electronic circuit components to achieve permanent magnet synchronous motor, the PMSM system circuit includes three subsystems, said circuit comprising a multiplication member state variables, reverse link addition and integrator.

[0022] 所述乘法环节、反相环节、加法和积分环节,采用运算放大器、电容、电阻、模拟乘法器的电子元器件对系统进行电路实现; [0022] The multiplication member, reverse link, an adder and integrating link, using an operational amplifier, capacitors, resistors, electronic components of the analog multiplier circuit implementation of the system;

[0023] 所述反相环节包括第一反相环节、第二反相环节、第三反相环节,所述第一反相环节包括电阻,R15、R16、运算放大器LM741,所述第一反相环节的运算放大器输入信号0. 1*χ2*χ3通过R16接入反相输入端,输出端电压通过R16反馈到输入回路中;所述第二反相环节包括电阻R11、R12、运算放大器LM741,所述第二反相环节的运算放大器输入信号x3 通过Rll接入反相输入端,输出端电压通过R12反馈到输入回路中;所述第三反相环节包括电阻R13、R14、运算放大器LM741,所述第三反相环节的输入信号x2通过R13接入反相输入端,输出端电压通过R14反馈到输入回路中。 [0023] The link includes a first inverter inverting part, inverting the second link, a third link inverter, said first inverter comprises a resistor link, R15, R16, the LM741 operational amplifier, the first counter link operational amplifier with an input signal 0. 1 * χ2 * χ3 access by R16 inverting input terminal, an output terminal to the input voltage through R16 feedback loop; the second inverter comprises a resistor part R11, R12, operational amplifiers LM741 a second operational amplifier inverting input link signal x3 Rll access by an inverting input terminal, an output terminal voltage feedback via R12 to the input circuit; said third inverter comprises a resistor part R13, R14, operational amplifiers LM741 the third part of the inverted input signal x2 by the access R13 inverting input terminal, an output terminal to the input voltage feedback loop through R14.

[0024] 所述乘法环节包括第一乘法环节、第二乘法环节,所述第一乘法环节包括模拟乘法器AD633、电容C4、C5、电阻R17、R18,所述第二乘法环节包括模拟乘法器AD633、电容C6、 C7、电阻R17、R18 ;所述第一乘法环节的模拟乘法器的1端口、3端口分别接外部输入信号X1、X3 ;5端口、8端口接外部稳压电源;7端口输出0.1 *xl*x3 ;所述第二乘法环节的模拟乘法器的1端口、3端口分别接外部输入信号X3、X2 ;5端口、8端口接外部稳压电源;7端口输出0. 1*χ2*χ3 ;所述电阻R17、R18用于直流分压对模拟乘法器的直流偏置进行线性偏置补偿; [0024] The multiplication member comprises a first multiplication member, a second multiplication part, the first part comprises an analog multiplier multiplying the AD633, capacitors C4, C5, resistors R17, R18, and the second part comprises an analog multiplier multiplying the AD633, capacitors C6, C7, resistors R17, R18; 1-port analog multiplier multiplying the first link, three ports are connected to an external input signal X1, X3; 5 port, port 8 connected to an external power supply; port 7 output 0.1 * xl * x3; 1-port analog multiplier multiplying the second part of the three ports are connected to external input signals X3, X2; 5 port, port 8 connected to an external power supply; an output port 7 0.1 * χ2 * χ3; the resistors R17, R18 for dividing a DC bias current of the analog multiplier linear offset compensation;

[0025] 所述加法和积分环节包括第一加法和积分环节、第二加法和积分环节、第三加法和积分环节;所述第一加法和积分环节包括电阻RU R2、R8,电容C1,运算放大器LM741, 所述第一加法和积分环节的两并联输入信号xl、-〇. 1*χ2*χ3分别通过电阻Rl和R2接入LM741的反相输入端,LM741的输出信号通过电容Cl反馈到输入回路中,R8并联在电容Cl 上;所述第二加法和积分环节包括电阻R3、R4、R5、R10、电容C2、运算放大器LM741,所述第二加法和积分环节的两并联输入信号_x3、0.1 *xl*x3分别通过电阻R4和R5接入LM741的反相输入端,LM741的输出信号通过电容C2反馈到输入回路中,R3、RlO并联在电容C2上; 所述第三加法和积分环节包括电阻R6、R7、R9、电容C3、运算放大器LM741,所述第三加法和积分环节的两并联输入信号x3、-x2分别通过电阻R6和R7接入LM741的反相输入端,LM741 的输出信 [0025] The adder and the integrator comprises a first adder and integrator, a second integrator and an adder, a third adder and integrating link; said first adder and the integrator comprises a resistor RU R2, R8, capacitors C1, computing LM741 amplifier, said first adder and the integrator of the two parallel input signals XL, -〇. 1 * χ2 * χ3 through the resistors Rl and R2 to the inverting input terminal of the access of the LM741, LM741 is fed back to the output signal via the capacitor Cl an input circuit, R8 connected in parallel to the capacitor Cl; said second adder and the integrator comprises a resistor R3, R4, R5, R10, capacitor C2, an operational amplifier LM741, integrator and said second adder input signal to two parallel _ x3,0.1 * xl * x3 respectively through resistors R4 and R5 to the inverting input terminal of the access LM741, LM741 output signal is fed back to the input circuit via the capacitor C2, R3, RlO connected in parallel to the capacitor C2; and said third adder integrator comprising a resistor R6, R7, R9, the capacitor C3, an operational amplifier LM741, two parallel input signal x3 of the third adder and the integrator, -x2 through the resistors R6 and R7 to the inverting input terminal of the access LM741, LM741 output signal 通过电容C3反馈到输入回路中,R9并联在电容C3上。 Capacitor C3 through a feedback loop to the input, R9 in parallel with the capacitor C3.

[0026] 所述加法和积分环节的RC比例系数的值用于调节PMSM系统的频率和幅值。 The value of [0026] Addition and RC integral part of the scale factor for adjusting the frequency and amplitude of PMSM system.

[0027] 所述电阻R4、R6、R7均设置为可变电阻,R6和R7的阻值根据参数〇的大小设定, 通过对PMSM系统模型的转换和分析,方便电路的调节。 The [0027] resistor R4, R6, R7 are set to a variable resistor, R6 and R7 of the resistance according to the parameters set square size, and by analyzing the conversion PMSM model system, to facilitate adjusting circuit.

[0028] 所述可变电阻R4阻值的设置与参数γ有关,用于随着电阻R4的变化,PMSM系统由稳定状态进入混沌状态,变得不稳定。 [0028] The resistance of the variable resistor R4 set parameter γ is related to the change with the resistor R4, the PMSM system to chaos state from stable, unstable.

[0029] 有益效果:本发明提供的一种采用电子元器件实现永磁同步电机的新型电路,通过一个运放电路能够同时实现PMSM系统中加法和积分环节,减少了运放电路的个数,简化了系统的电路结构;仅调节一个可变电阻即可实现系统参数的改变。 [0029] Advantageous Effects: The present invention provides a new type of electronic circuit components to achieve permanent magnet synchronous motor PMSM circuit can be realized simultaneously, and the system integrator through a summing amplifier, reduces the number of operational amplifier circuit, simplifying the circuit structure of the system; adjust only one variable resistor changing system parameters can be realized. 容易观察到PMSM输出变量由稳定状态向混沌的变化的过程,对深刻认识PMSM系统丰富的动态行为提供了一种创新方法。 PMSM readily observed output variable process by the steady state of chaos to change, a profound understanding of the dynamic behavior of the rich PMSM system provides an innovative approach.

附图说明 BRIEF DESCRIPTION

[0030] 图1是参数γ = 8时状态变量^的时域图; [0030] FIG. 1 is a parameter γ = 8 ^ state variable of time-domain diagram;

[0031] 图2是参数γ = 14. 36时系统的三相图; [0031] FIG. 2 is a parameter γ = three-phase system of FIG 14.36;

[0032] 图3是参数γ = 40时系统的三相图; [0032] FIG. 3 is a parameter γ = phase diagram of the system 40;

[0033] 图4是参数γ = 40时状态变量ξ的时域图; [0033] FIG. 4 is a time domain view of 40 state variables parameters ξ γ =;

[0034] 图5是参数γ = 40时状态变量的二维相图; [0034] FIG. 5 is a phase diagram of a two-dimensional state variable parameter 40 when γ =;

[0035] 图6是参数γ = 40时状态变量ώ~/,;的二维相图; [0035] FIG. 6 is a state variable parameter γ = ώ ~ / of the two-dimensional phase diagram ,; 40;

[0036] 图7是本发明电路示意图; [0036] FIG. 7 is a circuit schematic of the present invention;

[0037] 图8是第一反相环节电路示意图; [0037] FIG. 8 is a schematic view of a first inverter circuit part;

[0038] 图9是第二反相环节电路示意图; [0038] FIG. 9 is a schematic view of a second inverter circuit part;

[0039] 图10是第三反相环节电路示意图; [0039] FIG. 10 is a circuit diagram of part of a third inverter;

[0040] 图11是第一乘法环节电路示意图; [0040] FIG. 11 is a circuit diagram of a first part of the multiplication;

[0041] 图12是第二乘法环节电路示意图; [0041] FIG. 12 is a circuit diagram of a second part of the multiplication;

[0042] 图13是第一加法和积分环节电路示意图; [0042] FIG. 13 is a first summing integrator and a circuit diagram;

[0043] 图14是第二加法和积分环节电路示意图; [0043] FIG. 14 is a second adder and the integrator circuit schematic;

[0044] 图15是第三加法和积分环节电路示意图; [0044] FIG. 15 is a third summing integrator and a circuit diagram;

[0045] 图16是R4 = IOOkQ即参数γ = 8时系统状态变量xl的时域图; [0045] FIG. 16 is R4 = IOOkQ i.e. parameters xl 8 state variables of time-domain diagram γ =;

[0046] 图17是R4 = IOOkQ即参数γ = 8时系统状态变量xl的频域波形; [0046] FIG. 17 is R4 = IOOkQ i.e. frequency domain waveform parameter γ = 8 xl state variables of the system;

[0047] 图18是R4 = 25k Ω即参数γ = 40时系统状态变量xl的时域图; [0047] FIG. 18 is R4 = 25k Ω i.e. parameter γ 40 time-domain diagram of the system state variables xl =;

[0048] 图19是R4 = 25k Ω即参数γ = 40时系统状态变量xl的频域波形; [0048] FIG. 19 is R4 = 25k Ω i.e. parameter γ = 40 the frequency domain waveform when the system state variables xl;

[0049] 图20是R4 = 25kQ即参数γ = 40时时系统状态变量x3-xl的二维相图; [0049] FIG. 20 is R4 = 25kQ i.e. parameter γ = 40 and always two-dimensional phase diagram system state variable x3-xl of;

[0050] 图21是R4 = 25kQ即参数γ = 40时时系统状态变量χ3-χ2的二维相图。 [0050] FIG. 21 is R4 = 25kQ i.e. parameter γ = 40 always dimensional phase diagram of the system state variables of χ3-χ2.

具体实施方式 detailed description

[0051 ] 下面结合附图,对本发明的电路结构和工作原理进行详细的说明。 [0051] DRAWINGS circuit configuration and operation principle of the present invention will be described in detail.

[0052] 如图7所示,一种采用电子元器件实现永磁同步电机的新型电路,PMSM系统电路包含三个子系统,所述电路包括状态变量的乘法环节、反相环节、加法和积分环节。 [0052] As shown in FIG 7 A new type of electronic circuit components to achieve permanent magnet synchronous motor, the PMSM system circuit includes three subsystems, said circuit comprising a multiplication member state variables, reverse link, an adder and integrating link .

[0053] 所述乘法环节、反相环节、加法和积分环节,采用运算放大器、电容、电阻、模拟乘法器的电子元器件对系统进行电路实现; [0053] The multiplication member, reverse link, an adder and integrating link, using an operational amplifier, capacitors, resistors, electronic components of the analog multiplier circuit implementation of the system;

[0054] 如图8、9、10所示,所述反相环节包括第一反相环节、第二反相环节、第三反相环节,所述第一反相环节包括电阻,R15、R16、运算放大器LM741,所述第一反相环节的运算放大器输入信号〇. 1*χ2*χ3通过R16接入反相输入端,输出端电压通过R16反馈到输入回路中;所述第二反相环节包括电阻Rll、R12、运算放大器LM741,所述第二反相环节的运算放大器输入信号x3通过Rll接入反相输入端,输出端电压通过R12反馈到输入回路中;所述第三反相环节包括电阻R13、R14、运算放大器LM741,所述第三反相环节的输入信号x2通过R13接入反相输入端,输出端电压通过R14反馈到输入回路中。 [0054] As shown in FIG. 8, 9, the link includes a first inverter inverting part, inverting the second link, a third link inverter, said first inverter comprises a resistor link, R15, R16 said second inverter;., the LM741 operational amplifier, the first inverting operational amplifier input signal segment square 1 * χ2 * χ3 access by R16 inverting input terminal, an output terminal to the input voltage feedback loop by R16 link includes resistors Rll, R12, the LM741 operational amplifier, said second operational amplifier inverting input link signal x3 Rll access by an inverting input terminal, an output terminal to the input voltage feedback loop by R12; said third inverter link comprising resistors R13, R14, the LM741 operational amplifier, a third inverting input signal x2 link access by R13 inverting input terminal, an output terminal to the input voltage feedback loop through R14.

[0055] 如图11、12所示,所述乘法环节包括第一乘法环节、第二乘法环节,所述第一乘法环节包括模拟乘法器AD633、电容C4、C5、电阻R17、R18,所述第二乘法环节包括模拟乘法器AD633、电容C6、C7、电阻R17、R18 ;所述第一乘法环节的模拟乘法器的1端口、3端口分别接外部输入信号X1、X3 ;5端口、8端口接外部稳压电源;7端口输出0.1 *xl*x3 ;所述第二乘法环节的模拟乘法器的1端口、3端口分别接外部输入信号X3、X2 ;5端口、8端口接外部稳压电源;7端口输出0. 1*χ2*χ3 ;所述电阻R17、R18用于直流分压对模拟乘法器的直流偏置进行线性偏置补偿; [0055] As shown in FIG. 11 and 12, the multiplication part comprises a first multiplication member, a second multiplication part, the first part comprises an analog multiplier multiplying the AD633, capacitors C4, C5, resistors R17, R18, the the second part comprises an analog multiplier multiplying the AD633, capacitors C6, C7, resistors R17, R18; 1-port analog multiplier multiplying the first link, three ports are connected to an external input signal X1, X3; 5 port, port 8 connect an external power supply; an output port 7 0.1 * xl * x3; 1-port analog multiplier multiplying the second part of the three ports are connected to external input signals X3, X2; 5 ports, ports for connecting external power supply 8 ; 7 output port 0. 1 * χ2 * χ3; the resistors R17, R18 for dividing a DC bias current of the analog multiplier linear offset compensation;

[0056] 如图13、14、15所示,所述加法和积分环节包括第一加法和积分环节、第二加法和积分环节、第三加法和积分环节;所述第一加法和积分环节包括电阻R1、R2、R8,电容C1,运算放大器LM741,所述第一加法和积分环节的两并联输入信号xl、-0. 1*χ2*χ3分别通过电阻Rl和R2接入LM741的反相输入端,LM741的输出信号通过电容Cl反馈到输入回路中, R8并联在电容Cl上;所述第二加法和积分环节包括电阻R3、R4、R5、R10、电容C2、运算放大器LM741,所述第二加法和积分环节的两并联输入信号-x3、0.1 *xl*x3分别通过电阻R4和R5接入LM741的反相输入端,LM741的输出信号通过电容C2反馈到输入回路中,R3、R10并联在电容C2上;所述第三加法和积分环节包括电阻R6、R7、R9、电容C3、运算放大器LM741, 所述第三加法和积分环节的两并联输入信号x3、-x2分别通过电阻R6和R7接入LM741的反相输 [0056] As shown in FIG. 13, 14, and the integrator comprises a first adder summing integrator and the second integrator and an adder, a third adder and integrating link; said first adder and the integrator comprising resistors R1, R2, R8, capacitors C1, LM741 operational amplifier, said first adder and the integrator of the two parallel input signals xl, -0. 1 * χ2 * χ3 through the resistors Rl and R2 to the inverting input access LM741 terminal, the output signal is fed back to the input circuit LM741 through capacitor Cl, R8 connected in parallel to the capacitor Cl; said second adder and the integrator comprises a resistor R3, R4, R5, R10, capacitor C2, a LM741 operational amplifier, said first second summing integrator and two parallel inputs -x3,0.1 * xl * x3 respectively through resistors R4 and R5 access LM741 inverting input signal, the output signal is fed back to the input circuit LM741 through the capacitor C2, R3, R10 in parallel across the capacitor C2; said third summing integrator and includes resistors R6, R7, R9, the capacitor C3, an operational amplifier LM741, said third summing integrator and two of the parallel input signal x3, -x2 respectively through the resistor R6 and R7 access inverting input of the LM741 端,LM741的输出信号通过电容C3反馈到输入回路中,R9并联在电容C3上。 , An output signal of LM741 by capacitor C3 back to the input circuit, the parallel capacitor R9 C3.

具体实施方式[0057] 如下: DETAILED DESCRIPTION [0057] as follows:

[0058] 由系统方程(2)可以看到,方程中含有状态变量的相加、相减、相乘和微分,因此, 可以采用运算放大器、电容、电阻、乘法器等器件构建反相环节、加法环节、乘法环节和积分环节对系统进行电路实现。 [0058] (2) system can be seen from the equation, the equation of state variables comprising the addition, subtraction, multiplication and differentiation, thus, the operational amplifier, capacitors, resistors, and other devices can be used to build the multiplier inverted segment, link addition, multiplication, and links the system integrator circuit implementation.

[0059] 当=¾ =0,由仿真结果可知,变量 [0059] When = ¾ = 0, can be seen from the simulation results, variable

Figure CN105227006AD00071

Figure CN105227006AD00072

系统状态的频率低于2Hz,频率较低。 State is lower than the frequency of the system 2Hz, lower frequency. 因此,在采用电路实现之前,需要分别从幅值和频率上进行变换。 Thus, prior to using the circuit implementation is required separately from the transformed amplitude and frequency.

[0060] 由于电子电路中运算放大器和模拟乘法器的电源电压提供范围在(-15V,+15V) 之间,PMSM混沌系统状态变量的大小超出了运算放大器等电子器件的工作电压范围。 [0060] Since the electronic circuit the operational amplifier and the supply voltage to provide an analog multiplier in the range between (-15V, + 15V), the size of the PMSM chaotic system state variables is outside the operating voltage range of electronic devices operational amplifier. 所以, 令新的状态变量X = (xl,x2,x3)为原状态变量的1/m,变换后的状态变量大小不超出(_15V,+15V)的工作电压范围。 Therefore, to make a new state variable X = (xl, x2, x3) of 1 / m the original state variables, the state variables does not exceed the size of the converted (_15V, + 15V) of the operating voltage range. 变换后系统的方程如下: Transformed equation system is as follows:

Figure CN105227006AD00073

[0062] 对于式(7),非线性部分由模拟乘法器AD633实现,模拟乘法器AD633实现的功能如下: [0062] For the formula (7), implemented by a non-linear portion of analog multiplier AD633, AD633 analog multiplier implement the following functions:

Figure CN105227006AD00074

[0064] 状态变量xl、x3和x2、x3分别经过模拟乘法器运算后,其输出值分别为0. 1x1x3 和0·1x2x3。 [0064] state variables xl, x3 and x2, x3 analog multiplier after each operation, the output values ​​of 0. 1x1x3 and 0 · 1x2x3.

[0065] 因为系统的频率较低,为了能够在示波器上看到完整、轨迹连续的吸引子相图,可以通过时间尺度变换来提高系统的频率,令 [0065] Since the lower frequency of the system, in order to see the full on an oscilloscope trace of the attractor continuous phase diagram, the frequency of the system can be increased by the time scale transformation, so

[0066] τ = t/ μ (9) [0066] τ = t / μ (9)

[0067] 即在t标度下的一个时间单位等于τ标度下的1/ μ个时间单位,通过时间尺度变换系统的频率提高到原来的μ倍,式(7)转换为: [0067] i.e. a unit time scale at t equal to 1 / μ τ time units in scale, up to the original fold [mu], of formula (7) is converted to the frequency conversion system time scale:

Figure CN105227006AD00081

[0069] 通过设置积分电路比例系数RC的值来改变系统频率和幅值,故式(10)可转换为: [0069] The frequency and amplitude to change the system by setting the value of the RC integrating circuit scale factor, so that the formula (10) can be converted to:

Figure CN105227006AD00082

[0072] 通过对PMSM系统模型的转换和分析,为了电路调节方便,选择电阻R4、R6和R7为可变电阻。 [0072] By converting the system and analysis of the PMSM model, in order to facilitate adjustment circuit, selecting the resistor R4, R6 and R7 is a variable resistor. 基于式(11),本发明设计的电路如图7所示。 Based on the formula (11), circuit design of the present invention shown in Figure 7.

[0073] 电路包括3个反相环节,2个乘法环节,3个加法和积分环节。 [0073] The circuit comprises three inverters links, links two multiplications, three adders and integrator. 3个反相环节如图8-10所示。 Three inverters links shown in Figure 8-10. 图8中输入信号0. 1x2x3通过电阻R16接LM741的反相输入端,LM741的输出信号通过电阻R15反馈到输入回路中,R16和R15阻值相同,使得LM741的输出信号与输入信号等值反相为-〇. 1x2x3。 In FIG. 8 the input signal 0. 1x2x3 connected through resistor R16 to the inverting input of LM741, LM741 output signal of the loop back to the input through a resistor R15, R16 and R15 are the same resistance value, so that the output and input signal equivalent anti LM741 phase -〇. 1x2x3. 同理,图9为输入信号x3经过反相环节输出-x3,图10为输入信号x2经过反相环节输出-x2。 Similarly, FIG. 9 is a part of the input signal is output via the inverter x3 -x3, FIG. 10 is a part of the input signal x2 via the inverter output -x2.

[0074] 2个乘法环节如图11、12所示。 [0074] 2 multiplication member 11 shown in FIG. 图11中输入信号xl、x3分别接模拟乘法器的1、 3端口,5、8端口接外部稳压电源,经对模拟乘法器AD633的实测可知,它存在Z = 50mV的偏差。 Xl input signal in FIG. 11, x3 respectively connected analog multiplier 1, port 3, port connected to an external power supply 5, 8, based on a measurement of the analog multiplier AD633 understood, it exists Z = deviation of 50mV. 因此,在电路实现时,需要对该直流偏置进行线性偏置补偿-50mV,本电路采用直流分压进行补偿,选择R17 = lOOOkQ,R18 = 4kQ。 Thus, when the circuit is implemented, the required DC bias of -50 mV linear offset compensation, the present DC voltage dividing circuit to compensate, select R17 = lOOOkQ, R18 = 4kQ. 端口7输出两外部输入信号的乘积为0. 1x1x3,同理,图12是输入信号x2、x3经过乘法环节输出0. 1x2x3。 Two external input signal multiplied output port 7 to 0. 1x1x3, Similarly, FIG. 12 is the input signal x2, x3 through the multiplication output link 0. 1x2x3.

[0075] 3个加法与积分环节如图13-15所示。 [0075] The three adders and integrator shown in Figures 13. 图13中两并联输入信号xl、-0. 1x2x3分别通过电阻Rl和R2接LM741的反相输入端,LM741的输出信号通过电容Cl反馈到输入回路中,R8为并联在电容Cl上的电阻,为电容提供放电回路,防止其饱和。 In Figure 13, two-parallel input signals xl, -0. 1x2x3 through the resistors Rl and R2 connected to the inverting input terminal of the LM741, LM741 output signal of a feedback loop to the input via a capacitor Cl, R8 is a capacitor Cl connected in parallel to the resistor, providing a capacitive discharge circuit, to prevent saturation thereof. 通过一个运算电路同时实现了加法和积分环节,实现输出,即: By a calculation circuit while achieving the integrator and an adder, the output achieved, namely:

Figure CN105227006AD00091

[0077] 同理,图14是三个输入信号x2、_x3、0. 1x1x3通过加法和积分环节实现输出,即: [0077] Similarly, FIG. 14 is a three input signal x2, _x3,0 1x1x3 realized by the adder and the integrator output, namely:

Figure CN105227006AD00092

[0079] 图15是两并联输入信号-x2、x3通过加法和积分环节实现输出, [0079] FIG. 15 is a two input signals in parallel -x2, x3 realized by the adder and the integrator output,

Figure CN105227006AD00093

[0081]选择m = 10,μ = 100,电容电阻分别为Cl = C2 = C3 = 0· OluF,Rl = R3 = 1000 kQ , R2 = R5 = IOkQ , RH = R12 = R13 = R14 = R15 = R16 = IOkQ , R8 = R9 = RlO = 5000k Ω。 [0081] select m = 10, μ = 100, capacitors and resistors are Cl = C2 = C3 = 0 · OluF, Rl = R3 = 1000 kQ, R2 = R5 = IOkQ, RH = R12 = R13 = R14 = R15 = R16 = IOkQ, R8 = R9 = RlO = 5000k Ω. 由于参数σ = 5. 46,设定R6 = R7 = 183. 15k Ω。 Since the parameter σ = 5. 46, setting R6 = R7 = 183. 15k Ω.

[0082] 由分析可知,电阻R4阻值的选择与参数γ有关,不同γ值下,系统呈现不同的动态行为。 [0082] From analysis, the resistance of the resistor R4 γ related parameter selection, different γ values, the system presents a different dynamic behavior. 根据γ的取值变化,选择电阻R4不同的阻值,如表1所示, The change in the value of γ, selecting different resistance resistor R4, as shown in Table 1,

[0083] 表1不同γ值对应的R4电阻值 [0083] Table 1 γ values ​​corresponding to different values ​​of resistors R4

Figure CN105227006AD00094

[0085] 本发明利用Orcad/Pspice软件对设计的新型永磁同步电机混纯电路进行了仿真分析。 [0085] The present invention utilizes Orcad / Pspice software design of PMSM pure hybrid circuit simulation analysis. 当R4 = IOOkQ即γ = 8时,系统处于稳定状态,仿真结果如图16、17所示,图16 为状态变量xl的时域图,与Simulink仿真结果一致,图17为状态变量xl的频域波形。 When R4 = IOOkQ i.e. γ = 8, the system is in steady state, the simulation results shown in FIG. 16 and 17, FIG. 16 is a time-domain state variables xl FIG Simulink simulation results with the same, FIG. 17 is a state variable frequency xl domain waveform. 调节R4到25kQ即γ = 40时,系统进入混沌状态,仿真结果如图18、图19、图20和图21所示。 When adjusted to R4 25kQ i.e. γ = 40, the system enters a chaotic state, simulation results in FIG. 18, 19, 20 and 21 shown in FIGS. 从表1可以看到,只需调节一个可变电阻R4即可实现系统参数γ的变化,容易观察到系统动态行为的变化,表明了本发明的可行性。 Can be seen from Table 1, only the variable resistor R4 can be adjusted to achieve a change in system parameters γ easily change was observed in the system dynamic behavior, it shows the feasibility of the present invention.

[0086] 以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。 [0086] The above are only preferred embodiments of the present invention, it should be noted: to those of ordinary skill in the art, in the present invention without departing from the principles of the premise, can make various improvements and modifications, such modifications and modifications should also be regarded as the protection scope of the present invention.

Claims (5)

  1. 1. 一种采用电子元器件实现永磁同步电机的新型电路,其特征在于:PMSM系统电路包含三个子系统,所述电路包括状态变量的乘法环节、反相环节、加法和积分环节。 An electronic circuit components implemented using the new permanent magnet synchronous motor, wherein: PMSM circuit system comprising three subsystems, said circuit comprising a multiplication member state variables, reverse link addition and integrator.
  2. 2. 根据权利要求1所述的一种采用电子元器件实现永磁同步电机的新型电路,其特征在于:所述乘法环节、反相环节、加法和积分环节,采用运算放大器、电容、电阻、模拟乘法器的电子元器件对系统进行电路实现; 所述乘法环节包括第一乘法环节、第二乘法环节,所述第一乘法环节包括模拟乘法器AD633、电容C4、C5、电阻R17、R18,所述第二乘法环节包括模拟乘法器AD633、电容C6、C7、 电阻R17、R18 ;所述第一乘法环节的模拟乘法器的1端口、3端口分别接外部输入信号XI、 X3 ;5端口、8端口接外部稳压电源;7端口输出0.1 *xl*x3 ;所述第二乘法环节的模拟乘法器的1端口、3端口分别接外部输入信号X3、X2 ;5端口、8端口接外部稳压电源;7端口输出0.1 *x2*x3 ;所述电阻R17、R18用于直流分压对模拟乘法器的直流偏置进行线性偏置补偿; 所述反相环节包括第一反相环节、第 2. A method according to claim 1 using the new electronic circuit components to achieve permanent magnet synchronous motor, wherein: said multiplication member, reverse link, an adder and integrating link, using an operational amplifier, capacitors, resistors, electronic Component analog multiplier circuit implementation of the system; the multiplication part comprises a first multiplication member, a second multiplication part, the first part comprises an analog multiplier multiplying the AD633, capacitors C4, C5, resistors R17, R18, the second part comprises an analog multiplier multiplying the AD633, capacitors C6, C7, resistors R17, R18; 1-port analog multiplier multiplying the first link, three ports are connected to an external input signal XI, X3; 5 port, 8 connected to an external power supply port; an output port 7 0.1 * xl * x3; 1-port analog multiplier multiplying the second part of the three ports are connected to external input signals X3, X2; 5 ports, ports for connecting external stable 8 voltage power supply; an output port 7 0.1 * x2 * x3; the resistors R17, R18 for dividing a DC bias current of the analog multiplier linear bias compensation; inverting the inverted segment comprises a first link, the first 反相环节、第三反相环节,所述第一反相环节包括电阻R15、R16、运算放大器LM741,所述第一反相环节的运算放大器输入信号0.I*x2*x3 通过R16接入反相输入端,输出端电压通过R16反馈到输入回路中;所述第二反相环节包括电阻R11、R12、运算放大器LM741,所述第二反相环节的运算放大器输入信号x3通过Rll接入反相输入端,输出端电压通过R12反馈到输入回路中;所述第三反相环节包括电阻R13、 R14、运算放大器LM741,所述第三反相环节的输入信号x2通过R13接入反相输入端,输出端电压通过R14反馈到输入回路中; 所述加法和积分环节包括第一加法和积分环节、第二加法和积分环节、第三加法和积分环节;所述第一加法和积分环节包括电阻RUR2、R8,电容C1,运算放大器LM741,所述第一加法和积分环节的两并联输入信号xl、-0.I*x2*x3分别通过电阻Rl和R2接入LM741 的反相输 Inverting link, links a third inverter, said first inverter comprises a resistor part R15, R16, the LM741 operational amplifier, the first inverting input of the operational amplifier link signal 0.I * x2 * x3 access by R16 an inverting input terminal, an output terminal to the input voltage through R16 feedback loop; the second inverter comprises a resistor part R11, R12, the LM741 operational amplifier, said second operational amplifier inverting input link signal x3 access by Rll an inverting input terminal, an output terminal voltage feedback via R12 to the input circuit; said third inverter comprises a resistor part R13, R14, the LM741 operational amplifier, a third inverting input signal x2 link access by inverting R13 an input terminal, an output terminal voltage feedback via R14 to the input circuit; and the integrator comprises a first adder summing integrator and the second integrator and an adder, a third adder and integrating link; and an integral part of said first adder includes resistors RUR2, R8, capacitors C1, LM741 operational amplifiers, two in parallel to said first adder input signal xl and the integral element, -0.I * x2 * x3 through the resistors Rl and R2 to the inverting input of the LM741 access 端,LM741的输出信号通过电容Cl反馈到输入回路中,R8并联在电容Cl上;所述第二加法和积分环节包括电阻R3、R4、R5、R10、电容C2、运算放大器LM741,所述第二加法和积分环节的两并联输入信号_x3、0.I*xl*x3分别通过电阻R4和R5接入LM741的反相输入端,LM741的输出信号通过电容C2反馈到输入回路中,R3、R10并联在电容C2上;所述第三加法和积分环节包括电阻R6、R7、R9、电容C3、运算放大器LM741,所述第三加法和积分环节的两并联输入信号x3、-x2分别通过电阻R6和R7接入LM741的反相输入端,LM741的输出信号通过电容C3反馈到输入回路中,R9并联在电容C3上。 Terminal, the output signal is fed back to the input circuit LM741 through capacitor Cl, R8 connected in parallel to the capacitor Cl; said second adder and the integrator comprises a resistor R3, R4, R5, R10, capacitor C2, a LM741 operational amplifier, said first second summing integrator and the input of two parallel signal _x3,0.I * xl * x3 respectively through resistors R4 and R5 to the inverting input terminal of the access LM741, LM741 output signal is fed back to the input circuit via the capacitor C2, R3, R10 in parallel with capacitor C2; said third summing integrator and includes resistors R6, R7, R9, the capacitor C3, an operational amplifier LM741, said third summing integrator and two of the parallel input signal x3, -x2 through the resistors R6 and R7 inverting input terminal access the LM741, LM741 output signal via the capacitor C3 back to the input circuit, the parallel capacitor R9 C3.
  3. 3. 根据权利要求2所述的一种采用电子元器件实现永磁同步电机的新型电路,其特征在于:所述加法和积分环节的RC比例系数的值用于调节PMSM系统的频率和幅值。 According to claim 2, wherein one of said electronic circuit components implemented using the new permanent magnet synchronous motor, wherein: the scale factor value RC integrator and an adder for adjusting the frequency and amplitude of PMSM system .
  4. 4. 根据权利要求3所述的一种采用电子元器件实现永磁同步电机的新型电路,其特征在于:所述电阻R4、R6、R7均设置为可变电阻,R6和R7的阻值根据参数〇的大小设定,通过对PMSM系统模型的转换和分析,方便电路的调节。 According to claim 3, wherein one of said electronic circuit components implemented using the new permanent magnet synchronous motor, wherein: the resistor R4, R6, R7 are set to a variable resistor, R6 and R7 in accordance with the resistance square size parameter is set, by switching the system and analysis of the model PMSM, convenient adjustment circuit.
  5. 5. 根据权利要求4所述的一种采用电子元器件实现永磁同步电机的新型电路,其特征在于:所述可变电阻R4阻值的设置与参数y有关,用于随着电阻R4的变化,PMSM系统由稳定状态进入混沌状态,变得不稳定。 5. A method according to claim 4, wherein the electronic circuit components implemented using the new permanent magnet synchronous motor, wherein: the resistance of the variable resistor R4 set the parameters related to y, as for the resistor R4 change, PMSM system consists of a steady state to chaos, it becomes unstable.
CN 201510585807 2015-09-15 2015-09-15 Novel circuit for permanent-magnet synchronous motor by using electronic components CN105227006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201510585807 CN105227006A (en) 2015-09-15 2015-09-15 Novel circuit for permanent-magnet synchronous motor by using electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201510585807 CN105227006A (en) 2015-09-15 2015-09-15 Novel circuit for permanent-magnet synchronous motor by using electronic components

Publications (1)

Publication Number Publication Date
CN105227006A true true CN105227006A (en) 2016-01-06

Family

ID=54995772

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201510585807 CN105227006A (en) 2015-09-15 2015-09-15 Novel circuit for permanent-magnet synchronous motor by using electronic components

Country Status (1)

Country Link
CN (1) CN105227006A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060279248A1 (en) * 2005-06-09 2006-12-14 International Rectifier Corporation Sensorless field oriented controller for two-phase motor
US20070063661A1 (en) * 2005-09-21 2007-03-22 International Rectifier Corporation Protection circuit for permanent magnet synchronous motor in filed weakening operation
JP2009194964A (en) * 2008-02-12 2009-08-27 Denso Corp Controller for dynamo-electric machine, and control system for dynamo-electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060279248A1 (en) * 2005-06-09 2006-12-14 International Rectifier Corporation Sensorless field oriented controller for two-phase motor
US20070063661A1 (en) * 2005-09-21 2007-03-22 International Rectifier Corporation Protection circuit for permanent magnet synchronous motor in filed weakening operation
JP2009194964A (en) * 2008-02-12 2009-08-27 Denso Corp Controller for dynamo-electric machine, and control system for dynamo-electric machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李云峰等: "永磁同步电机系统混沌现象分析和电路实现", 《微电机》 *

Similar Documents

Publication Publication Date Title
Gao et al. A nonlinear control design for power systems
Comanescu et al. Sliding-mode MRAS speed estimators for sensorless vector control of induction machine
Chen et al. An improved repetitive control scheme for grid-connected inverter with frequency-adaptive capability
Zmood et al. Stationary frame current regulation of PWM inverters with zero steady-state error
Teja et al. A new model reference adaptive controller for four quadrant vector controlled induction motor drives
Li et al. An adaptive sliding-mode observer for induction motor sensorless speed control
CN101394089A (en) Control method for three phase active electric power filter to output current wave
Lee et al. An adaptive H∞ controller design for permanent magnet synchronous motor drives
Wei Study on digital pi control of current loop in active power filter
Karimi-Ghartemani A unifying approach to single-phase synchronous reference frame PLLs
Monfared et al. Direct active and reactive power control of single-phase grid-tie converters
Xu et al. A new control method for permanent magnet synchronous machines with observer
CN201910811U (en) Fractional-order chaos circuit
Krzeminski A new speed observer for control system of induction motor
Kotsampopoulos et al. Design, development and operation of a PHIL environment for Distributed Energy Resources
CN1638260A (en) Controller for synchromotor, electric equipment and module
Srinivasan et al. Analysis of A Reduced Switch Three Phase BLDC Drive
Liutanakul et al. Application of SMC with I/O feedback linearization to the control of the cascade controlled-rectifier/inverter-motor drive system with small dc-link capacitor
CN101917150A (en) Robust controller of permanent magnet synchronous motor based on fuzzy-neural network generalized inverse and construction method thereof
Wu et al. Fast reduced functional models of electromechanical actuators for more-electric aircraft power system study
CN1967414A (en) Method for building simplified self interference rejection controller of permanent magnet synchronous machine
Lehfuss et al. Comparison of multiple power amplification types for power Hardware-in-the-Loop applications
US8964432B2 (en) Apparatus and method for controlling circulating current in an inverter system
Yazdani et al. A real-time three-phase selective-harmonic-extraction approach for grid-connected converters
CN102969968A (en) Permanent magnet synchronous motor control method

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination