CN105212436A - 非接触式三维激光脚型的测量系统及测量方法 - Google Patents

非接触式三维激光脚型的测量系统及测量方法 Download PDF

Info

Publication number
CN105212436A
CN105212436A CN201410258009.2A CN201410258009A CN105212436A CN 105212436 A CN105212436 A CN 105212436A CN 201410258009 A CN201410258009 A CN 201410258009A CN 105212436 A CN105212436 A CN 105212436A
Authority
CN
China
Prior art keywords
module
laser
foot type
cloud data
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410258009.2A
Other languages
English (en)
Other versions
CN105212436B (zh
Inventor
邹小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Stereo3d Technology Co Ltd
Original Assignee
Shenzhen Stereo3d Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Stereo3d Technology Co Ltd filed Critical Shenzhen Stereo3d Technology Co Ltd
Priority to CN201410258009.2A priority Critical patent/CN105212436B/zh
Publication of CN105212436A publication Critical patent/CN105212436A/zh
Application granted granted Critical
Publication of CN105212436B publication Critical patent/CN105212436B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明公开了一种非接触式三维激光脚型的测量系统及测量方法,该系统包括载物玻璃平台、机械支撑模块、光学成像模块、运动控制模块、三维模型建立模块、自动测量参数模块和3D鞋楦设计模块。本发明使用者只需要将被测脚放在载物玻璃平台上,通过光学成像模块就可以完成全方位的三维数据测量,获取高密度三维面形点云数据,且通过自动测量参数模块给出脚型的特征参数,由这两个信息来判断脚型是否畸形,且进行鞋楦设计,十几秒内就可完成一只脚型的完整测量;采用非接触式激光测量,使用者可在轻松舒展的情况下进行测量,有效避免因接触造成的形变,且运动控制模块控制光学成像模块进行前后运动测量,使获得的三维面形点云数据更全方位高密度。

Description

非接触式三维激光脚型的测量系统及测量方法
技术领域
本发明涉及制鞋领域,尤其涉及一种非接触式三维激光脚型的测量系统及测量方法。
背景技术
在制鞋业中,作为鞋之母体的鞋楦,其设计的依据,必须以脚型为基础。在医疗保健领域,往往也需要获取人的脚型数据。目前脚型的测量大多是有经验的做鞋师傅采用皮尺和量高器手工测量而得,客户体验性不好,数据准确性受人为因素影响比较大,同时不便于大面积测量,测量的数据缺乏完整三维面形数据;
随着计算机视觉技术的发展,采用自动化智能化机器测量会带来更大的便利。根据测量方式分为接触式测量和非接触式测量两种,接触式测量大多制作一些机械的脚型测量工具进行测量,目前国内的专利大多是接触式测量,如专利CN203040899U介绍了《一种脚型测量工具》,专利CN101862055A《基于中国鞋号和鞋型的脚型测量器》等,这些方法需要人工参与读数,同时获取不了三维脚型数据;
非接触式测量方法主要采用结构光扫描技术(FrankChen,GordonMBrown,MuminSong,Overviewofthree-dimensionalshapemeasurementusingopticalmethods。OptEng2000。39(1),10~22)和普通照相三维技术。普通照相技术采用相机从多个角度拍摄脚型图片,然后通过软件合成三维数据,精度不高,无法适应实际工业应用。结构光扫描技术基于三角测量法原理(苏显渝,李继陶《信息光学》科学出版社,1999),将结构光(激光或条纹)投射到物体表面,受物体表面面形调制,结构光发生变形,通过解调这种变形信息即可获取物体的表面三维数据。该方法具有非接触,扫描速度快,获取信息丰富,扫描精度高等优点,成为现代三维扫描技术主要的发展方向。
国外一些厂家开发了基于结构光扫描技术的三维脚型扫描系统,如英国ShoeMaster,日本Infoot等开发的三维脚型扫描仪,采用激光扫描的方式,大多采用四个激光器,八个CCD传感器,光路直射的方式,体积大,硬件成本高。
发明内容
针对上述技术中存在的不足之处,本发明提供一种自动化程度高、智能机械化、重复性高、无人工测量误差、测量效率高、测量结果精确的非接触式三维激光脚型的测量系统及测量方法。
为实现上述目的,本发明提供一种非接触式三维激光脚型的测量系统,包括
载物玻璃平台,测量脚型时用于支撑被测脚的摆放;
机械支撑模块,用于支撑载物玻璃平台;
光学成像模块,投射激光至被测脚的表面,并获取多角度激光图像;
运动控制模块,驱动其上的运动轴按照指令运动,所述运动控制模块与光学成像模块驱动连接,且带动光学成像模块进行前后测量;
三维模型建立模块,所述三维模型建立模块分别与光学成像模块和运动控制模块电连接,且将光学成像模块获取的激光图像和运动控制模块的运动参数,还原成被测脚的三维面形点云数据;
自动测量参数模块,所述自动测量参数模块与三维模型建立模块电连接,自动识别被测脚的特征部位,提取特征部位的特征参数,实现对脚型的测量;根据三维面形点云数据和特征参数诊断脚型是否健康,若不健康并指导脚型进行康复;
3D鞋楦设计模块,所述3D鞋楦设计模块与自动测量参数模块电连接,并导入三维面形点云数据和特征参数,根据脚型的三维面形点云数据选择鞋楦,利用特征参数调整鞋楦的三维面形点云数据,将调整后的三维面形点云数据导入鞋楦CAD/CAM系统中,实现脚型的定制化制鞋。
其中,所述光学成像模块包括光学玻璃、多个激光器和多个CCD传感器;所述多个激光器按体积分布在设定的脚型扫描区域内,且围成360°分布,测量时每个激光器经光学玻璃后发射一条明亮的激光线束照射在脚型的表面上,且多个激光器的激光线束形成一个环形的激光照射光路;所述多个CCD传感器均匀分布在设定的脚型扫描区域内,且多个CCD传感器形成一个封闭的环形成像光路;所述激光器和CCD传感器两两组合形成一个孤立的三维成像单元。
其中,所述光学成像模块还包括折叠光路单元,所述折叠光路单元包括多个高镜面反射镜,高镜面反射镜将激光照射光路和成像光路由宽、高方向折叠到长度方向。
其中,所述光学成像模块还包括成像扩展光路单元,所述成像扩展光路单元也包括多个高镜面反射镜,每个CCD传感器的成像光路通过高镜面反射镜后照射在被测脚上。
其中,该系统还包括电气模块,所述电气模块与自动测量参数模块电连接,并辅助实现人机控制功能。
其中,所述自动测量参数模块包括
运动控制单元,所述运动控制单元与运动控制模块电连接,且产生运动指令,控制运动控制模块上的运动轴完成相应的精密运动;
系统校正单元,所述系统校正单元与光学成像模块电连接,实现2D图像向3D点云数据的转换;
三维扫描重建单元,所述三维扫描重建单元与系统校正单元电连接,且驱动激光器对被测脚进行扫描,获取多个三维面形数据;
数据处理单元,所述数据处理单元与三维扫描重建单元电连接,且完成对三维面形点云数据的处理及编辑;
参数提取单元,所述参数提取单元与三维扫描重建单元电连接,且自动提取特征部位的特征参数及尺寸;
可视化显示单元,所述可视化显示单元与数据处理单元电连接,且实现三维面形点云数据的可视化显示。
其中,所述激光器为毫瓦级功率激光器。
为实现上述目的,本发明还提供一种非接触式三维激光脚型的测量方法,包括以下步骤:
步骤1,将被测脚平放在载物玻璃平台上,投射激光至被测脚的表面,基于三角法测量原理,通过三维激光测量,以获取单角度激光图像;
步骤2,驱动运动轴运动并进行连续测量,以获得获取多角度激光图像;
步骤3,将获取的激光图像和运动参数,还原出被测脚的三维面形点云数据;
步骤4,自动识别被测脚的特征部位,提起特征参数,实现对被测脚的测量;并根据三维面形点云数据诊断脚型是否健康,若健康,则直接进行步骤5;若不健康,则指导脚型康复后进行步骤5。
步骤5,将特征参数和三维面形点云数据,导入鞋楦CAD/CAM系统中,实现脚型的定制化制。
与现有技术相比,本发明提供的非接触式三维激光脚型的测量系统及测量方法,具有以下有益效果:
1)使用者只需要将被测脚放在载物玻璃平台上,通过光学成像模块就可以完成全方位的三维数据测量,获取高密度三维面形点云数据,且通过自动测量参数模块自动给出脚型的特征参数,由这两个信息来判断脚型是否畸形,且进行鞋楦设计;该系统结构简单,且测量速度快,十几秒内就可完成一只脚型的完整测量;
2)采用非接触式激光测量,使用者可在轻松舒展的情况下进行测量,有效避免因接触造成的形变,且运动控制模块控制光学成像模块进行前后运动测量,使得获得三维面形点云数据更全方位高密度;
3)光学成像模块的独特设计,环形光路测量,测量无死角,测量精度可达0.02mm,扩展了相机的成像视角,使一个相机可以当多个相机用,节省了设备成本;且折叠光路的使用,以牺牲少量长度方面的尺寸,获取整个设备体积的减少,不仅缩小了设备体积,进一步降低了设备成本,而且方便携带;
4)获取信息多样,包括脚型部位的特征参数和高密度三维面形点云数据,保证了测量结果的准确性;
5)本发明具有自动化程度高、智能机械化、重复性高、无人工测量误差、测量效率高及测量结果精确等特点。
附图说明
图1为本发明的非接触式三维激光脚型的测量系统的结构示意图;
图2为本发明中光学成像模块的使用状态图;
图3为本发明中三角测量法的原理图;
图4为本发明中的折叠光路的原理图;
图5为本发明中成像扩展光路的原理图;
图6为本发明中自动测量参数模块的原理图;
图7为本发明的非接触式三维激光脚型的测量方法的流程图。
主要元件符号说明如下:
10、载物玻璃平台11、机械支撑模块
12、光学成像模块13、运动控制模块
14、自动测量参数模块15、三维模型建立模块
16、电气模块17、被测脚
121、光学玻璃122、激光器
123、CCD传感器124、高镜面反射镜
125、参考平面
141、运动控制单元142、系统校正单元
143、三维扫描重建单元144、数据处理单元
145、参数提取单元146、可视化显示单元
图8为现有技术的光学成像原理图;
图9为现有技术的传感器成像原理图。
主要元件符号说明如下:
20、被测脚21、激光器
22、CCD传感器
具体实施方式
为了更清楚地表述本发明,下面结合附图对本发明作进一步地描述。
请参阅图1-2,本发明的非接触式三维激光脚型的测量系统,包括
载物玻璃平台10,测量脚型时用于支撑被测脚17的摆放;
机械支撑模块11,用于支撑载物玻璃平台10;
光学成像模块12,投射激光至被测脚17的表面,并获取多角度激光图像;
运动控制模块13,驱动其上的运动轴按照指令运动,运动控制模块13与光学成像模块14驱动连接,且带动光学成像模块12进行前后测量;
三维模型建立模块15,三维模型建立模块15分别与光学成像模块12和运动控制模块13电连接,且将光学成像模块12获取的激光图像和运动控制模块13的运动参数,还原成出被测脚17的三维面形点云数据;
自动测量参数模块14,自动测量参数模块14与三维模型建立模块15电连接,自动识别被测脚的特征部位,提取特征部位的特征参数,实现对脚型的特征参数的测量,根据三维面形点云数据和特征参数诊断脚型是否健康,若不健康并指导脚型进行康复;脚型部位的特征参数可如脚长、脚宽、趾围、腑围、兜跟围、足弓高等,该参数可以应用于诊断脚型是否健康,并指导脚型康复;
3D鞋楦设计模块,3D鞋楦设计模块与自动测量参数模块14电连接,并导入三维面形点云数据和特征参数,根据脚型的三维面形点云数据选择鞋楦,利用特征参数调整鞋楦的三维面形点云数据,将调整后的三维面形点云数据导入鞋楦CAD/CAM系统中,实现脚型的定制化制鞋;
电气模块16,电气模块16与自动测量参数模块14电连接,并辅助实现人机控制功能。
本系统的三维重建基于三角测量法原理,如图3所示,其中122为激光器,123为CCD传感器,17为被测脚,125为参考平面,激光器122发射一束激光光束A,经过参考平面反射,在CCD传感器123上成像为一条明亮的光点p,当测量被测脚17时,受物体表面高度调制,成像光点在CCD传感器123上偏移到了p1的位置,从而解调该偏移,便可以求解物体上该点的高度,从而重建物体的三维坐标。
在本实施例中,光学成像模块12包括光学玻璃121、多个激光器122和多个CCD传感器123;多个激光器122按体积分布在设定的脚型扫描区域内,且围成360°分布,测量时每个激光器122经光学玻璃121后发射一条明亮的激光线束照射在脚型的表面上,且多个激光器122的激光线束形成一个环形的激光照射光路;多个CCD传感器123均匀分布在设定的脚型扫描区域内,且多个CCD传感器123形成一个封闭的环形成像光路;激光器122和CCD传感器123两两组合形成一个孤立的三维成像单元。激光器122为毫瓦级功率激光器。
请进一步参阅图4,光学成像模块12还包括折叠光路单元,折叠光路单元包括多个高镜面反射镜124,高镜面反射镜124将激光照射光路和成像光路由宽、高方向折叠到长度方向,通过光学镜片,将入射光线反射到另外一个方向上,从而缩短了CCD,激光器之间的相对距离,以少量牺牲长度方面的尺寸的方式,从而缩短了本设备的体积,并提高成像光路的景深;而如图8中是将激光器21和CCD传感器22的光路直接在被测脚型17上进行反射,无法对光路进行有效处理,使得需要较大的设备体积。
在图9中,CCD传感器22的光路是直接反射在被测脚型17上的,一个CCD传感器22只能体现一个相机的功能;而图5中,光学成像模块12还包括成像扩展光路单元,成像扩展光路单元也包括多个高镜面反射镜124,每个CCD传感器123的成像光路通过高镜面反射镜124后照射在被测脚型17上。在折叠光路中,进一步增加了成像扩展光路,使一个成像CCD传感器123的成像范围增大,分别可以从脚型前端及后端进行观测,避免了观测死角,使一个相机可以当两个或多个相机使用,节省了硬件成本,同时为增大本设备的成像范围,降低设备硬件成本;该成像扩展光路将一个相机的成像视野从一个方向扩展到了两个方向,从而可以从被测脚的前后进行观测,进而获得多角度的图像。
请进一步参阅图6,自动测量参数模块14包括运动控制单元141、系统校正单元142、三维扫描重建单元143、数据处理单元144、参数提取单元145和可视化显示单元146;运动控制单元141,运动控制单元141与运动控制模块13电连接,且产生运动指令,控制运动控制模块13上的运动轴完成相应的精密运动;系统校正单元142与光学成像模块12电连接,实现2D图像向3D点云数据的转换,系统校正基于光线追踪原理及特征几何方法进行,依据光线追踪原理,可以校正激光点的方向和相对位置,采用带有特征的标定靶,从而校正激光器122及CCD传感器123之间的内外部参数;三维扫描重建单元143与系统校正单元142电连接,且驱动激光器122对被测脚17进行扫描,获取多个三维面形点云数据;数据处理单元144与三维扫描重建单元143电连接,且完成对三维面形点云数据的处理及编辑;参数提取单元145与三维扫描重建单元143电连接,且自动提取特征部位的特征参数及尺寸;可视化显示单元146与数据处理单元144电连接,且实现三维面形点云数据的可视化显示。
相较于现有技术的情况,本发明提供的非接触式三维激光脚型的测量系统,具有以下技术效果:
1)使用者只需要将被测脚17放在载物玻璃平台10上,通过光学成像模块12就可以完成全方位的三维数据测量,获取高密度三维面形点云数据,且通过自动测量参数模块14自动给出脚型的特征参数,由这两个信息来判断脚型是否畸形,且进行鞋楦设计;该系统结构简单,且测量速度快,十几秒内就可完成一只脚型的完整测量;
2)采用非接触式激光测量,使用者可在轻松舒展的情况下进行测量,有效避免因接触造成的形变,且运动控制模块13控制光学成像模块12进行前后运动测量,使得获得三维面形点云数据更全方位高密度;
3)光学成像模块12的独特设计,环形光路测量,测量无死角,测量精度可达0.02mm,扩展了相机的成像视角,使一个相机可以当多个相机用,节省了设备成本;且折叠光路的使用,以牺牲少量长度方面的尺寸,获取整个设备体积的减少,不仅缩小了设备体积,进一步降低了设备成本,而且方便携带;
4)获取信息多样,包括脚型部位的特征参数和高密度三维面形点云数据,保证了测量结果的准确性;
5)本系统具有自动化程度高、智能机械化、重复性高、无人工测量误差、测量效率高及测量结果精确等特点。
请进一步参阅图7,本发明提供一种非接触式三维激光脚型的测量方法,包括以下步骤:
步骤S1,将被测脚平放在载物玻璃平台上,投射激光至被测脚的表面,基于三角法测量原理,通过三维激光测量,以获取单角度激光图像。
步骤S2,驱动运动轴运动并进行连续测量,以获得获取多角度激光图像。
步骤S3,将获取的激光图像和运动参数,还原出被测脚的三维面形点云数据;
步骤S4,自动识别被测脚的特征部位,提起特征参数,实现对被测脚的测量;并根据三维面形点云数据诊断脚型是否健康,若健康,则直接进行步骤S5;若不健康,则指导脚型康复后进行步骤S5。
步骤S5,将特征参数和三维面形点云数据,导入鞋楦CAD/CAM系统中,实现脚型的定制化制。
本发明提供的非接触式三维激光脚型的测量方法,具有以下优势:
1)使用者只需要将被测脚放在载物玻璃平台上,可以完成全方位的三维数据测量,获取高密度三维面形点云数据,且可判断脚型是否畸形,且进行鞋楦设计;该方法操作简单,且测量速度快,十几秒内就可完成一只脚型的完整测量;
2)采用非接触式激光测量,使用者可在轻松舒展的情况下进行测量,有效避免因接触造成的形变,且采用驱动运动轴运动并进行连续测量的方式,可获得获取多角度激光图像,使得获得三维面形点云数据更全方位高密度;
3)获取信息多样,包括脚型部位的特征参数和高密度三维面形点云数据,保证了测量结果的准确性;
4)本发明具有智能机械化、无人工测量误差、测量效率高及测量结果精确等特点。
解释:CAD/CAM系统,CAD是计算机辅助设计系统的全称,是用于二维及三维设计、绘图的系统工具,用户可以使用它来创建、浏览、管理、打印、输出、共享及准确复用富含信息的设计图形;CAM是计算机辅助制造系统的全称,利用计算机来进行生产设备管理控制和操作的过程。它输入信息是零件的工艺路线和工序内容,输出信息是加工时的运动轨迹和数控程序。
以上公开的仅为本发明的几个具体实施例,但是本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (8)

1.一种非接触式三维激光脚型的测量系统,其特征在于,包括
载物玻璃平台,测量脚型时用于支撑被测脚的摆放;
机械支撑模块,用于支撑载物玻璃平台;
光学成像模块,投射激光至被测脚的表面,并获取多角度激光图像;
运动控制模块,驱动其上的运动轴按照指令运动,所述运动控制模块与光学成像模块驱动连接,且带动光学成像模块进行前后测量;
三维模型建立模块,所述三维模型建立模块分别与光学成像模块和运动控制模块电连接,且将光学成像模块获取的激光图像和运动控制模块的运动参数,还原成被测脚的三维面形点云数据;
自动测量参数模块,所述自动测量参数模块与三维模型建立模块电连接,自动识别被测脚的特征部位,提取特征部位的特征参数,实现对脚型的测量;根据三维面形点云数据和特征参数诊断脚型是否健康,若不健康并指导脚型进行康复;
3D鞋楦设计模块,所述3D鞋楦设计模块与自动测量参数模块电连接,并导入三维面形点云数据和特征参数,根据脚型的三维面形点云数据选择鞋楦,利用特征参数调整鞋楦的三维面形点云数据,将调整后的三维面形点云数据导入鞋楦CAD/CAM系统中,实现脚型的定制化制鞋。
2.根据权利要求1所述的非接触式三维激光脚型的测量系统,其特征在于,所述光学成像模块包括光学玻璃、多个激光器和多个CCD传感器;所述多个激光器按体积分布在设定的脚型扫描区域内,且围成360°分布,测量时每个激光器经光学玻璃后发射一条明亮的激光线束照射在脚型的表面上,且多个激光器的激光线束形成一个环形的激光照射光路;所述多个CCD传感器均匀分布在设定的脚型扫描区域内,且多个CCD传感器形成一个封闭的环形成像光路;所述激光器和CCD传感器两两组合形成一个孤立的三维成像单元。
3.根据权利要求1所述的非接触式三维激光脚型的测量系统,其特征在于,所述光学成像模块还包括折叠光路单元,所述折叠光路单元包括多个高镜面反射镜,高镜面反射镜将激光照射光路和成像光路由宽、高方向折叠到长度方向。
4.根据权利要求1所述的非接触式三维激光脚型的测量系统,其特征在于,所述光学成像模块还包括成像扩展光路单元,所述成像扩展光路单元也包括多个高镜面反射镜,每个CCD传感器的成像光路通过高镜面反射镜后照射在被测脚上。
5.根据权利要求1所述的非接触式三维激光脚型的测量系统,其特征在于,该系统还包括电气模块,所述电气模块与自动测量参数模块电连接,并辅助实现人机控制功能。
6.根据权利要求1所述的非接触式三维激光脚型的测量系统,其特征在于,所述自动测量参数模块包括
运动控制单元,所述运动控制单元与运动控制模块电连接,且产生运动指令,控制运动控制模块上的运动轴完成相应的精密运动;
系统校正单元,所述系统校正单元与光学成像模块电连接,实现2D图像向3D点云数据的转换;
三维扫描重建单元,所述三维扫描重建单元与系统校正单元电连接,且驱动激光器对被测脚进行扫描,获取多个三维面形数据;
数据处理单元,所述数据处理单元与三维扫描重建单元电连接,且完成对三维面形点云数据的处理及编辑;
参数提取单元,所述参数提取单元与三维扫描重建单元电连接,且自动提取特征部位的特征参数及尺寸;
可视化显示单元,所述可视化显示单元与数据处理单元电连接,且实现三维面形点云数据的可视化显示。
7.根据权利要求1所述的非接触式三维激光脚型的测量系统,其特征在于,所述激光器为毫瓦级功率激光器。
8.一种非接触式三维激光脚型的测量方法,其特征在于,包括以下步骤:
步骤1,将被测脚平放在载物玻璃平台上,投射激光至被测脚的表面,基于三角法测量原理,通过三维激光测量,以获取单角度激光图像;
步骤2,驱动运动轴运动并进行连续测量,以获得获取多角度激光图像;
步骤3,将获取的激光图像和运动参数,还原出被测脚的三维面形点云数据;
步骤4,自动识别被测脚的特征部位,提起特征参数,实现对被测脚的测量;并根据三维面形点云数据诊断脚型是否健康,若健康,则直接进行步骤5;若不健康,则指导脚型康复后进行步骤5。
步骤5,将特征参数和三维面形点云数据,导入鞋楦CAD/CAM系统中,实现脚型的定制化制鞋。
CN201410258009.2A 2014-06-12 2014-06-12 非接触式三维激光脚型的测量系统及测量方法 Active CN105212436B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410258009.2A CN105212436B (zh) 2014-06-12 2014-06-12 非接触式三维激光脚型的测量系统及测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410258009.2A CN105212436B (zh) 2014-06-12 2014-06-12 非接触式三维激光脚型的测量系统及测量方法

Publications (2)

Publication Number Publication Date
CN105212436A true CN105212436A (zh) 2016-01-06
CN105212436B CN105212436B (zh) 2018-01-30

Family

ID=54982040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410258009.2A Active CN105212436B (zh) 2014-06-12 2014-06-12 非接触式三维激光脚型的测量系统及测量方法

Country Status (1)

Country Link
CN (1) CN105212436B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106983230A (zh) * 2017-03-22 2017-07-28 青岛小步科技有限公司 一种矫形鞋的制作方法及系统
CN106997605A (zh) * 2017-03-22 2017-08-01 浙江大学 一种通过智能手机采集脚型视频和传感器数据获取三维脚型的方法
CN108326879A (zh) * 2018-04-02 2018-07-27 深圳市易泰三维科技有限公司 一种基于3d视觉的机器人的自动加工系统及其加工方法
CN109171744A (zh) * 2018-08-28 2019-01-11 北京中科启上科技有限公司 用于下肢的数据采集方法及装置
CN109916308A (zh) * 2019-01-14 2019-06-21 佛山市南海区广工大数控装备协同创新研究院 一种鞋底的信息采集方法及其系统
CN113420344A (zh) * 2021-06-18 2021-09-21 四川大学 一种基于鞋楦数字化三维模型的皮鞋款式设计方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753931A (en) * 1995-07-13 1998-05-19 Nike, Inc. Object imaging device and method using line striping
DE29807721U1 (de) * 1998-04-29 1998-08-27 Urban Uwe System zur automatischen Herstellung von orthopädischen Einlagen und Maßschuhen
CN2463784Y (zh) * 2001-01-19 2001-12-05 西安交通大学 多光刀准全场非接触三维轮廓测量仪
CN1344907A (zh) * 2000-09-21 2002-04-17 李熙满 足部测量系统和方法
US20030212506A1 (en) * 2002-04-04 2003-11-13 Amfit, Inc. Compact optical contour digitizer
CN2865565Y (zh) * 2005-12-31 2007-02-07 清华大学 人体不同负荷下足部三维形貌测量装置
CN101520319A (zh) * 2008-02-27 2009-09-02 邹小平 复合式三维激光测量系统及测量方法
CN201879707U (zh) * 2010-12-16 2011-06-29 刘国忠 一种足部负荷三维参数的检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753931A (en) * 1995-07-13 1998-05-19 Nike, Inc. Object imaging device and method using line striping
DE29807721U1 (de) * 1998-04-29 1998-08-27 Urban Uwe System zur automatischen Herstellung von orthopädischen Einlagen und Maßschuhen
CN1344907A (zh) * 2000-09-21 2002-04-17 李熙满 足部测量系统和方法
CN2463784Y (zh) * 2001-01-19 2001-12-05 西安交通大学 多光刀准全场非接触三维轮廓测量仪
US20030212506A1 (en) * 2002-04-04 2003-11-13 Amfit, Inc. Compact optical contour digitizer
CN2865565Y (zh) * 2005-12-31 2007-02-07 清华大学 人体不同负荷下足部三维形貌测量装置
CN101520319A (zh) * 2008-02-27 2009-09-02 邹小平 复合式三维激光测量系统及测量方法
CN201879707U (zh) * 2010-12-16 2011-06-29 刘国忠 一种足部负荷三维参数的检测装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106983230A (zh) * 2017-03-22 2017-07-28 青岛小步科技有限公司 一种矫形鞋的制作方法及系统
CN106997605A (zh) * 2017-03-22 2017-08-01 浙江大学 一种通过智能手机采集脚型视频和传感器数据获取三维脚型的方法
CN106997605B (zh) * 2017-03-22 2019-11-19 浙江大学 一种通过智能手机采集脚型视频和传感器数据获取三维脚型的方法
CN106983230B (zh) * 2017-03-22 2022-11-29 青岛一小步科技有限公司 一种矫形鞋的制作方法及系统
CN108326879A (zh) * 2018-04-02 2018-07-27 深圳市易泰三维科技有限公司 一种基于3d视觉的机器人的自动加工系统及其加工方法
CN108326879B (zh) * 2018-04-02 2024-02-06 深圳市易泰三维科技有限公司 一种基于3d视觉的机器人的自动加工系统及其加工方法
CN109171744A (zh) * 2018-08-28 2019-01-11 北京中科启上科技有限公司 用于下肢的数据采集方法及装置
CN109916308A (zh) * 2019-01-14 2019-06-21 佛山市南海区广工大数控装备协同创新研究院 一种鞋底的信息采集方法及其系统
CN113420344A (zh) * 2021-06-18 2021-09-21 四川大学 一种基于鞋楦数字化三维模型的皮鞋款式设计方法

Also Published As

Publication number Publication date
CN105212436B (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
CN105212436A (zh) 非接触式三维激光脚型的测量系统及测量方法
CN105547189B (zh) 基于变尺度的高精度光学三维测量方法
US10089415B2 (en) Three-dimensional coordinate scanner and method of operation
US9544577B2 (en) Method of capturing three-dimensional (3D) information on a structure
CN106662434B (zh) 共焦平面相对于共焦设备与样品的相对移动方向倾斜的共焦表面形貌测量
US9267784B2 (en) Laser line probe having improved high dynamic range
CN104126989B (zh) 一种基于多台rgb-d摄像机下的足部表面三维信息获取方法
CN101986350B (zh) 基于单目结构光的三维建模方法
CN103535960B (zh) 基于数码图像的人体三维测量方法
EP2439697A2 (en) Method for refining the calibration of an imaging system
US20150097931A1 (en) Calibration of 3d scanning device
CN105608737B (zh) 一种基于机器学习的人体足部三维重建方法
CN104408762A (zh) 利用单目和二维平台获取物体图像信息及三维模型的方法
JP2015528109A (ja) 3d走査および位置決めシステム
CN102525034A (zh) 一种脚型参数测量装置及测量方法
US20150097968A1 (en) Integrated calibration cradle
CN105627927B (zh) 一种三维视觉检测系统
CN104215199A (zh) 一种假发头壳制作方法及系统
CN105029831A (zh) 三维足部和鞋楦扫描仪及扫描模块
CN107796718A (zh) 布氏硬度测量系统及方法
US10819972B2 (en) Method and apparatus for light and computer vision based dimensional metrology and 3D reconstruction
CN109085603A (zh) 光学三维成像系统和彩色三维图像成像方法
CN108175535A (zh) 一种基于微透镜阵列的牙科三维扫描仪
Spahiu et al. Extracting body dimensions from 3D body scanning
CN205993755U (zh) 一种足部扫描装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant