CN105207255A - 一种适用于风电出力的电力系统调峰计算方法 - Google Patents
一种适用于风电出力的电力系统调峰计算方法 Download PDFInfo
- Publication number
- CN105207255A CN105207255A CN201510587817.8A CN201510587817A CN105207255A CN 105207255 A CN105207255 A CN 105207255A CN 201510587817 A CN201510587817 A CN 201510587817A CN 105207255 A CN105207255 A CN 105207255A
- Authority
- CN
- China
- Prior art keywords
- wind power
- power output
- typical
- centerdot
- day
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
Landscapes
- Control Of Eletrric Generators (AREA)
- Wind Motors (AREA)
Abstract
本发明涉及一种适用于风电出力的电力系统调峰计算方法,其特征在于,依次包含如下步骤:步骤1:选取一定的天数n天,根据n天中各天的风电出力和典型日负荷,计算出各天风电出力数据与典型日负荷的皮尔逊相关系数r1到rn;步骤2:根据计算出来的皮尔逊相关系数r1到rn,选取其中最小的皮尔逊相关系数ru,并将该第u天的风电出力确定为逆调节中最明显的典型场景;步骤3:用逆调节中最明显典型场景当天的典型日负荷减去该典型场景,计算得出等效负荷值,再用等效负荷值中的最大值减去最小值得到电网的调峰容量。能够合理安排风电场备用容量,并且大大的减少了计算风力发电场调峰容量的繁琐程度。
Description
技术领域
本发明涉及电力系统调度自动化领域,尤其涉及一种适用于风电出力的电力系统调峰计算方法。
背景技术
风力发电是目前世界可再生能源开发技术中,最成熟、最具大规模开发和商业化前景的能源利用方式。和传统的发电方式相比,风力发电最根本的不同点在于其有功出力的随机性、间歇性和不可控性,这一特点决定了风电在并网运行时必须考虑电网的调峰能力。目前在大规模风电并网的规划中,应用场景法进行电力系统经济调度的方法为:采集历年风电数据,得到不同时间尺度下的风电预测误差分布;根据气象数据利用现有的风电出力预测系统得到风电的出力值;确定风电出力场景值;建立风光储能并网发电智能化模型;基于风电出力场景值和风光储能并网发电智能化模型最终确定风光储实时调度值。
上述实施方案给出了利用场景值进行计算得到风光储能实时调度值,但只是建立普通场景,没有确定出来典型场景,最终确定的调峰容量不是最合理,因此亟需一种方案来解决这一问题。
发明内容
本发明的目的是提供一种适用于风电出力的电力系统调峰计算方法,用以解决现有计算方法中最终调峰容量不是最合理的问题。
为实现上述目的,本发明的方案包括:
一种适用于风电出力的电力系统调峰计算方法,依次包含如下步骤:
步骤1:选取一定的天数n天,根据n天中各天的风电出力和典型日负荷,计算出各天风电出力数据与典型日负荷的皮尔逊相关系数r1到rn;
步骤2:根据计算出来的皮尔逊相关系数r1到rn,选取其中最小的皮尔逊相关系数ru,并将该第u天的风电出力确定为逆调节中最明显的典型场景;
步骤3:用逆调节中最明显典型场景当天的典型日负荷减去该典型场景,计算得出等效负荷值,再用等效负荷值中的最大值减去最小值得到电网的调峰容量。
进一步的,其中典型日负荷、典型场景、等效负荷值是列向量。
进一步的,步骤1中皮尔逊相关系数的计算包括如下具体步骤:
(S1):采集一个地区给定时间段n天的风电出力数据,每天选取m个等间隔采样点,采样样本集为:
其中,xi,j表示第i天的第j个采样点的风电出力;
Xi为X的列向量,即为给定时间段内第i天的地区风电出力样本集,用式(2)表示:
Xi=[xi,1xi,2…xi,m]T(2);
(S2):根据给定的典型日负荷数据Y=(y1,y2…yj…ym)T中的m个采样点值,求出典型日负荷平均值其中yj是等间隔的m个给定典型日负荷采样点中的第j个采样点的值,j=1,2,……,m;
(S3):求出第i天的风电出力平均值其中,i=1,2,……,n,j=1,2,……,m;
(S4):根据皮尔逊相关系数法,计算该地区第i天风电出力数据Xi与典型日负荷Y的皮尔逊相关系数ri
(S5):重复步骤(S2-S4),直到算出给定时间段内n天全部地区风电出力数据与典型日负荷的皮尔逊相关系数ri为止。
进一步的,步骤2中典型场景的确定包括如下具体步骤:
(S1):求取n个步骤1中计算出来的最大皮尔逊相关系数ru,其中u表示第u天,并将该天的风电出力确定为顺调节最明显的典型场景,设为A场景;
(S2):求取n个步骤1中计算出来的最大皮尔逊相关系数rk,其中k表示第k天,并将该天的风电出力确定为逆调节最明显的典型场景,设为B场景;
本发明根据给定时间段的地区风电出力实测数据和典型日负荷,计算得出皮尔逊相关系数,通过该系数值选取地区风电出力顺调节特性最明显的典型场景和逆调节特性最明显的典型场景,利用所选的逆调节特性最明显的典型场景进行电网调峰计算。从而能够合理安排风电场备用容量,并且大大的减少了计算风力发电场调峰容量的繁琐程度。
附图说明
图1是调峰计算的主要步骤流程图。
具体实施方式
下面结合附图对本发明做进一步详细的说明。
本发明提出了种适用于风电出力的电力系统调峰计算方法:根据给定时间段的地区风电出力实测数据和典型日负荷,计算得出皮尔逊相关系数,通过该系数值选取地区风电出力顺调节特性最明显的典型场景和逆调节特性最明显的典型场景,利用所选的逆调节特性最明显的典型场景进行电网调峰计算。具体的包括如下步骤:
步骤1:选取一定的天数,根据这些天数中每天的风电出力和典型日负荷,计算出皮尔逊相关系数;具体计算过程通过以下步骤完成:
(S1):采集一个地区给定时间段n天的风电出力数据,每天选取m个等间隔采样点,采样样本集为:
其中,xi,j表示第i天的第j个采样点的风电出力;
Xi为X的列向量,即为给定时间段内第i天的地区风电出力样本集;
其中Xi=[xi,1xi,2…xi,m]T(5)
(S2):根据给定的典型日负荷数据,求出其平均值这些日负荷采样点可以用一个列向量表示,Y=(y1,y2…yj…ym)T,其中yj是等间隔的m个给定典型日负荷采样点中的第j个,j=1,2,……,m,则典型日负荷数据平均值可以用如下公式计算:
(S3):求出第i天的风电出力平均值可以用如下公式求出第i天的风电出力平均值:其中,i=1,2,……,n,j=1,2,……,m;
(S4):根据皮尔逊相关系数法,计算该地区第i天风电出力数据Xi与典型日负荷Y的皮尔逊相关系数ri,
(S5):重复步骤(S2-S4),直到算出给定时间段内n天的地区风电出力数据与典型日负荷的皮尔逊相关系数ri为止。
步骤2:根据计算出来的皮尔逊相关系数,确定顺调节和逆调节中最明显的典型场景;
皮尔逊相关系数反映了两个变量线性相关的程度,其范围从+1到-1。皮尔逊相关系数为+1时,表示变量之间是完全正线性相关,同理,皮尔逊相关系数为-1时,表示变量之间是完全负线性相关。根据皮尔逊相关系数选取典型场景的具体过程如下:
(S1):步骤1中计算出来n个皮尔逊系数,求取这n个皮尔逊系数中最大的一个ru:
ru=MAX{r1r1…rn}(7)
其中ru对应第u天的风电出力,u表示第u天,该天的风电出力与典型日负荷正线性相关最明显,所以将该天的风电出力选为顺调节最明显的典型场景,设为A场景;
(S2):步骤1中计算出来n个皮尔逊系数,求取这n个皮尔逊系数中最小的一个rk:
rk=MIN{r1r1…rn}(8)
其中rk对应第k天的风电出力,k表示第k天,该天的风电出力与典型日负荷负线性相关最明显,所以将该天的风电出力选为逆调节最明显的典型场景,设为B场景;
步骤3:根据典型日负荷和逆调节最明显的典型场景风电出力计算调峰容量,具体的通过以下两个步骤实现:
(S1):计算等效负荷值Z,设第k天为逆调节最明显的典型场景,即B场景,则等效负荷值Z为第k天的列向量Y与该天风电出力列向量之差,按照下述公式计算:
(S2):最后则是计算给定时间段的最大调峰容量Pc,用等效负荷值中的最大值减去等效负荷值中的最小值,其中等效负荷值中的最大值用Zmax表示,等效负荷值中的最小值用Zmin表示;计算公式如下:
Pc=Zmax-Zmin(10)。
为对本发明的技术特征、目的、效果有更加清楚的理解,现以一个实际工程为例,综述具体实施方式。
以某地区实际风电出力为例,选取冬季90天该地区风电场出力数据分别和该地区冬季典型日负荷进行计算,采样时间点为一天中的24个整点时刻。通过计算可以得出负值中绝对值最大的为r=-0.893596,将该值对应的那一天的风电出力作为逆调节特性最明显的风电出力典型场景,即B场景。
该地区在该90天的典型日负荷如表1所示,
表1
时刻 | 1:00 | 2:00 | 3:00 | 4:00 | 5:00 | 6:00 |
出力 | 1969.1 | 1940.97 | 1912.84 | 1856.58 | 1800.32 | 1912.84 |
时刻 | 7:00 | 8:00 | 9:00 | 10:00 | 11:00 | 12:00 |
出力 | 1997.23 | 2137.88 | 2194.14 | 2391.05 | 2503.57 | 2559.83 |
时刻 | 13:00 | 14:00 | 15:00 | 16:00 | 17:00 | 18:00 |
出力 | 2672.35 | 2531.7 | 2559.83 | 2531.7 | 2531.7 | 2619.09 |
时刻 | 19:00 | 20:00 | 21:00 | 22:00 | 23:00 | 24:00 |
出力 | 2813 | 2756.74 | 2728.61 | 2616.09 | 2391.05 | 2194.14 |
该地区典型场景风电出力情况如表2所示,
表2
时刻 | 1:00 | 2:00 | 3:00 | 4:00 | 5:00 | 6:00 |
出力 | 713.893 | 776.384 | 800.489 | 786.602 | 734.064 | 713.887 |
时刻 | 7:00 | 8:00 | 9:00 | 10:00 | 11:00 | 12:00 |
出力 | 683.296 | 631.412 | 610.614 | 542.314 | 495.935 | 449.003 |
时刻 | 13:00 | 14:00 | 15:00 | 16:00 | 17:00 | 18:00 |
出力 | 439.473 | 434.134 | 405.095 | 412.492 | 425.815 | 435.311 |
时刻 | 19:00 | 20:00 | 21:00 | 22:00 | 23:00 | 24:00 |
出力 | 468.454 | 513.652 | 567.3 | 544.446 | 545.081 | 635.582 |
等效负荷计算如表3所示,
表3
按照选取的典型场景,即B场景,然后根据公式(5)计算调峰容量:
Pc=Zmax-Zmin=2344.546-1066.256=1278.29,即计算得出调峰容量为1278.29MW。
如果按极端情况来处理,最大负荷时负荷值为2813MW,认为此时风电出力为零,则该时刻点的等效负荷为2813-0=2813MW。最小负荷时负荷值为1800.32MW,则认为此时风电满发,即为装机容量2022MW,则该时刻点的等效负荷为1800.32-2022=-221.68MW,由此可得按极端情况处理风电的调峰容量为2813-(-221.68)=3034.68MW。
由上对比可以发现按极端情况处理得出的调峰容量过于保守,会导致系统的备用过高,而通过选取典型场景来计算得出的结果则比较合理。
由此可见,在选取出典型场景后,可以很快计算出调峰容量,而且与按照极端情况处理相比,能够更加合理的安排风电场备用容量。
以上给出了本发明具体的实施方式,但本发明不局限于所描述的实施方式。在本发明给出的思路下,采用对本领域技术人员而言容易想到的方式对上述实施例中的技术手段进行变换、替换、修改,并且起到的作用与本发明中的相应技术手段基本相同、实现的发明目的也基本相同,这样形成的技术方案是对上述实施例进行微调形成的,这种技术方案仍落入本发明的保护范围内。
Claims (4)
1.一种适用于风电出力的电力系统调峰计算方法,其特征在于,依次包含如下步骤:
步骤1:选取一定的天数n天,根据n天中各天的风电出力和典型日负荷,计算出各天风电出力数据与典型日负荷的皮尔逊相关系数r1到rn;
步骤2:根据计算出来的皮尔逊相关系数r1到rn,选取其中最小的皮尔逊相关系数ru,并将该第u天的风电出力确定为逆调节中最明显的典型场景;
步骤3:用逆调节中最明显典型场景当天的典型日负荷减去该典型场景,计算得出等效负荷值,再用等效负荷值中的最大值减去最小值得到电网的调峰容量。
2.根据权利要求1所述的一种适用于风电出力的电力系统调峰计算方法,其特征在于,所述典型日负荷、典型场景、等效负荷值是列向量。
3.根据权利要求1所述的一种适用于风电出力的电力系统调峰计算方法,其特征在于,所述步骤1中皮尔逊相关系数的计算包括如下具体步骤:
(S1):采集一个地区给定时间段n天的风电出力数据,每天选取m个等间隔采样点,采样样本集为:
其中,xi,j表示第i天的第j个采样点的风电出力;
Xi为X的列向量,即为给定时间段内第i天的地区风电出力样本集,用式(2)表示:
Xi=[xi,1xi,2…xi,m]T(2);
(S2):根据给定的典型日负荷数据Y=(y1,y2…yj…ym)T中的m个采样点值,求出典型日负荷平均值 其中yj是等间隔的m个给定典型日负荷采样点中的第j个采样点的值,j=1,2,……,m;
(S3):求出第i天的风电出力平均值 其中,i=1,2,……,n,j=1,2,……,m;
(S4):根据皮尔逊相关系数法,计算该地区第i天风电出力数据Xi与典型日负荷Y的皮尔逊相关系数ri,
(S5):重复步骤(S2-S4),直到算出给定时间段内n天全部地区风电出力数据与典型日负荷的皮尔逊相关系数ri为止。
4.根据权利要求1所述的一种适用于风电出力的电力系统调峰计算方法,其特征在于,所述步骤2中典型场景的确定包括如下具体步骤:
(S1):求取n个步骤1中计算出来的最大皮尔逊相关系数ru,其中u表示第u天,并将该天的风电出力确定为顺调节最明显的典型场景,设为A场景;
(S2):求取n个步骤1中计算出来的最大皮尔逊相关系数rk,其中k表示第k天,并将该天的风电出力确定为逆调节最明显的典型场景,设为B场景。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510587817.8A CN105207255B (zh) | 2015-09-15 | 2015-09-15 | 一种适用于风电出力的电力系统调峰计算方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510587817.8A CN105207255B (zh) | 2015-09-15 | 2015-09-15 | 一种适用于风电出力的电力系统调峰计算方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105207255A true CN105207255A (zh) | 2015-12-30 |
CN105207255B CN105207255B (zh) | 2018-03-20 |
Family
ID=54954764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510587817.8A Active CN105207255B (zh) | 2015-09-15 | 2015-09-15 | 一种适用于风电出力的电力系统调峰计算方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105207255B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110880756A (zh) * | 2019-11-19 | 2020-03-13 | 国网浙江省电力有限公司 | 基于调峰系数的特高压受端电网调峰能力充裕度判断方法 |
CN112883577A (zh) * | 2021-02-26 | 2021-06-01 | 广东电网有限责任公司 | 一种海上风电场出力典型场景生成方法及存储介质 |
CN114819429A (zh) * | 2021-01-18 | 2022-07-29 | 天津大学 | 基于优化的综合能源系统典型日设计边界提取方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102968747A (zh) * | 2012-11-29 | 2013-03-13 | 武汉华中电力电网技术有限公司 | 一种风电场典型日出力曲线的确定方法 |
US20130207393A1 (en) * | 2012-01-24 | 2013-08-15 | Repower Systems Se | Wind farm harmonic predictor and method for predicting harmonics |
-
2015
- 2015-09-15 CN CN201510587817.8A patent/CN105207255B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130207393A1 (en) * | 2012-01-24 | 2013-08-15 | Repower Systems Se | Wind farm harmonic predictor and method for predicting harmonics |
CN102968747A (zh) * | 2012-11-29 | 2013-03-13 | 武汉华中电力电网技术有限公司 | 一种风电场典型日出力曲线的确定方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110880756A (zh) * | 2019-11-19 | 2020-03-13 | 国网浙江省电力有限公司 | 基于调峰系数的特高压受端电网调峰能力充裕度判断方法 |
CN114819429A (zh) * | 2021-01-18 | 2022-07-29 | 天津大学 | 基于优化的综合能源系统典型日设计边界提取方法 |
CN112883577A (zh) * | 2021-02-26 | 2021-06-01 | 广东电网有限责任公司 | 一种海上风电场出力典型场景生成方法及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN105207255B (zh) | 2018-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109508499B (zh) | 多时段多场景分布式电源最优接入位置与容量研究方法 | |
CN106532778B (zh) | 一种计算分布式光伏并网最大准入容量的方法 | |
CN112163700B (zh) | 一种考虑储能电池循环寿命的电化学储能电站规划方法 | |
CN102684201B (zh) | 一种基于电压越限概率的含风电场电网无功优化方法 | |
CN108695857B (zh) | 风电场自动电压控制方法、装置及系统 | |
CN104037776B (zh) | 随机惯性因子粒子群优化算法的电网无功容量配置方法 | |
CN105426956A (zh) | 一种超短期光伏预测方法 | |
CN109086928A (zh) | 基于saga-fcm-lssvm模型的光伏电站实时功率预测方法 | |
CN105048499A (zh) | 基于模型预测控制的风电并网实时调度方法及装置 | |
CN107947192A (zh) | 一种下垂控制型孤岛微电网的无功优化配置方法 | |
CN111092451B (zh) | 一种基于配电网网格的光伏消纳预警方法 | |
CN103986193B (zh) | 一种最大风电并网容量获取的方法 | |
CN106229995B (zh) | 基于风电场抗台风运行模式下的备用电源并联电抗器参数优化方法 | |
CN103996079A (zh) | 一种基于条件概率的风电功率加权预测方法 | |
CN111614110B (zh) | 一种基于改进多目标粒子群算法的受端电网储能优化配置方法 | |
CN105244890A (zh) | 新能源并网的无功优化方法 | |
CN111612244A (zh) | 基于qra-lstm的日前光伏功率非参数概率预测方法 | |
CN105207255A (zh) | 一种适用于风电出力的电力系统调峰计算方法 | |
CN106096807A (zh) | 一种考虑小水电的互补微网经济运行评价方法 | |
CN116581792A (zh) | 一种基于数据模型驱动的风光储系统容量规划方法 | |
CN103530822A (zh) | 一种甘肃电网降损潜力分析方法 | |
CN105184672A (zh) | 一种针对三公调度发电计划的评估方法 | |
CN108694475B (zh) | 基于混合模型的短时间尺度光伏电池发电量预测方法 | |
CN109149566A (zh) | 一种大功率缺失下频率最低点预测的仿真模型的建模方法 | |
CN114123313A (zh) | 一种时序生产模拟新能源电力系统消纳方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |