CN105205253B - A kind of optimization method of bare cloth circular antenna array - Google Patents
A kind of optimization method of bare cloth circular antenna array Download PDFInfo
- Publication number
- CN105205253B CN105205253B CN201510601278.9A CN201510601278A CN105205253B CN 105205253 B CN105205253 B CN 105205253B CN 201510601278 A CN201510601278 A CN 201510601278A CN 105205253 B CN105205253 B CN 105205253B
- Authority
- CN
- China
- Prior art keywords
- array
- elements
- vector
- genetic
- population
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000005457 optimization Methods 0.000 title claims abstract description 12
- 239000004744 fabric Substances 0.000 title 1
- 230000002068 genetic effect Effects 0.000 claims abstract description 47
- 230000035772 mutation Effects 0.000 claims abstract description 14
- 238000012805 post-processing Methods 0.000 claims abstract description 7
- 239000013598 vector Substances 0.000 claims description 50
- 239000011159 matrix material Substances 0.000 claims description 15
- 238000013461 design Methods 0.000 claims description 8
- 230000005855 radiation Effects 0.000 claims description 4
- 230000005684 electric field Effects 0.000 claims 2
- 238000000605 extraction Methods 0.000 claims 2
- 238000004364 calculation method Methods 0.000 claims 1
- 238000010276 construction Methods 0.000 claims 1
- 238000010353 genetic engineering Methods 0.000 claims 1
- 238000007781 pre-processing Methods 0.000 description 5
- 238000003491 array Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000002921 genetic algorithm search Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000002922 simulated annealing Methods 0.000 description 1
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明公开了一种稀布圆形天线阵列的优化方法,包括以下步骤:(1)采用间接的方法产生个体构建初始种群;(2)对种群进行遗传预处理;(3)对种群进行广义交叉和广义变异;(4)对种群进行遗传后处理,根据适应度优劣选择优势个体;(5)迭代优化,获得最优个体和最小的峰值旁瓣电平。本方法优化的圆阵列特征是阵列单元在圆孔径上非均匀分布,并不限制在辅助圆环上,本方法可更大限度地利用阵元的自由度,比传统的遗传算法效率高,能够使天线阵列获得更低的旁瓣电平。
The invention discloses an optimization method for a sparsely distributed circular antenna array, which comprises the following steps: (1) adopting an indirect method to generate individuals to construct an initial population; (2) performing genetic pretreatment on the population; (3) performing generalization on the population Crossover and generalized mutation; (4) Perform genetic post-processing on the population, and select dominant individuals according to their fitness; (5) Iterative optimization to obtain the optimal individual and the minimum peak sidelobe level. The feature of the circular array optimized by this method is that the array elements are distributed non-uniformly on the circular aperture and not limited to the auxiliary ring. This method can make greater use of the degrees of freedom of the array elements, which is more efficient than the traditional genetic algorithm and can Make the antenna array get lower side lobe level.
Description
技术领域technical field
本发明涉及阵列天线设计方法,具体是利用改进的遗传算法实现多设计约束的稀布圆形天线阵列设计,借助于圆形孔径上设计的等间距辅助圆环,利用圆环阵列特性设计稀布圆形阵列天线,使其获得尽量低的峰值旁瓣电平。The invention relates to an array antenna design method, in particular, it uses an improved genetic algorithm to realize the design of a sparsely distributed circular antenna array with multiple design constraints. With the help of equidistant auxiliary rings designed on the circular aperture, the sparsely distributed antenna array is designed using the characteristics of the circular ring array. Circular array antenna to achieve the lowest possible peak sidelobe level.
背景技术Background technique
圆形阵列天线是多元天线类型中最重要的阵列天线类型之一,广泛运用在通信领域和射电天文学领域。圆环阵列天线在其方位角方向具有理想的方向特征,同时其圆形的结构特征使得其波束,天线增益和其他的性能保持基本稳定。因为圆环阵列天线具有以上特征,使其广泛运用在很多工程实践中,但是圆环阵列天线具有相对较高的峰值旁瓣电平,因此圆环阵列天线设计已经成为了重要的研究课题。The circular array antenna is one of the most important array antenna types among the multi-element antenna types, and it is widely used in the fields of communication and radio astronomy. The circular ring array antenna has ideal directional characteristics in its azimuth direction, and its circular structural characteristics make its beam, antenna gain and other performances basically stable. Because the circular array antenna has the above characteristics, it is widely used in many engineering practices, but the circular array antenna has a relatively high peak side lobe level, so the design of the circular array antenna has become an important research topic.
圆形阵列天线按阵元的分布有两种:一种是阵元从相距半波长的规则的圆环栅格上稀疏的稀疏阵;另一种是天线单元在设计时约束其阵元间距在一定孔径范围内随机稀布的稀布阵。近年来,为了得到峰值旁瓣性能良好的稀疏阵,已经出现了统计优化法、动态规划法、遗传算法、模拟退火法、粒子群法等综合方法。而对于自由度更大的稀布阵国内外却鲜有研究。所以对稀布圆形阵列天线的低旁瓣电平的研究,具有很现实的意义。There are two types of circular array antennas according to the distribution of array elements: one is a sparse array where the array elements are sparsely spaced from a regular circular grid with a distance of half a wavelength; the other is that the antenna unit is constrained in the design Random sparse array within a certain aperture range. In recent years, in order to obtain sparse arrays with good peak sidelobe performance, comprehensive methods such as statistical optimization methods, dynamic programming methods, genetic algorithms, simulated annealing methods, and particle swarm optimization methods have emerged. However, there are few studies at home and abroad on sparse arrays with greater degrees of freedom. Therefore, the research on the low sidelobe level of sparse circular array antenna has very practical significance.
发明内容Contents of the invention
本发明的目的,提供一种改进的遗传算法来优化稀布圆形天线阵列,在约束阵元数目、孔径和最小间距的约束下,尽量降低稀布圆形阵列天线的峰值旁瓣电平。The object of the present invention is to provide an improved genetic algorithm to optimize the sparsely distributed circular antenna array, and to reduce the peak sidelobe level of the sparsely distributed circular array antenna as much as possible under the constraints of the number of array elements, aperture and minimum spacing.
为了达到上述目的,本发明的技术方案如下。In order to achieve the above object, the technical solution of the present invention is as follows.
在约束孔径、阵元数目和最小间距的情形下,基于改进的遗传算法,通过间接表示个体的方法,使用广义遗传操作,遗传预处理和遗传后处理对阵元位置进行优化,不再约束阵元必须位于辅助圆环上,增加各阵元的布阵自由度,获得更低的峰值旁瓣电平。In the case of constrained aperture, number of array elements and minimum spacing, based on the improved genetic algorithm, through the method of indirect representation of individuals, use generalized genetic operations, genetic preprocessing and genetic postprocessing to optimize the position of the array elements, and no longer constrain the array elements It must be located on the auxiliary ring to increase the degree of freedom of each array element and obtain a lower peak sidelobe level.
模型:平面圆形口径上,由阵元位置计算阵列天线的辐射特性的模型为:Model: On a plane circular aperture, the model for calculating the radiation characteristics of the array antenna from the position of the array element is:
其中in
cosαn=sinθcos(φ-φn);u=sinθcosφ;0≤θ≤πcosα n = sinθcos(φ-φ n ); u = sinθcosφ; 0≤θ≤π
v=sinθsinφ;0≤φ≤2π;v=sinθsinφ; 0≤φ≤2π;
λ为工作波长;λ is the working wavelength;
k=2π/λ;k=2π/λ;
N是优化变量的个数,即阵元总数;N is the number of optimization variables, that is, the total number of array elements;
0≤θ≤π和分别为俯仰角和方位角;0≤θ≤π and are the elevation and azimuth angles, respectively;
In为激励;I n is incentive;
ψn为阵元的激励相位;ψ n is the excitation phase of the array element;
rn为阵元n的极坐标半径;r n is the polar coordinate radius of array element n;
φn为阵元n在极坐标系下的角度,θ是方位角,φ是俯仰角。φ n is the angle of array element n in the polar coordinate system, θ is the azimuth angle, and φ is the elevation angle.
约束阵元数目为N,孔径和最小阵元间距d的条件下,所有的阵元有相同的激励,所以假设所有的阵元In=1,ψn=0。通过优化阵元的位置获得较低的峰值旁瓣电平,其优化函数为:Under the condition that the number of constrained array elements is N, the aperture and the minimum array element spacing d, all array elements have the same excitation, so it is assumed that all array elements I n =1, ψ n =0. By optimizing the position of the array element to obtain a lower peak sidelobe level, the optimization function is:
其中D=[d1,d2,…,dN],适应函数表达为:Where D=[d 1 ,d 2 ,…,d N ], the fitness function is expressed as:
目标函数为:The objective function is:
f(d1,d2,…,dN)=min{H(D)} (4)f(d 1 ,d 2 ,…,d N )=min{H(D)} (4)
其中dm、dn表示第m,n个阵元的坐标,d是最小阵元间距约束,R是孔径,Z是正整数集,Fmax是主瓣峰值,副瓣区E(θ,φ)的θ和的取值区间为除主瓣区域以外的所有区域。Among them, d m and d n represent the coordinates of the mth and n array elements, d is the minimum array element spacing constraint, R is the aperture, Z is a set of positive integers, F max is the peak value of the main lobe, and the side lobe area E(θ,φ) θ and The value range of is all areas except the main lobe area.
详细步骤如下:The detailed steps are as follows:
1:初始种群的产生1: Generation of initial population
为了更好地利用阵元的自由度来优化稀布圆环阵列的阵元位置。采用复向量C间接表述优化个体。图2为孔径r=(a+1)d的均匀圆环阵列,a∈Z是圆环个数,d是阵元间距。在约束阵元最少间距d的条件下,在每一个圆环上阵元的分布是不定的。即,假设在满足相邻阵元的间距不小于d的条件下,在第i个圆环上分布ki个阵元,ki可以用下式表示:In order to make better use of the degrees of freedom of the array elements, the position of the array elements is optimized. A complex vector C is used to indirectly represent the optimization individual. Figure 2 is a uniform circular ring array with aperture r=(a+1)d, where a∈Z is the number of circular rings, and d is the array element spacing. Under the condition of constraining the minimum spacing d of array elements, the distribution of array elements on each ring is uncertain. That is, assuming that the distance between adjacent array elements is not less than d, k i array elements are distributed on the i-th ring, and k i can be expressed by the following formula:
其中ri是第i个圆环的半径,为向下取整。如图2所示的结构,在已知的圆环孔径下有阵元分布是不定的。假设约束的最少阵元间距d=λ/2,可计算出每个圆环上的最大阵元数ki和相对应的相位角间距ρi,即同一圆环上相邻阵元的角间距,如表一所示。where r i is the radius of the ith ring, is rounded down. For the structure shown in Figure 2, the array element distribution is uncertain under the known ring aperture. Assuming the constrained minimum array element spacing d=λ/2, the maximum number of array elements ki on each ring and the corresponding phase angular spacing ρ i can be calculated, that is, the angular spacing of adjacent array elements on the same ring , as shown in Table 1.
表一Table I
因为ki个阵元均匀分布在第i个圆环上,所以ρi为:Because k i array elements are evenly distributed on the i ring, so ρ i is:
复向量C可以表示为:A complex vector C can be expressed as:
其中a=r/d-1为圆环个数,ki(i=1,2,…,a)为第i个圆环上的最大阵元数,ρi(i=1,2,…,a)为第i个圆环上有ki个阵元时的平均角间距。C与阵元约束d和角间距ρi有关,因此也与阵元数目有关,所以C又可视为约束向量。在C的基础上辅助向量Ft可以通过以下子步骤得出:Where a=r/d-1 is the number of rings, k i (i=1,2,...,a) is the maximum number of elements on the i-th ring, ρ i (i=1,2,... ,a) is the average angular spacing when there are ki array elements on the i -th ring. C is related to the array element constraint d and the angular spacing ρ i , so it is also related to the number of array elements, so C can be regarded as a constraint vector. On the basis of C, the auxiliary vector F t can be obtained through the following sub-steps:
1.1、假设一个的实数列向量M0,其元素值在[0,0.5λ]范围内,并从小到大排序。将M0分成a段。第k1个阵元在M0的第一段,第二段有k2个阵元,即从(k1+1)到(k1+k2+1)的k2个阵元。所以第a段含有M0的最后的ka个阵元。因为在每一段中阵元是随机分布的,因此得到新的维随机向量:1.1. Suppose a The real column vector M 0 of is, its element values are in the range of [0,0.5λ], and they are sorted from small to large. Divide M 0 into a segment. The k 1th array element is in the first section of M 0 , and the second section has k 2 array elements, that is, k 2 array elements from (k 1 +1) to (k 1 +k 2 +1). So segment a contains the last k a array elements of M 0 . Since the array elements are randomly distributed in each segment, a new dimensional random vector:
向量η有如下的特征:每一段上的阵元是按大小随机分布的,但是(k+1)段的每一个元素不小于k段上的任一个元素。The vector η has the following characteristics: the array elements on each segment are randomly distributed according to the size, but each element of the (k+1) segment is not smaller than any element on the k segment.
1.2、假设一个随机向量[ξ1,ξ2,…,ξa]T,元素值在[0,2π]范围内,具体表示为:1.2. Assuming a random vector [ξ 1 ,ξ 2 ,…,ξ a ] T , the element values are in the range of [0,2π], specifically expressed as:
ζ=[ξ1,…,ξ1,ξ2,…,ξ2,…ξa,…,ξa]T (9)ζ=[ξ 1 ,…,ξ 1 ,ξ 2 ,…,ξ 2 ,…ξ a ,…,ξ a ] T (9)
第一段有k1个ξ1,依次类推。由此可得ζ也有维,也有a段。ζ的特征是不同的分段中元素是不等的随机数,但是每一段中的元素相等。The first segment has k 1 ξ 1 , and so on. From this it can be obtained that ζ also has dimension, there is also a section. The characteristic of ζ is that the elements in different segments are unequal random numbers, but the elements in each segment are equal.
1.3、在复向量C的基础上,辅助向量Ft如公式(10)所示,把η的元素作为复数的模,加到复向量C对应的模上,把ζ元素作为复数的辐角,加到复向量C对应的辐角上,因此辅助向量Ft可以表示为:1.3, on the basis of the complex vector C, the auxiliary vector F t is as shown in formula (10), the element of η is used as the modulus of the complex number, added to the corresponding modulus of the complex vector C, and the ζ element is used as the argument of the complex number, Added to the argument corresponding to the complex vector C, so the auxiliary vector F t can be expressed as:
可以证明Ft满足三个设计约束,也很好地利用了阵元的自由度。It can be proved that F t satisfies the three design constraints and also makes good use of the degrees of freedom of the array element.
1.4、个体向量u由N个非零阵元组成的稀布向量,且搜索向量S能够记录辅助向量Ft中哪些元素被保留,搜索向量定义如下:1.4. The individual vector u is a sparsely distributed vector composed of N non-zero array elements, and The search vector S can record which elements in the auxiliary vector F t are retained, and the search vector is defined as follows:
定义1:对于向量I,如果第q个阵元是稀疏的,则与第q个阵元相关的搜素向量的值为‘0’,否则为‘1’。Definition 1: For vector I, if the qth array element is sparse, the value of the search vector related to the qth array element is '0', otherwise it is '1'.
在搜索向量Ft的基础上,通过稀疏的辅助向量Ft能够得到个体向量I:On the basis of the search vector F t , the individual vector I can be obtained through the sparse auxiliary vector F t :
I=S.*Ft (11)I=S.*F t (11)
考虑到Ft和S都是含有个元素的一维阵列,Ft和S标量乘可以得到个体向量I。Considering that both F t and S contain A one-dimensional array of elements, F t and S scalar multiplication can get the individual vector I.
例如搜索向量S为:For example, the search vector S is:
因此个体向量I可以表示为:So the individual vector I can be expressed as:
可以证明个体矢量I在解空间中是可行解,因此它能都作为优化变量。It can be proved that the individual vector I is a feasible solution in the solution space, so it can be used as an optimization variable.
步骤2:独立重复以上操作M次,可以得到由M个I组成的初始种群U。这种独特的生成方法,保证了初始种群中的每个个体都满足阵元个数,阵列孔径和最小阵元间距的约束。Step 2: Repeat the above operation M times independently to obtain an initial population U consisting of M Is. This unique generation method ensures that each individual in the initial population satisfies the constraints of the number of array elements, array aperture and minimum array element spacing.
步骤3:遗传处理Step 3: Genetic Processing
传统的遗传算法不能直接描述个体,因此将会产生不可行解。为了防止不可行解的产生,需要改变一些遗传算法的操作。我们将修正的遗传算法操作称为广义交叉和广义变异。The traditional genetic algorithm cannot describe the individual directly, so it will produce an infeasible solution. In order to prevent the generation of infeasible solutions, some genetic algorithm operations need to be changed. We refer to the modified GA operations as generalized crossover and generalized mutation.
定义2:阵元矩阵:阵元矩阵GA,每一列都是一个约束矩阵C,因此有行和M列。Definition 2: array element matrix: array element matrix G A , each column is a constraint matrix C, so there is rows and M columns.
定义3:种群约束矩阵:种群约束矩阵GM是根据种群搜索矩阵SM,从GA中分离出来的。Definition 3: Population constraint matrix: The population constraint matrix G M is separated from GA according to the population search matrix S M .
GM=SM.*GA (14)G M =S M .*G A (14)
定义4:遗传预处理:在进行广义交叉和广义变异之前,遗传预处理从父代种群U1中得到遗传信息矩阵PDefinition 4: Genetic preprocessing: Before performing generalized crossover and generalized mutation, genetic preprocessing obtains the genetic information matrix P from the parent population U 1
其中GM是种群U1的种群约束矩阵,|·|表示复数的模操作,为复数的角度操作符。where G M is the population constraint matrix of population U 1 , |·| represents the modulo operation of complex numbers, Angle operator for complex numbers.
定义5:遗传后处理操作:在广义交叉和广义变异之后,遗传后处理再次从遗传信息矩阵P中构造种群U2 Definition 5: Genetic post-processing operation: After generalized crossover and generalized mutation, genetic post - processing constructs the population U2 from the genetic information matrix P again
其中GM是与种群P相关的种群约束矩阵。同时后代种群P是从父代种群P中通过广义交叉和广义变异后得到的。where G M is the population constraint matrix related to population P. At the same time, the offspring population P is obtained from the parent population P through generalized crossover and generalized mutation.
步骤4:广义交叉操作和广义变异操作Step 4: Generalized crossover operation and generalized mutation operation
与传统的遗传算法交叉一样,广义交叉用来交换两个染色体的非零模的元素,然后重置元素模的元素。重置操作使得模向量满足η的性质。详细的重置操作如下:模向量,即|P|的列向量,可以分成a段,首先找出每一段最小的元素。假设第i段的最小元素是w,然后将其与第(i-1)段的每一个元素的模进行比较,如果第(i-1)的某个元素的模大于w,则用w替换。同样地,执行广义交叉后,为了满足ζ性质,两个列向量的元素需要重置。Like the traditional genetic algorithm crossover, the generalized crossover is used to exchange the elements of the non-zero modulus of the two chromosomes, and then reset the elements of the element modulus. The reset operation makes the modulus vector satisfy the property of η. The detailed reset operation is as follows: the modulus vector, that is, the column vector of |P|, can be divided into a segment, and first find the smallest element of each segment. Suppose the smallest element of the i-th segment is w, and then compare it with the modulus of each element of the (i-1)th segment, if the modulus of an element of the (i-1)th segment is greater than w, replace it with w . Likewise, after performing generalized crossover, in order to satisfy the ζ property, two column vectors elements need to be reset.
广义变异改变父代个体的遗传信息。首先从遗传信息矩阵P的一列中随机选择一个元素,如果这个元素是0,用替代,ri小于i段种的元素最大模大于元素最小模,φi∈[0,2π]。如果选择的元素是非零的,用0替代。在这个过程中,为了满足阵元个数的约束,非零元素的个数必须保持不变。其次,重置也使向量满足η的性质,而且使得角度向量满足ζ的性质。最后,模向量和角向量能够重构遗传信息矩阵P(代表了后代的新的遗传信息)。Generalized variation changes the genetic information of parent individuals. First randomly select an element from a column of the genetic information matrix P, if this element is 0, use Instead, the largest modulus of the element whose r i is smaller than the segment i is greater than the smallest modulus of the element, φ i ∈ [0,2π]. If the selected element is non-zero, replace it with 0. In this process, in order to satisfy the constraint on the number of array elements, the number of non-zero elements must remain unchanged. Second, resetting also makes the vector satisfy the property of η, and makes the angle vector satisfy the property of ζ. Finally, the modulus and angle vectors are able to reconstruct the genetic information matrix P (representing the new genetic information of the offspring).
传统的遗传算法直接在优化变量的编码上进行交叉和变异操作,而广义交叉和广义变异是在遗传信息矩阵P上进行操作,不是直接操作优化变量,而是从遗传过程衍生而来,可用父代的S,η和ζ代替;另一方面,包括传统的遗传算法在内,这两个广义遗传操作都能确保后代的遗传信息是有效的,即Sson,ηson和ζson是有效的。以上所述操作,我们称之为广义交叉和广义变异操作。广义交叉和广义变异操作使得修正遗传算法搜索更快具有更好的收敛特性。The traditional genetic algorithm directly performs crossover and mutation operations on the coding of the optimization variable, while the generalized crossover and generalized mutation operate on the genetic information matrix P, instead of directly operating the optimization variable, but derived from the genetic process. On the other hand, including the traditional genetic algorithm, these two generalized genetic operations can ensure that the genetic information of the offspring is valid, that is, Sson , ηson and ζson are valid . The above operations are called generalized crossover and generalized mutation operations. The generalized crossover and generalized mutation operations make the modified genetic algorithm search faster and have better convergence characteristics.
通过遗传预处理,广义交叉和广义变异和遗传后处理优化初始种群,迭代获得最优的个体,获得更低的峰值旁瓣电平。本发明提出在均匀圆环阵列的基础上,利用稀疏向量间接表示个体,代替传统遗传算法的直接描述个体的方法。使用广义遗传操作,遗传预处理和遗传后处理可以保证在迭代过程中所有的个体都是可行解,使得修正遗传算法的效率大大提高。Optimize the initial population through genetic preprocessing, generalized crossover and generalized mutation, and genetic postprocessing, iteratively obtain the optimal individual, and obtain a lower peak sidelobe level. The present invention proposes to use sparse vectors to indirectly represent individuals on the basis of uniform circular arrays, instead of directly describing individuals in traditional genetic algorithms. Using generalized genetic operations, genetic preprocessing and genetic postprocessing can ensure that all individuals are feasible solutions in the iterative process, which greatly improves the efficiency of the modified genetic algorithm.
附图说明Description of drawings
图1稀布平面圆环阵列的模型Figure 1 The model of sparse planar circular array
图2均匀9圆环阵列Figure 2 Uniform 9-ring array
图3实例的辐射方向图Radiation pattern of the example in Figure 3
图4实例当φ=0°,φ=45°,和φ=90°时的远场方向图Figure 4 is an example of the far-field pattern when φ=0°, φ=45°, and φ=90°
图5实例的阵元分布图The array element distribution diagram of the example in Figure 5
具体实施方式Detailed ways
下面对本发明优化实施方式作详细说明The optimized implementation mode of the present invention is described in detail below
以下给出本发明的实施实例。由附图可知,本发明通过对孔径和稀布率来优化阵元位置,证实方法的有效性和可行性。图1为稀布圆环天线阵列的模型图。该实例是优化设计参数为孔径r≤4.5λ,稀布率70%和阵元数为184(除去圆心上的阵元)的稀布圆环天线阵列的阵元位置。图3为最优的平面圆环阵列的远场辐射方向图,在φ平面上PSLL为-22.723dB,最差的PSLL为-22.051dB。图4为在φ=0°,φ=45°,和φ=90°时的远场方向图。最优的阵元分布如图5所示。Embodiments of the present invention are given below. It can be seen from the accompanying drawings that the present invention optimizes the position of the array element through the aperture and the sparse ratio, and proves the validity and feasibility of the method. Figure 1 is a model diagram of a sparsely distributed circular loop antenna array. This example is to optimize the element position of the sparsely distributed circular ring antenna array whose design parameters are aperture r≤4.5λ, sparsely distributed rate of 70% and number of array elements of 184 (excluding the array elements on the center of the circle). Figure 3 is the far-field radiation pattern of the optimal planar ring array. On the φ plane, the PSLL is -22.723dB, and the worst PSLL is -22.051dB. Fig. 4 is the far-field pattern at φ=0°, φ=45°, and φ=90°. The optimal array element distribution is shown in Figure 5.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510601278.9A CN105205253B (en) | 2015-09-18 | 2015-09-18 | A kind of optimization method of bare cloth circular antenna array |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510601278.9A CN105205253B (en) | 2015-09-18 | 2015-09-18 | A kind of optimization method of bare cloth circular antenna array |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105205253A CN105205253A (en) | 2015-12-30 |
CN105205253B true CN105205253B (en) | 2018-10-12 |
Family
ID=54952932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510601278.9A Expired - Fee Related CN105205253B (en) | 2015-09-18 | 2015-09-18 | A kind of optimization method of bare cloth circular antenna array |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105205253B (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105572658B (en) * | 2016-01-19 | 2018-06-08 | 苏州桑泰海洋仪器研发有限责任公司 | The a burst of first sparse optimization method of three-dimensional imaging sonar receiving plane based on improved adaptive GA-IAGA |
CN105760632B (en) * | 2016-03-29 | 2019-02-26 | 中国科学院国家空间科学中心 | A Design Method of Sparse Concentric Circular Array Based on Bessel Function |
CN107169181B (en) * | 2017-05-02 | 2019-07-16 | 西安电子科技大学 | Design Method of Circular Array Antenna Based on Multi-objective Discrete Differential Evolution Algorithm |
CN107896129B (en) * | 2017-11-16 | 2020-07-24 | 哈尔滨工程大学 | Dimensionality reduction optimization algorithm for sparse concentric circular array |
CN107944133B (en) * | 2017-11-22 | 2021-01-12 | 哈尔滨工程大学 | Annular antenna array sparse method based on multi-target quantum spider swarm evolution mechanism |
CN108736158B (en) * | 2018-05-17 | 2020-09-18 | 西安空间无线电技术研究所 | A design method for ultra-low sidelobe to the ground |
CN111313158B (en) * | 2018-12-12 | 2021-07-06 | 南京理工大学 | Method for sparse array of circular shape |
CN111985145B (en) * | 2019-05-21 | 2023-09-19 | 合肥若森智能科技有限公司 | Large-space phased array antenna grating valve inhibition method and inhibition system |
CN111931384B (en) * | 2020-09-01 | 2021-05-14 | 中国人民解放军国防科技大学 | Group cooperative trapping method based on antenna model and storage medium |
CN112367103B (en) * | 2020-11-09 | 2022-06-17 | 重庆两江卫星移动通信有限公司 | Method for acquiring layout of extensible sparse array antenna |
CN112737653B (en) * | 2020-12-28 | 2022-03-25 | 重庆邮电大学 | Non-uniform antenna array system design method using spherical wave model |
CN113189406B (en) * | 2021-04-15 | 2022-11-08 | 中国科学院国家空间科学中心 | Circular array antenna of synthetic aperture microwave radiometer based on hybrid subarray |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0238964A2 (en) * | 1986-03-24 | 1987-09-30 | Siemens Aktiengesellschaft | Cut-off filter for integrated optics |
CN1725556A (en) * | 2005-07-07 | 2006-01-25 | 哈尔滨工业大学 | A Genetic Algorithm Based Composite Beamforming Method for Smart Antennas |
CN104900988A (en) * | 2015-05-21 | 2015-09-09 | 电子科技大学 | Method for designing thin cloth circular antenna array through changing auxiliary grid circle radius |
-
2015
- 2015-09-18 CN CN201510601278.9A patent/CN105205253B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0238964A2 (en) * | 1986-03-24 | 1987-09-30 | Siemens Aktiengesellschaft | Cut-off filter for integrated optics |
CN1725556A (en) * | 2005-07-07 | 2006-01-25 | 哈尔滨工业大学 | A Genetic Algorithm Based Composite Beamforming Method for Smart Antennas |
CN104900988A (en) * | 2015-05-21 | 2015-09-09 | 电子科技大学 | Method for designing thin cloth circular antenna array through changing auxiliary grid circle radius |
Non-Patent Citations (1)
Title |
---|
稀布天线阵列的优化布阵技术研究;陈客松;《中国优秀博士学位论文全文数据库》;20080115;第17-25、58-60、95、98页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105205253A (en) | 2015-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105205253B (en) | A kind of optimization method of bare cloth circular antenna array | |
Mahanti et al. | Phase-only and amplitude-phase only synthesis of dual-beam pattern linear antenna arrays using floating-point genetic algorithms | |
Chen et al. | Modified real GA for the synthesis of sparse planar circular arrays | |
CN111160556B (en) | An Array Sparse Optimization Method Based on Adaptive Genetic Algorithm | |
CN104020448B (en) | Optimization method is formed etc. radar Subarray and the wave beam/difference beam of array element constraint | |
Jiang et al. | Synthesis of uniformly excited concentric ring arrays using the improved integer GA | |
CN111313158B (en) | Method for sparse array of circular shape | |
CN107958106B (en) | A kind of directional diagram numerical optimization of circle bore planar array antenna | |
CN107169511A (en) | Clustering ensemble method based on mixing clustering ensemble selection strategy | |
CN104900988A (en) | Method for designing thin cloth circular antenna array through changing auxiliary grid circle radius | |
CN113792492B (en) | Optimal design method of Highway array antenna based on immune genetic algorithm | |
CN110376557A (en) | A kind of grating lobe suppression method based on non-homogeneous nested MIMO radar | |
CN106886648B (en) | Ternary vector synthesis control optimization method | |
Ghatak et al. | Evolutionary optimization of H aferman carpet fractal patterned antenna array | |
Das et al. | Linear antenna array synthesis with decreasing sidelobe and narrow beamwidth | |
Mallioras et al. | An adaptive beamforming approach applied to planar antenna arrays using neural networks | |
Chen et al. | Design of 2-dimension sparse arrays using an improved genetic algorithm | |
Bhattacharya et al. | Sidelobe level reduction of aperiodic planar array using an improved invasive weed optimization algorithm | |
Lin et al. | Synthesis of unequally spaced antenna arrays by a new differential evolutionary algorithm | |
Bulgan et al. | Brainstorm optimization in thinned linear antenna array with minimum side lobe level | |
Wang et al. | Synthesis of uniformly excited concentric ring arrays by the strategy of partial density tapering and the algorithm of differential evolution | |
Yuan et al. | Efficient optimization of shaped-beam sparse linear antenna arrays using genetic algorithm | |
CN113127943B (en) | Distributed array optimization method based on genetic and quantum particle swarm algorithm | |
Yang et al. | Pattern synthesis of time‐modulated conformal arrays by an improved differential evolution algorithm | |
Xingrong et al. | The optimization of sparse concentric ring array using differential evolution algorithm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20181012 Termination date: 20190918 |