CN105186541A - Regional power grid reactive power optimization method based on limit tidal current - Google Patents

Regional power grid reactive power optimization method based on limit tidal current Download PDF

Info

Publication number
CN105186541A
CN105186541A CN201510695170.0A CN201510695170A CN105186541A CN 105186541 A CN105186541 A CN 105186541A CN 201510695170 A CN201510695170 A CN 201510695170A CN 105186541 A CN105186541 A CN 105186541A
Authority
CN
China
Prior art keywords
mrow
msub
mover
mtr
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510695170.0A
Other languages
Chinese (zh)
Other versions
CN105186541B (en
Inventor
唐永红
徐琳
蒲维
姜振超
刘俊勇
沈晓东
许立雄
郭焱林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd
Original Assignee
Sichuan University
Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University, Electric Power Research Institute of State Grid Sichuan Electric Power Co Ltd filed Critical Sichuan University
Priority to CN201510695170.0A priority Critical patent/CN105186541B/en
Publication of CN105186541A publication Critical patent/CN105186541A/en
Application granted granted Critical
Publication of CN105186541B publication Critical patent/CN105186541B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种基于极限潮流的地区电网无功优化方法,包括:采集地区电网的电力信息进行潮流计算,获得潮流计算结果;根据潮流计算结果,获得电压偏移率和关口功率因数;确定电压偏移率和关口功率因数的权重系数,并获得电压偏移率和关口功率因数权重系数的加权和;判断加权和是否大于工程阀值。本发明可以适应不同负荷方式下的无功配置需求,根据不同负荷方式下的优化问题可行域的特征采取PQ-PV节点类型转换的方式和松弛变压器档位约束的方式,进而扩大无功配置等问题的优化空间,保证了电力系统无功配置在理论上充分满足负荷需求。

The invention discloses a reactive power optimization method for regional power grids based on limit currents. The weight coefficient of the voltage deviation rate and the gate power factor, and obtain the weighted sum of the voltage deviation rate and the weight coefficient of the gate power factor; judge whether the weighted sum is greater than the engineering threshold. The present invention can adapt to the reactive power allocation requirements under different load modes, and adopts the PQ-PV node type conversion mode and the mode of relaxing the transformer stall constraint according to the characteristics of the feasible domain of the optimization problem under different load modes, and then expands the reactive power configuration, etc. The optimization space of the problem ensures that the reactive power configuration of the power system can fully meet the load demand in theory.

Description

一种基于极限潮流的地区电网无功优化方法A Reactive Power Optimization Method for Regional Power Grid Based on Limit Power Flow

技术领域technical field

本发明涉及电力系统无功控制技术领域,具体涉及到一种基于极限潮流的地区电网无功优化方法。The invention relates to the technical field of reactive power control in electric power systems, in particular to a reactive power optimization method for regional power grids based on limit current flow.

背景技术Background technique

随着电网建设高速发展,电网覆盖范围不断扩大,结构日趋复杂,电网运行的稳定性、安全性和可靠性也变得更加重要。目前供电公司电力调度、自动化部门、继保、运行维护、通讯等部门虽各司其职但也需要通力协作,及时、准确的获得相关电网运行信息能大大提高其工作效率,同时各部门能发挥在各自专业领域的优势,更好的互相配合保证电网的正常运行;开放调度数据共享渠道,建立不受时间、地域限制的信息网络,加强各部门对调度工作的支持与协作,发挥各工作环节的主观能动性,为建立更为和谐、高效的工作模式打下坚实基础,是电网正常运行的重要保障。With the rapid development of power grid construction, the coverage of the power grid is continuously expanding, and the structure is becoming more and more complex. The stability, safety and reliability of the power grid operation have become more important. At present, although the power dispatching, automation department, relay protection, operation and maintenance, communication and other departments of the power supply company perform their duties, they also need to work together. Timely and accurate acquisition of relevant power grid operation information can greatly improve their work efficiency. At the same time, all departments can play Advantages in their respective professional fields, better cooperation with each other to ensure the normal operation of the power grid; open dispatch data sharing channels, establish an information network that is not limited by time and region, strengthen the support and collaboration of various departments for dispatch work, and give full play to all work links It lays a solid foundation for establishing a more harmonious and efficient working mode, and is an important guarantee for the normal operation of the power grid.

地区电网无功优化是保障电网经济安全运行、维持一定的电压水平和降低网络损耗的重要手段。在满足潮流方程约束、节点电压约束和发电机出力约束等约束条件的情况下,无功优化通过调整无功潮流的分布,可以达到系统有功损耗最小、电压质量最好、运行费用最低或者电压稳定裕度最大的目标。Reactive power optimization of regional power grid is an important means to ensure the economical and safe operation of the power grid, maintain a certain voltage level and reduce network loss. In the case of satisfying constraints such as power flow equation constraints, node voltage constraints, and generator output constraints, reactive power optimization can achieve the minimum active power loss of the system, the best voltage quality, the lowest operating cost, or voltage stability by adjusting the distribution of reactive power flow. The goal with the greatest margin.

而目前,在省地一体化协调控制的要求下,地区电网存在着主变高压侧功率因数普遍偏低,并联无功补偿设备容量与系统需求不匹配的问题,造成电压合格率低,输、配电网中电能损失严重,对设备的运行安全以及使用寿命年限带来挑战。根据目前国内外研究进程和运行经验总结出无功优化的问题,主要包括两方面:1)现有的无功配置能够满足系统的需求或者说系统处于负荷小方式下,变压器档位限制和电容器投、切次数的限制进一步限制了可行域,但始终存在最优解,若优化方法选择不当很可能只找到次优解;2)现有的无功配置完全不能满足负荷需求或者说系统处于负荷大方式下,最优解不在现有参数配合下的可行域内,因此寻优得到的结果往往是边界值,系统电压越限或者无功越限严重。At present, under the requirements of provincial and regional integrated coordinated control, the power factor of the high-voltage side of the main transformer in the regional power grid is generally low, and the capacity of the parallel reactive power compensation equipment does not match the system requirements, resulting in a low voltage qualification rate, transmission, The serious loss of electric energy in the distribution network brings challenges to the operation safety and service life of the equipment. According to the current research process and operation experience at home and abroad, the problem of reactive power optimization is summarized, which mainly includes two aspects: 1) The existing reactive power configuration can meet the needs of the system or the system is in a small load mode, the transformer gear limit and the capacitor The limitation of switching and cutting times further limits the feasible region, but there is always an optimal solution. If the optimization method is not selected properly, only a suboptimal solution may be found; 2) The existing reactive power configuration cannot meet the load demand at all or the system is under load. In the large mode, the optimal solution is not within the feasible region under the cooperation of the existing parameters, so the result of optimization is often a boundary value, and the system voltage or reactive power exceeds the limit seriously.

针对问题1)国内外学者提出了各种改进算法,如遗传算法、基于遗传算法与内点法的混合算法、原-对偶内点法等,能较好的解决计算精度和收敛的问题,但计算量大,复杂程度高,在大规模电网中的应用还有待进一步研究;针对问题2)现有的无功优化并不能解决,对于地区电网而言,无功规划相对保守,不能为系统运行提供更为经济安全的物理基础。For problem 1) domestic and foreign scholars have proposed various improved algorithms, such as genetic algorithm, hybrid algorithm based on genetic algorithm and interior point method, primal-dual interior point method, etc., which can better solve the problems of calculation accuracy and convergence, but The amount of calculation is large and the complexity is high, and its application in large-scale power grids needs further research; for problem 2) the existing reactive power optimization cannot solve the problem. For regional power grids, reactive power planning is relatively conservative and cannot be used for system operation. Provide a more economical and secure physical basis.

基于以上问题,需要寻求一种针对目前无功配置与系统需求之间的不匹配问题的解决途径,为增设无功设备配置和容量选取提供技术基础,从而提高电网运行的经济性和安全性。Based on the above problems, it is necessary to seek a solution to the mismatch between the current reactive power configuration and system requirements, and provide a technical basis for adding reactive power equipment configuration and capacity selection, thereby improving the economy and safety of power grid operation.

发明内容Contents of the invention

本发明的目的是提供一种基于极限潮流的地区电网无功优化方法。The purpose of the present invention is to provide a reactive power optimization method of regional power grid based on limit current.

为达上述目的,本发明的一个实施例中提供了采集地区电网的电力信息进行潮流计算,并获得潮流计算结果;In order to achieve the above purpose, one embodiment of the present invention provides the power flow calculation by collecting the power information of the regional power grid, and obtaining the result of the power flow calculation;

根据潮流计算结果,获得电压偏移率和关口功率因数;According to the power flow calculation results, the voltage offset rate and gate power factor are obtained;

确定电压偏移率和关口功率因数的权重系数,并获得电压偏移率和关口功率因数权重系数的加权和;Determine the weight coefficient of the voltage offset rate and the gate power factor, and obtain the weighted sum of the voltage offset rate and the weight coefficient of the gate power factor;

判断加权和是否大于工程阀值;Judging whether the weighted sum is greater than the engineering threshold;

当所述加权和大于工程阀值时,将地区电网的负荷节点从PQ节点转换成PV节点,并得到功率缺额负荷节点以及功率缺额总量;When the weighted sum is greater than the engineering threshold, the load node of the regional power grid is converted from the PQ node to the PV node, and the power deficit load node and the total power deficit are obtained;

将所述功率缺额负荷节点从PV节点转换成PQ节点,并判断负荷节点转换后的电压偏移率和关口功率因数是否改善;Converting the power deficit load node from a PV node to a PQ node, and judging whether the voltage offset rate and the gate power factor after the load node conversion are improved;

当所述电压偏移率和关口功率因数未改善时将地区电网中负荷节点PQ节点转换成PV节点;当所述电压偏移率和关口功率因数未改善时进行根据调整后的潮流参数进行无功优化;When the voltage deviation rate and the gate power factor are not improved, the load node PQ node in the regional power grid is converted into a PV node; power optimization;

当所述加权和不大于工程阀值时,进行松弛变压器档位限制;再进行无功优化。When the weighted sum is not greater than the engineering threshold, relax the gear limit of the transformer; and then optimize the reactive power.

优选的,将地区电网中PQ节点转换成PV节点的负荷节点包括10KV节点和30KV节点。Preferably, the load nodes for converting PQ nodes into PV nodes in the regional power grid include 10KV nodes and 30KV nodes.

优选的,功率缺额负荷节点从PV节点转换成PQ节点是逐步进行的;功率缺额负荷节点从PV节点转换成PQ节点逐步进行的方法为:每当恢复一个负荷节点时判断负荷节点转换后的电压偏移率和关口功率因数是否改善。Preferably, the power deficit load node is converted from the PV node to the PQ node step by step; the power gap load node is gradually converted from the PV node to the PQ node. The method is: whenever a load node is restored, the voltage after the load node conversion is judged Whether the offset rate and gate power factor are improved.

优选的,无功优化模型的目标函数为:Preferably, the objective function of the reactive power optimization model is:

minmin Ff == ΣΣ kk == 11 KK ρρ sthe s ′′ (( ΣΣ ii ∈∈ NN BB ∪∪ NN TT ΔPΔP ii ++ λλ ΣΣ ii ∈∈ NN || VV ii -- VV ii sthe s pp ee cc || VV ii mm aa xx )) ;;

其中,ΔPi为电气元件的有功损耗;λ为权重系数;Vispec为节点i的电压期望值;Vimax为节点i的电压最大值。Among them, ΔP i is the active power loss of electrical components; λ is the weight coefficient; V ispec is the expected voltage value of node i; V imax is the maximum voltage value of node i.

优选的,无功优化的约束条件包括等式约束和不等式约束,所述不等式约束包括控制变量约束和状态变量约束。Preferably, the constraints of reactive power optimization include equality constraints and inequality constraints, and the inequality constraints include control variable constraints and state variable constraints.

优选的,等式约束的函数为:Preferably, the function of the equality constraint is:

PP ii == Uu ii ΣUΣ U jj (( GG ii jj cosθcosθ ii jj ++ BB ii jj sinθsinθ ii jj )) QQ ii == Uu ii ΣUΣ U jj (( GG ii jj sinθsinθ ii jj -- BB ii jj cosθcosθ ii jj ))

其中,Pi、Qi为节点i的注入功率;Uj为节点电压幅值;θij为节点i、j的相角差。Among them, P i and Q i are the injected power of node i; U j is the node voltage amplitude; θ ij is the phase angle difference between nodes i and j.

优选的,状态变量约束的函数为:Preferably, the function of state variable constraints is:

QQ GG ii minmin ≤≤ QQ GG ii ≤≤ QQ GG ii mm aa xx ,, ii ∈∈ NN GG Uu ii minmin ≤≤ Uu ii ≤≤ Uu ii mm aa xx ,, ii ∈∈ {{ NN -- NN GG }} QQ TT ii minmin ≤≤ QQ TT ii ≤≤ QQ TT ii maxmax ,, ii ∈∈ NN TT GG KK

其中,QGmin、QGmax为发电机无功出力的上下限;Umin、Umax为节点电压上下限;QTimin、QTimax为关口变压器高压侧无功功率的上下限。Among them, Q Gmin and Q Gmax are the upper and lower limits of the reactive output of the generator; U min and U max are the upper and lower limits of the node voltage; Q Timin and Q Timax are the upper and lower limits of the reactive power of the high voltage side of the gateway transformer.

优选的,控制变量约束的函数为:Preferably, the function to control variable constraints is:

Uu GG ii minmin ≤≤ Uu GG ii ≤≤ Uu GG ii mm aa xx QQ CC ii minmin -- QQ ~~ CC ii 00 ≤≤ QQ CC ii ≤≤ QQ CC ii mm aa xx ++ QQ CC ii 00 TT KK ii minmin -- TT ~~ KK ii 00 ≤≤ TT KK ii ≤≤ TT KK ii mm aa xx ++ TT ‾‾ KK ii 00

其中,并联电容器QCi∈NC';变压器档位TKi∈NT表示松弛量的上限,表示松弛量的下限;Among them, parallel capacitor Q Ci ∈ N C '; transformer gear T Ki ∈ N T ; and represents the upper limit of the slack, and Indicates the lower limit of the amount of relaxation;

以及增加约束为:and adding constraints as:

TT ‾‾ KK ii 00 -- 11 -- sthe s 11 TT KK ii ′′ == 00 ,, ii ∈∈ NN TT TT ~~ KK ii 00 -- 11 -- sthe s 22 TT KK ii ′′ == 00 QQ ‾‾ CC ii 00 -- ythe y 11 QQ CC ii ′′ == 00 ,, ii ∈∈ NN CC ′′ QQ ~~ CC ii 00 -- ythe y 22 QQ CC ii ′′ == 00

其中,表示变压器档位松弛量的上下限;TKi′为变压器档位的步长;表示电容器容量的松弛量上下限;QCi′为一组电容器的容量;s1、s2、y1、y2∈Z。in, and Indicates the upper and lower limits of transformer gear slack; T Ki ′ is the step size of transformer gear; and Indicates the upper and lower limits of the slack of capacitor capacity; Q Ci ′ is the capacity of a group of capacitors; s 1 , s 2 , y 1 , y 2 ∈ Z.

优选的,无功优化的结果为Preferably, the result of reactive power optimization is

xx == [[ Uu 11 ...... Uu nno ,, QQ GG 11 ...... QQ GG pp ,, QQ CC 11 ...... QQ CC mm ,, TT KK 11 ...... TT KK kk ,, QQ ‾‾ CC 1010 ...... QQ ‾‾ CC (( ww ++ mm )) 00 ,, TT ‾‾ KK 1010 ...... TT ‾‾ KK kk 00 ,, QQ ~~ CC 1010 ...... QQ ~~ CC (( ww ++ mm )) 00 ,, TT ~~ KK 1010 ...... TT ~~ KK kk 00 ]] ..

综上所述,本发明具有以下优点:In summary, the present invention has the following advantages:

为适应不同负荷方式下的无功配置需求,本发明根据不同负荷方式下的优化问题可行域的特征采取PQ-PV节点类型转换的方式和松弛变压器档位约束的方式,保证了电力系统无功配置在理论上充分满足负荷需求,进而扩大原问题的优化空间,调整优化潮流的迭代方向使问题进入有解域,并按照负荷节点的无功缺额指标得到无功配置不合理的节点以及相应的容量;同时,在这种节点转换方式的操作下,整个电网处于兼顾安全与经济的无功补偿的极限状态,并称此时的无功优化潮流为极限潮流。In order to meet the requirements of reactive power allocation under different load modes, the present invention adopts the PQ-PV node type conversion mode and the mode of relaxing the transformer stall constraint according to the characteristics of the feasible region of the optimization problem under different load modes, so as to ensure the reactive power of the power system The configuration fully meets the load demand in theory, and then expands the optimization space of the original problem, adjusts the iterative direction of the optimization power flow to make the problem enter the solution domain, and obtains the nodes with unreasonable reactive power configuration and the corresponding Capacity; at the same time, under the operation of this node conversion mode, the entire power grid is in the limit state of reactive power compensation that takes into account both safety and economy, and the reactive power optimization flow at this time is called the limit flow.

1)安全经济特性,本发明在搭建模型时,以系统有功损耗和电压偏移率作为目标函数,充分考虑了电压质量的改善和系统无功电源管理能力的提升,也就给系统的安全经济运行提供更好的物理基础;1) Safety and economic characteristics. When building the model, the present invention takes the system active power loss and voltage offset rate as the objective function, fully considers the improvement of the voltage quality and the improvement of the system's reactive power management capability, and also gives the system safety and economy Run provides a better physical basis;

2)灵活性,本发明根据不同负荷方式下的优化问题可行域特征,对负荷节点进行PQ-PV节点类型转换的方式和松弛变压器档位约束的方式,充分考虑系统运行方式的不确定性,能够对不同负荷方式下的无功配置进行研究;2) Flexibility. According to the characteristics of the feasible domain of the optimization problem under different load modes, the present invention performs PQ-PV node type conversion on load nodes and relaxes the transformer stall constraints, fully considering the uncertainty of the system operation mode, Be able to study the reactive power configuration under different load modes;

3)直观明了,本发明通过负荷节点类型从PQ节点到PV节点的转换,然后按照无功缺额指标得到该节点所需增设的无功配置容量,而松弛变压器档位的限制能够优化当前电网的网络结构,同样可以通过最优解的结构得到当前电网运行状态是否需要优化以及采取怎样的措施,对于电网运行调度和规划部门能够得到相应地最为直观清晰和合理的建议;3) Intuitive and clear, the present invention converts the load node type from the PQ node to the PV node, and then obtains the additional reactive power configuration capacity required by the node according to the reactive power shortage index, and relaxes the limit of the transformer stall to optimize the current power grid. The network structure can also be obtained through the structure of the optimal solution to determine whether the current power grid operation status needs to be optimized and what measures to take, and the most intuitive, clear and reasonable suggestions can be obtained for the power grid operation dispatching and planning departments;

4)鲁棒性强,本发明在大规模的地区电网和IEEE标准系统中的应用,并在各种负荷方式下均能给出合理的无功配置和网络结构优化的建议,具有广泛的适用性和鲁棒性。4) Strong robustness, the present invention is applied in large-scale regional power grids and IEEE standard systems, and can provide reasonable reactive power configuration and network structure optimization suggestions under various load modes, and has wide application and robustness.

附图说明Description of drawings

图1为本发明的原理框图;Fig. 1 is a block diagram of the present invention;

图2为本发明一个实施例中220kV单站网架结构。Fig. 2 is a 220kV single-station grid structure in an embodiment of the present invention.

具体实施方式Detailed ways

本发明的一个实施例中提供了一个实施例中提供了一种基于极限潮流的地区电网无功优化方法;包括以下过程:An embodiment of the present invention provides a method for optimizing reactive power of regional power grid based on limit power flow; including the following process:

S1、采集地区电网的电力信息进行潮流计算,并获得潮流计算结果。S1. Collect the power information of the regional power grid to calculate the power flow, and obtain the result of the power flow calculation.

电网中负载的负荷方式呈现典型的日负荷曲线具有一定的周期性,但是在系统运行环境的不确定性下,加上负荷的波动性,使得负荷实际值与典型的预测值之间存在不可忽视的误差。因此,在进行无功优化之前,必须提取不同负荷方式下的可行域特征,并根据相应的特征进行不同的处理手段。The load mode of the load in the power grid presents a typical daily load curve with certain periodicity. However, under the uncertainty of the system operating environment and the fluctuation of the load, there is a non-negligible gap between the actual load value and the typical predicted value. error. Therefore, before reactive power optimization, it is necessary to extract the characteristics of the feasible region under different load modes, and carry out different processing methods according to the corresponding characteristics.

在典型的负荷方式下,理论上的最优解不存在于可行域中,而在不同的负荷方式下可行域特征与相应的电压偏移率、关口功率因数指标紧密联系,因此可通过计算以上指标表征可行域特征。In typical load mode, the theoretical optimal solution does not exist in the feasible region, but under different load modes, the characteristics of the feasible region are closely related to the corresponding voltage offset rate and gate power factor index, so the above calculation can Indicators characterize the characteristics of the feasible domain.

S2、根据潮流计算结果,获得电压偏移率和关口功率因数。S2. Obtain the voltage offset rate and the gate power factor according to the calculation result of the power flow.

因此,本发明通过从潮流大数据中获得关键的影响因素电压偏移率和关口功率因数来进行表征判断。Therefore, the present invention performs characterization judgment by obtaining the key influencing factors voltage offset rate and gate power factor from the power flow big data.

S3、确定电压偏移率和关口功率因数的权重系数,并获得电压偏移率和关口功率因数权重系数的加权和。所述加权和是指,将电压偏移率和关口功率因数分别与其权重系数的乘积之和。S3. Determine the weight coefficient of the voltage offset rate and the gate power factor, and obtain a weighted sum of the voltage offset rate and the weight coefficient of the gate power factor. The weighted sum refers to the sum of the products of the voltage offset rate and the gate power factor and their weight coefficients respectively.

在从电力系统中获得电压偏移率和关口功率因数的相关参数后,通过计算关键影响因素的加权和来判断电网运行状态。本发明所指的权重系数可以预先输入参数或者通过层分析法或者经验值法来确定权重系系数。其中权重系数是指该影响因素在所有因素中的重要性。After obtaining the relevant parameters of the voltage deviation rate and the gate power factor from the power system, the operation status of the power grid is judged by calculating the weighted sum of the key influencing factors. The weight coefficients referred to in the present invention can be input in parameters in advance or determined by layer analysis method or empirical value method. The weight coefficient refers to the importance of the influencing factor among all factors.

在得到加权和后,判断加权和是否大于工程阀值;After obtaining the weighted sum, judge whether the weighted sum is greater than the engineering threshold;

S4、当加权和大于工程阀值时,将地区电网的负荷节点中的PQ节点转换成PV节点;并得到功率缺额负荷节点以及功率缺额总量。功率缺额总量=PV节点类型下所需的容量-无功电源所发出的容量+该节点的负荷需求。所述工程阀值是预设的参数;其与电力系统中的各个影响因素数据相关。S4. When the weighted sum is greater than the engineering threshold, convert the PQ node among the load nodes of the regional power grid into a PV node; and obtain the power deficit load node and the total power deficit. The total amount of power deficit = the required capacity under the PV node type - the capacity issued by the reactive power source + the load demand of the node. The engineering threshold is a preset parameter; it is related to the data of various influencing factors in the power system.

将功率缺额负荷节点从PV节点转换成PQ节点,并判断负荷节点转换后的电压偏移率和关口功率因数是否改善。Convert the power deficit load node from PV node to PQ node, and judge whether the voltage deviation rate and gate power factor after the load node conversion are improved.

本发明中电压偏移率和关口功率因数是否改善是指,在进行调整运行后,从调整后的潮流数据中获得相关影响因素参数后,并计算电压偏移率和关口功率因数,判断调整后的数据是否更接近额定数据或者预先设定的参数,当这些参数比调整后更加接近额定数据或者预设数据时,即可认为其得到改善。In the present invention, whether the voltage deviation rate and the gate power factor are improved means that after the adjustment operation is performed, after the relevant influencing factor parameters are obtained from the adjusted power flow data, the voltage deviation rate and the gate power factor are calculated, and the adjusted Whether the data is closer to the rated data or preset parameters, when these parameters are closer to the rated data or preset data than after adjustment, it can be considered to be improved.

S5、当电压偏移率和关口功率因数未改善时将地区电网中负荷节点PQ节点转换成PV节点;当电压偏移率和关口功率因数未改善时进行根据调整后的潮流参数进行无功优化;S5. When the voltage deviation rate and the gate power factor are not improved, the load node PQ node in the regional power grid is converted into a PV node; when the voltage deviation rate and the gate power factor are not improved, reactive power optimization is performed according to the adjusted power flow parameters ;

S6、当加权和不大于工程阀值时,进行松弛变压器档位限制;再进行无功优化。S6. When the weighted sum is not greater than the engineering threshold, relax the gear limit of the transformer; and then optimize the reactive power.

本发明的无功优模型的目标函数为:The objective function of the reactive power optimal model of the present invention is:

minmin Ff == ΣΣ kk == 11 KK ρρ sthe s ′′ (( ΣΣ ii ∈∈ NN BB ∪∪ NN TT ΔPΔP ii ++ λλ ΣΣ ii ∈∈ NN || VV ii -- VV ii sthe s pp ee cc || VV ii mm aa xx )) ;;

其中,ΔPi为电气元件的有功损耗;λ为权重系数;Vispec为节点i的电压期望值;Vimax为节点i的电压最大值。Among them, ΔP i is the active power loss of electrical components; λ is the weight coefficient; V ispec is the expected voltage value of node i; V imax is the maximum voltage value of node i.

优选的,无功优化的约束条件包括等式约束和不等式约束,所述不等式约束包括控制变量约束和状态变量约束。Preferably, the constraints of reactive power optimization include equality constraints and inequality constraints, and the inequality constraints include control variable constraints and state variable constraints.

优选的,等式约束的函数为:Preferably, the function of the equality constraint is:

PP ii == Uu ii ΣUΣU jj (( GG ii jj cosθcosθ ii jj ++ BB ii jj sinθsinθ ii jj )) QQ ii == Uu ii ΣUΣU jj (( GG ii jj sinθsinθ ii jj -- BB ii jj cosθcosθ ii jj ))

其中,Pi、Qi为节点i的注入功率;Uj为节点电压幅值;θij为节点i、j的相角差。Among them, P i and Q i are the injected power of node i; U j is the node voltage amplitude; θ ij is the phase angle difference between nodes i and j.

优选的,状态变量约束的函数为:Preferably, the function of state variable constraints is:

QQ GG ii minmin ≤≤ QQ GG ii ≤≤ QQ GG ii mm aa xx ,, ii ∈∈ NN GG Uu ii minmin ≤≤ Uu ii ≤≤ Uu ii mm aa xx ,, ii ∈∈ {{ NN -- NN GG }} QQ TT ii minmin ≤≤ QQ TT ii ≤≤ QQ TT ii maxmax ,, ii ∈∈ NN TT GG KK

其中,QGmin、QGmax为发电机无功出力的上下限;Umin、Umax为节点电压上下限;QTimin、QTimax为关口变压器高压侧无功功率的上下限。Among them, Q Gmin and Q Gmax are the upper and lower limits of the reactive output of the generator; U min and U max are the upper and lower limits of the node voltage; Q Timin and Q Timax are the upper and lower limits of the reactive power of the high voltage side of the gateway transformer.

优选的,控制变量约束的函数为:Preferably, the function to control variable constraints is:

Uu GG ii minmin ≤≤ Uu GG ii ≤≤ Uu GG ii mm aa xx QQ CC ii minmin -- QQ ~~ CC ii 00 ≤≤ QQ CC ii ≤≤ QQ CC ii mm aa xx ++ QQ CC ii 00 TT KK ii minmin -- TT ~~ KK ii 00 ≤≤ TT KK ii ≤≤ TT KK ii mm aa xx ++ TT ‾‾ KK ii 00

其中,并联电容器QCi∈NC';变压器档位TKi∈NT表示松弛量的上限,表示松弛量的下限;Among them, parallel capacitor Q Ci ∈ N C '; transformer gear T Ki ∈ N T ; and represents the upper limit of the slack, and Indicates the lower limit of the amount of relaxation;

以及增加约束为:and adding constraints as:

TT ‾‾ KK ii 00 -- 11 -- sthe s 11 TT KK ii ′′ == 00 ,, ii ∈∈ NN TT TT ~~ KK ii 00 -- 11 -- sthe s 22 TT KK ii ′′ == 00 QQ ‾‾ CC ii 00 -- ythe y 11 QQ CC ii ′′ == 00 ,, ii ∈∈ NN CC ′′ QQ ~~ CC ii 00 -- ythe y 22 QQ CC ii ′′ == 00

其中,表示变压器档位松弛量的上下限;TKi′为变压器档位的步长;表示电容器容量的松弛量上下限;QCi′为一组电容器的容量;s1、s2、y1、y2∈Z。in, and Indicates the upper and lower limits of transformer gear slack; T Ki ′ is the step size of transformer gear; and Indicates the upper and lower limits of the slack of capacitor capacity; Q Ci ′ is the capacity of a group of capacitors; s 1 , s 2 , y 1 , y 2 ∈ Z.

优选的,无功优化的结果为Preferably, the result of reactive power optimization is

xx == [[ Uu 11 ...... Uu nno ,, QQ GG 11 ...... QQ GG pp ,, QQ CC 11 ...... QQ CC mm ,, TT KK 11 ...... TT KK kk ,, QQ ‾‾ CC 1010 ...... QQ ‾‾ CC (( ww ++ mm )) 00 ,, TT ‾‾ KK 1010 ...... TT ‾‾ KK kk 00 ,, QQ ~~ CC 1010 ...... QQ ~~ CC (( ww ++ mm )) 00 ,, TT ~~ KK 1010 ...... TT ~~ KK kk 00 ]] ..

本发明中所述的松弛变压器档位限制是指,现有的变压器档位在运行过程中有限制,一般限制变压器档位只能够调整一个档位;本发明松弛变压器档位后,可以使其调整至少2个档位,扩大变压器档位变化范围。The relaxation of the transformer stall limit in the present invention means that the existing transformer stalls are limited during operation, and generally the transformer stalls can only be adjusted to one stall; after the transformer stalls are relaxed in the present invention, it can be made Adjust at least 2 gears to expand the range of transformer gear changes.

电容器的容量限制和变压器档位限制是影响无功优化的重要因素,因此在对其进行松弛时需根据不同的负荷方式调整松弛的策略。下面以某一220kV单站为例说明极限潮流模型的建立。Capacitor capacity limitation and transformer gear limitation are important factors affecting reactive power optimization, so it is necessary to adjust the relaxation strategy according to different load modes when relaxing it. The following takes a 220kV single station as an example to illustrate the establishment of the limit power flow model.

在协调要求下,尤其在负荷大方式下,迫于经济安全运行的目的,500kV主网不可能大容量的输送无功,无功补偿得按照就地平衡的原则;而在小方式下,500kV主网无功充裕,地区电网需要足够的调节措施来保证电网安全运行。Under the requirements of coordination, especially in the mode of large load, due to the purpose of economical and safe operation, it is impossible for the 500kV main network to transmit reactive power with a large capacity, and the reactive power compensation must follow the principle of local balance; while in the mode of small load, 500kV The reactive power of the main grid is sufficient, and the regional grid needs sufficient adjustment measures to ensure the safe operation of the grid.

图2中系统总负荷为243.0648+j73.05MVA,基础潮流中关口功率因数为0.941,为了满足关口功率因数0.95以上的要求,以及满足系统负荷需求,投入10kV母线的电容器,导致系统110KV电压越限,而地方电网必须在满足电压合格和关口功率因数之间取舍,这直接反映出系统无功配置的不合理性。In Figure 2, the total load of the system is 243.0648+j73.05MVA, and the gate power factor in the basic power flow is 0.941. In order to meet the requirements of the gate power factor above 0.95 and the system load demand, a 10kV bus capacitor is put into the system, causing the system 110KV voltage to exceed the limit , and the local power grid must choose between satisfying the voltage qualification and the gate power factor, which directly reflects the irrationality of the reactive power configuration of the system.

因此,引入松弛变量表示松弛量的上限,表示松弛量的下限,对控制变量进行松弛;并且现有的无功配置中,很有可能存在10kV母线没有并联电容器,因此在极限潮流的框架下需要增加相应的电容器w台并构成集合NCE,则NC'={NC,NCE},控制变量约束为以下形式Therefore, the introduction of slack variables and represents the upper limit of the slack, and Indicates the lower limit of the slack, and relaxes the control variable; and in the existing reactive power configuration, it is very likely that there is no parallel capacitor in the 10kV bus, so under the framework of the limit power flow, it is necessary to add a corresponding capacitor w and form a set N CE , then N C '={ NC , N CE }, the control variables are constrained in the following form

Uu GG ii minmin ≤≤ Uu GG ii ≤≤ Uu GG ii mm aa xx QQ CC ii minmin -- QQ ~~ CC ii 00 ≤≤ QQ CC ii ≤≤ QQ CC ii mm aa xx ++ QQ ‾‾ CC ii 00 TT KK ii minmin -- TT ~~ KK ii 00 ≤≤ TT KK ii ≤≤ TT KK ii mm aa xx ++ TT ‾‾ KK ii 00 -- -- -- (( 11 ))

其中,并联电容器QCi∈NC';变压器档位TKi∈NTAmong them, parallel capacitor Q Ci ∈ N C '; transformer gear T KiNT .

并增加约束and add constraints

TT ‾‾ KK ii 00 -- 11 -- sthe s 11 TT KK ii ′′ == 00 ,, ii ∈∈ NN TT TT ~~ KK ii 00 -- 11 -- sthe s 22 TT KK ii ′′ == 00 QQ ‾‾ CC ii 00 -- ythe y 11 QQ CC ii ′′ == 00 ,, ii ∈∈ NN CC ′′ QQ ~~ CC ii 00 -- ythe y 22 QQ CC ii ′′ == 00 -- -- -- (( 22 ))

其中,表示变压器档位松弛量的上下限;TKi′为变压器档位的步长;表示电容器容量的松弛量上下限;QCi′为一组电容器的容量;s1、s2、y1、y2∈Z。in, and Indicates the upper and lower limits of transformer gear slack; T Ki ′ is the step size of transformer gear; and Indicates the upper and lower limits of the slack of capacitor capacity; Q Ci ′ is the capacity of a group of capacitors; s 1 , s 2 , y 1 , y 2 ∈ Z.

在极限潮流的框架下,对状态变量中的关口功率因数和节点电压幅值进行更为严格的限制,因此,地区电网无功优化模型变更为以下形式:Under the framework of limit power flow, the gate power factor and node voltage amplitude in the state variables are more strictly restricted. Therefore, the reactive power optimization model of the regional power grid is changed to the following form:

minmin Ff == ΣΣ kk == 11 KK ρρ sthe s ′′ (( ΣΣ ii ∈∈ NN BB ∪∪ NN TT ΔPΔP ii ++ λλ ΣΣ ii ∈∈ NN || VV ii -- VV ii sthe s pp ee cc || VV ii mm aa xx )) -- -- -- (( 33 ))

其中,等式约束的函数为:Among them, the function of the equality constraint is:

PP ii == Uu ii ΣUΣ U jj (( GG ii jj cosθcosθ ii jj ++ BB ii jj sinθsinθ ii jj )) QQ ii == Uu ii ΣUΣ U jj (( GG ii jj sinθsinθ ii jj -- BB ii jj cosθcosθ ii jj ))

状态变量约束的函数为:The function of state variable constraints is:

QQ GG ii minmin ≤≤ QQ GG ii ≤≤ QQ GG ii mm aa xx ,, ii ∈∈ NN GG Uu ii minmin ≤≤ Uu ii ≤≤ Uu ii mm aa xx ,, ii ∈∈ {{ NN -- NN GG }} QQ TT ii minmin ≤≤ QQ TT ii ≤≤ QQ TT ii maxmax ,, ii ∈∈ NN TT GG KK

则可以导出的优化出来的结果为:Then the optimized results that can be exported are:

xx == [[ Uu 11 ...... Uu nno ,, QQ GG 11 ...... QQ GG pp ,, QQ CC 11 ...... QQ CC mm ,, TT KK 11 ...... TT KK kk ,, QQ ‾‾ CC 1010 ...... QQ ‾‾ CC (( ww ++ mm )) 00 ,, TT ‾‾ KK 1010 ...... TT ‾‾ KK kk 00 ,, QQ ~~ CC 1010 ...... QQ ~~ CC (( ww ++ mm )) 00 ,, TT ~~ KK 1010 ...... TT ~~ KK kk 00 ]]

通过最优解的结构可以得出,在极限潮流下,如果变压器档位的松弛量大,证明在该断面下电网无功配置满足要求,而网络结构有待优化;同样地,如果电容器松弛量大,则证明该电网无功配置的不合理性,给电网规划部门相应的建议。Through the structure of the optimal solution, it can be concluded that under the limit power flow, if the slack of the transformer gear is large, it proves that the reactive power configuration of the grid under this section meets the requirements, and the network structure needs to be optimized; similarly, if the slack of the capacitor is large , it proves the irrationality of the reactive power configuration of the grid, and gives corresponding suggestions to the grid planning department.

本发明的实施例中,将地区电网中PQ节点转换成PV节点的负荷节点包括10KV节点和30KV节点。In the embodiment of the present invention, the load nodes converted from PQ nodes in the regional power grid to PV nodes include 10KV nodes and 30KV nodes.

本发明的实施例中,功率缺额负荷节点从PV节点转换成PQ节点是逐步进行的;功率缺额负荷节点从PV节点转换成PQ节点逐步进行的方法为:每当恢复一个负荷节点时判断负荷节点转换后的电压偏移率和关口功率因数是否改善。In the embodiment of the present invention, the power deficit load node is converted into the PQ node from the PV node and is carried out step by step; Whether the converted voltage offset rate and gate power factor are improved.

Claims (10)

1. A regional power grid reactive power optimization method based on limit power flow comprises the following steps:
collecting power information of a regional power grid to perform load flow calculation, and obtaining a load flow calculation result;
obtaining a voltage deviation rate and a gateway power factor according to the load flow calculation result;
determining the weight coefficients of the voltage offset rate and the gateway power factor, and obtaining the weighted sum of the voltage offset rate and the gateway power factor weight coefficients;
judging whether the weighted sum is greater than an engineering threshold value;
when the weighted sum is larger than an engineering threshold value, converting the load node of the regional power grid from a PQ node to a PV node, and obtaining a power shortage load node and a power shortage total amount;
converting the power shortage load node from a PV node to a PQ node, and judging whether the voltage deviation rate and the gateway power factor after the load node conversion are improved or not;
converting a load node in a regional power grid from a PQ node to a PV node when the voltage offset rate and a gateway power factor are not improved; when the voltage deviation rate and the gateway power factor are not improved, performing reactive power optimization according to the adjusted power flow parameters;
when the weighted sum is not greater than the engineering threshold value, the gear limit of the relaxation transformer is carried out; and finishing reactive power optimization.
2. The method of claim 1, wherein: the load nodes for converting the PQ nodes into the PV nodes in the regional power grid comprise 10KV nodes and 30KV nodes.
3. The method of claim 1, wherein: the transition of the power deficit load node from the PV node to the PQ node is done step by step.
4. The method of claim 3, wherein: the method for gradually switching the power shortage load node from the PV node to the PQ node comprises the following steps: and judging whether the voltage deviation rate and the gateway power factor after the conversion of the load nodes are improved or not every time one load node is recovered.
5. The method of claim 1, wherein: the objective function of the reactive power optimization model is as follows:
<math> <mrow> <mi>min</mi> <mi> </mi> <mi>F</mi> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </munderover> <msup> <msub> <mi>&rho;</mi> <mi>s</mi> </msub> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>&Element;</mo> <msub> <mi>N</mi> <mi>B</mi> </msub> <mo>&cup;</mo> <msub> <mi>N</mi> <mi>T</mi> </msub> </mrow> </munder> <msub> <mi>&Delta;P</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>&lambda;</mi> <munder> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>&Element;</mo> <mi>N</mi> </mrow> </munder> <mfrac> <mrow> <mo>|</mo> <msub> <mi>V</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>i</mi> <mi>s</mi> <mi>p</mi> <mi>e</mi> <mi>c</mi> </mrow> </msub> <mo>|</mo> </mrow> <msub> <mi>V</mi> <mrow> <mi>i</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
wherein, Δ PiIs the active loss of the electrical component; λ is a weight coefficient; vispecIs the voltage desired value of node i; vimaxIs the maximum voltage at node i.
6. The method of claim 1 or 5, wherein: the constraint conditions of the reactive power optimization comprise equality constraints and inequality constraints, and the inequality constraints comprise control variable constraints and state variable constraints.
7. The method of claim 6, wherein: the function of the equality constraint is:
<math> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>U</mi> <mi>i</mi> </msub> <msub> <mi>&Sigma;U</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>cos&theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>sin&theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>U</mi> <mi>i</mi> </msub> <msub> <mi>&Sigma;U</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mrow> <msub> <mi>G</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>sin&theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>B</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>cos&theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
wherein, Pi、QiInjection power for node i; u shapejIs the node voltage amplitude; thetaijIs the phase angle difference of the nodes i, j.
8. The method of claim 6, wherein: the function of the state variable constraint is:
<math> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mrow> <mi>G</mi> <mi>i</mi> <mi>min</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>Q</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>Q</mi> <mrow> <mi>G</mi> <mi>i</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>&Element;</mo> <msub> <mi>N</mi> <mi>G</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>U</mi> <mi>i</mi> </msub> <mo>&le;</mo> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>&Element;</mo> <mo>{</mo> <mi>N</mi> <mo>-</mo> <msub> <mi>N</mi> <mi>G</mi> </msub> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mrow> <mi>T</mi> <mi>i</mi> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>Q</mi> <mrow> <mi>T</mi> <mi>i</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>Q</mi> <mrow> <mi>T</mi> <mi>i</mi> <mi>max</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>&Element;</mo> <msub> <mi>N</mi> <mrow> <mi>T</mi> <mi>G</mi> <mi>K</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
wherein Q isGmin、QGmaxThe upper limit and the lower limit of the reactive power output of the generator are set; u shapemin、UmaxThe upper and lower limits of the node voltage are set; qTimin、QTimaxThe upper and lower limits of the reactive power of the high-voltage side of the gateway transformer are defined.
9. The method of claim 6, wherein: the function of the control variable constraint is:
<math> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>U</mi> <mrow> <mi>G</mi> <mi>i</mi> <mi>min</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>U</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>U</mi> <mrow> <mi>G</mi> <mi>i</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mrow> <mi>C</mi> <mi>i</mi> <mi>min</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>Q</mi> <mo>~</mo> </mover> <mrow> <mi>C</mi> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mo>&le;</mo> <msub> <mi>Q</mi> <mrow> <mi>C</mi> <mi>i</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>Q</mi> <mrow> <mi>C</mi> <mi>i</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>Q</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>C</mi> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>T</mi> <mrow> <mi>K</mi> <mi>i</mi> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>T</mi> <mo>~</mo> </mover> <mrow> <mi>K</mi> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mo>&le;</mo> <msub> <mi>T</mi> <mrow> <mi>K</mi> <mi>i</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>T</mi> <mrow> <mi>K</mi> <mi>i</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>T</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>K</mi> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
wherein the capacitor Q is connected in parallelCi∈NC'; transformer gear TKi∈NT <math> <msub> <mover> <mi>Q</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>C</mi> <mi>i</mi> <mn>0</mn> </mrow> </msub> </math> And <math> <msub> <mover> <mi>T</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>K</mi> <mi>i</mi> <mn>0</mn> </mrow> </msub> </math> the upper limit of the amount of relaxation is expressed, Q ~ C i 0 and T ~ K i 0 represents the lower limit of the amount of relaxation;
and adding the constraint as:
<math> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>T</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>K</mi> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mn>1</mn> </msub> <msup> <msub> <mi>T</mi> <mrow> <mi>K</mi> <mi>i</mi> </mrow> </msub> <mo>&prime;</mo> </msup> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>i</mi> <mo>&Element;</mo> <msub> <mi>N</mi> <mi>T</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>T</mi> <mo>~</mo> </mover> <mrow> <mi>K</mi> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mo>-</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>s</mi> <mn>2</mn> </msub> <msup> <msub> <mi>T</mi> <mrow> <mi>K</mi> <mi>i</mi> </mrow> </msub> <mo>&prime;</mo> </msup> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>Q</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>C</mi> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>1</mn> </msub> <msup> <msub> <mi>Q</mi> <mrow> <mi>C</mi> <mi>i</mi> </mrow> </msub> <mo>&prime;</mo> </msup> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>i</mi> <mo>&Element;</mo> <msup> <msub> <mi>N</mi> <mi>C</mi> </msub> <mo>&prime;</mo> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>Q</mi> <mo>~</mo> </mover> <mrow> <mi>C</mi> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>y</mi> <mn>2</mn> </msub> <msup> <msub> <mi>Q</mi> <mrow> <mi>C</mi> <mi>i</mi> </mrow> </msub> <mo>&prime;</mo> </msup> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
wherein, <math> <msub> <mover> <mi>T</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>K</mi> <mi>i</mi> <mn>0</mn> </mrow> </msub> </math> and T ~ K i 0 representing the upper limit and the lower limit of the gear relaxation amount of the transformer; t isKi' is the step size of the transformer gear; <math> <msub> <mover> <mi>Q</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>C</mi> <mi>i</mi> <mn>0</mn> </mrow> </msub> </math> and Q ~ C i 0 representing the capacity of the capacitorUpper and lower limits of the amount of relaxation; qCi' is the capacity of a set of capacitors; s1、s2、y1、y2∈Z。
10. The method of claim 1 or 5, wherein: the result of the reactive power optimization is
<math> <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>x</mi> <mo>=</mo> <mo>&lsqb;</mo> <msub> <mi>U</mi> <mn>1</mn> </msub> <mo>...</mo> <msub> <mi>U</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>Q</mi> <mrow> <mi>G</mi> <mn>1</mn> </mrow> </msub> <mo>...</mo> <msub> <mi>Q</mi> <mrow> <mi>G</mi> <mi>P</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> <mo>...</mo> <msub> <mi>Q</mi> <mrow> <mi>C</mi> <mi>m</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>T</mi> <mrow> <mi>K</mi> <mn>1</mn> </mrow> </msub> <mo>...</mo> <msub> <mi>T</mi> <mrow> <mi>K</mi> <mi>k</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>Q</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>C</mi> <mn>10</mn> </mrow> </msub> <mo>...</mo> <msub> <mover> <mi>Q</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>C</mi> <mrow> <mo>(</mo> <mrow> <mi>w</mi> <mo>+</mo> <mi>m</mi> </mrow> <mo>)</mo> </mrow> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mover> <mi>T</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>K</mi> <mn>10</mn> </mrow> </msub> <mo>...</mo> <msub> <mover> <mi>T</mi> <mo>&OverBar;</mo> </mover> <mrow> <mi>K</mi> <mi>k</mi> <mn>0</mn> </mrow> </msub> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>Q</mi> <mo>~</mo> </mover> <mrow> <mi>C</mi> <mn>10</mn> </mrow> </msub> <mo>...</mo> <msub> <mover> <mi>Q</mi> <mo>~</mo> </mover> <mrow> <mi>C</mi> <mrow> <mo>(</mo> <mrow> <mi>w</mi> <mo>+</mo> <mi>m</mi> </mrow> <mo>)</mo> </mrow> <mn>0</mn> </mrow> </msub> <mo>,</mo> <msub> <mover> <mi>T</mi> <mo>~</mo> </mover> <mrow> <mi>K</mi> <mn>10</mn> </mrow> </msub> <mo>...</mo> <msub> <mover> <mi>T</mi> <mo>~</mo> </mover> <mrow> <mi>K</mi> <mi>k</mi> <mn>0</mn> </mrow> </msub> <mo>&rsqb;</mo> <mo>.</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> </math>
CN201510695170.0A 2015-10-23 2015-10-23 A kind of area power grid idle work optimization method based on limit trend Active CN105186541B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510695170.0A CN105186541B (en) 2015-10-23 2015-10-23 A kind of area power grid idle work optimization method based on limit trend

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510695170.0A CN105186541B (en) 2015-10-23 2015-10-23 A kind of area power grid idle work optimization method based on limit trend

Publications (2)

Publication Number Publication Date
CN105186541A true CN105186541A (en) 2015-12-23
CN105186541B CN105186541B (en) 2017-09-15

Family

ID=54908463

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510695170.0A Active CN105186541B (en) 2015-10-23 2015-10-23 A kind of area power grid idle work optimization method based on limit trend

Country Status (1)

Country Link
CN (1) CN105186541B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166534A1 (en) * 2020-02-21 2021-08-26 株式会社日立製作所 System planning assistance system and system planning assistance method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162910A (en) * 1984-09-05 1986-03-31 Shinko Electric Co Ltd Reactive power compensating device
CN102055196A (en) * 2010-12-20 2011-05-11 南京软核科技有限公司 10 kv-distribution network reactive power compensation optimization method in power system
SE1200204A1 (en) * 2012-04-02 2012-04-04 Abb Research Ltd Methods and devices for controlling reactive power compensator
CN102709918A (en) * 2012-05-21 2012-10-03 广东省电力调度中心 Reactive power control method of grid gateway based on automatic volume control (AVC) system
CN104201693A (en) * 2014-09-03 2014-12-10 中国南方电网有限责任公司 Power distribution line reactive power optimization control method based on dynamic adjustment of power factor interval
CN104362647A (en) * 2014-10-30 2015-02-18 大唐(赤峰)新能源有限公司 Control method used for AVC (automatic voltage control) to control SVG (static var generator)
CN104485661A (en) * 2014-11-17 2015-04-01 中国南方电网有限责任公司 Tidal current automatic regulating method based on node type conversion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162910A (en) * 1984-09-05 1986-03-31 Shinko Electric Co Ltd Reactive power compensating device
CN102055196A (en) * 2010-12-20 2011-05-11 南京软核科技有限公司 10 kv-distribution network reactive power compensation optimization method in power system
SE1200204A1 (en) * 2012-04-02 2012-04-04 Abb Research Ltd Methods and devices for controlling reactive power compensator
CN102709918A (en) * 2012-05-21 2012-10-03 广东省电力调度中心 Reactive power control method of grid gateway based on automatic volume control (AVC) system
CN104201693A (en) * 2014-09-03 2014-12-10 中国南方电网有限责任公司 Power distribution line reactive power optimization control method based on dynamic adjustment of power factor interval
CN104362647A (en) * 2014-10-30 2015-02-18 大唐(赤峰)新能源有限公司 Control method used for AVC (automatic voltage control) to control SVG (static var generator)
CN104485661A (en) * 2014-11-17 2015-04-01 中国南方电网有限责任公司 Tidal current automatic regulating method based on node type conversion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166534A1 (en) * 2020-02-21 2021-08-26 株式会社日立製作所 System planning assistance system and system planning assistance method
JP2021136695A (en) * 2020-02-21 2021-09-13 株式会社日立製作所 System plan support system and system plan support method
JP7254041B2 (en) 2020-02-21 2023-04-07 株式会社日立製作所 SYSTEM PLANNING SUPPORT SYSTEM AND SYSTEM PLANNING SUPPORT METHOD

Also Published As

Publication number Publication date
CN105186541B (en) 2017-09-15

Similar Documents

Publication Publication Date Title
Colmenar-Santos et al. Distributed generation: A review of factors that can contribute most to achieve a scenario of DG units embedded in the new distribution networks
CN101931241B (en) Wind farm grid-connected coordination control method
CN106356856B (en) A kind of Security corrective computational methods based on partition load control
CN107834567B (en) Reactive voltage coordination control method for extra-high voltage direct current converter station and near-field power plant
CN105633949B (en) Economic operation real-time power generation scheduling and control method
CN103248056B (en) Reactive voltage emergency control method in concentrated grid connecting area of wind power plant
CN104242318B (en) Direct current near region voltage autocontrol method based on Model Predictive Control Theory
CN108418255A (en) A method and system for planning UHV DC external transmission grids suitable for new energy sources with high penetration rates
CN108695857B (en) Automatic voltage control method, device and system for wind power plant
CN102709918B (en) Reactive power control method of grid gateway based on automatic volume control (AVC) system
CN104300552B (en) A reactive power optimization method that takes into account the correction of voltage exceeding the limit and the reduction of active power loss
CN103545814B (en) Coordinated voltage control method for alternating-current and direct-current hybrid power system
CN103151795B (en) Scattered-type wind power plant reactive power optimization control method capable of reducing fan losses and system
CN104992009A (en) Multi-agent system based distributed voltage control method for active power distribution network
CN104319783B (en) A kind of power distribution network based on load prediction two grades of coordinated control systems and methods
CN104915724A (en) AC-DC parallel power transmission channel power optimization distribution method and system
CN109103898A (en) Learning algorithms method based on ultrashort-term wind power prediction error
CN107994608A (en) The reactive voltage control method of photovoltaic plant
CN119070326B (en) A method and device for grid-based regional collaborative comprehensive management of power quality in low-voltage distribution station areas
Zhang et al. Adaptive voltage reference based controls of converter power sharing and pilot voltage in HVDC system for large-scale offshore wind integration
CN105762806B (en) A kind of lower power network internal/external power coordinated operation method of incoming call outside extensive area
CN106849116A (en) A kind of wind power plant idle work optimization method
CN112234613B (en) Energy storage optimization configuration method for AC/DC hybrid system
CN112653174B (en) Operation domain solving method for flexible direct current power distribution network
CN105186541B (en) A kind of area power grid idle work optimization method based on limit trend

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant