CN105162135A - 级联型静止无功发生器及控制方法 - Google Patents

级联型静止无功发生器及控制方法 Download PDF

Info

Publication number
CN105162135A
CN105162135A CN201510545565.2A CN201510545565A CN105162135A CN 105162135 A CN105162135 A CN 105162135A CN 201510545565 A CN201510545565 A CN 201510545565A CN 105162135 A CN105162135 A CN 105162135A
Authority
CN
China
Prior art keywords
energy storage
phase
power
polynary
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510545565.2A
Other languages
English (en)
Other versions
CN105162135B (zh
Inventor
刘健
秦实宏
文小玲
王振
曾丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN201510545565.2A priority Critical patent/CN105162135B/zh
Publication of CN105162135A publication Critical patent/CN105162135A/zh
Application granted granted Critical
Publication of CN105162135B publication Critical patent/CN105162135B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

本发明公开了一种级联型静止无功发生器及控制方法,由三相结构相同的桥臂构成;各相桥臂均由至少一级至N级多元储能功率单元串联构成,每个所述多元储能功率单元由多元储能功率模块、双向可控整流电路、H桥逆变功率模块连接构成,将各级多元储能功率单元中H桥逆变电路的输出端进行级联实现高压输出。集成多元储能功率单元后,装置可同时实现有功与无功的调控。可以接入超级电容、蓄电池等多种储能元件,即可用来平缓系统中频繁的功率波动,又可用来实现系统消峰填谷的功能。可以大幅度减少储能单元的串联数量,降低对元件参数一致性的要求。同时实现各个储能元件的最佳充放电控制,而且便于扩展以增加系统容量。

Description

级联型静止无功发生器及控制方法
技术领域
本发明涉及电力系统中的储能与无功发生装置,主要是针对配电系统中10kV以下领域。
背景技术
相对水电而言,以风电、太阳能为代表的可再生清洁能源多是以小型化、分布式的形式存在,并且受地理因素与气候环境影响严重,其输出功率存在较大的波动性、间歇性与不确定性,仅依靠装置自身调节,尚不能完全满足我国分布式电源入网技术规定中的要求。为平缓这些分布式电源不确定和间歇性的功率输出,并在紧急状态和电网故障情况下为系统提供后备支持,同时减小负荷高峰期的供电需求和发电系统的资本投入,以静止同步补偿器(StaticSynchronousCompensator,简称STATCOM)为代表的无功控制装置和以蓄电池储能系统(BatteryEnergyStorageSystem,简称BESS)为代表的储能装置得到了广泛的应用,但目前两种技术以及一体化结合方面仍有问题需要解决。
1、为更好的实现含分布式电源电网的电压支撑、电能削峰填谷,以及提高分布式电源低电压穿越能力与并网后的暂态稳定性能,要求调控装置能够进行较长时间的有功功率调控,而STATCOM直流母线均为电容,其储能能力有限,制约了有功持续输入输出时间。
2、BESS装置的能量变换电路结构与STATCOM存在差别,因此储能系统无功调节能力有限。大量蓄电池串并联,导致对蓄电池参数一致性要求高,装置成本居高不下。且受蓄电池充放电次数限制,对于系统频繁出现的瞬时功率波动,尚不能进行很好的控制。
为解决以上问题,将STATCOM与大容量储能系统进行一体化结合已成为趋势,将两者进行一体化结合也成为研究热点,主流的方式包括两种,一种是将BESS与STATCOM进行组合使用,另外一种是在功率单元级联型STATCOM的基础之上,将储能元件与直流侧电容进行直接或者间接的并联。但是在高压大功率场合以上两种结构存在如下问题。
1、将BESS与STATCOM进行组合使用时,由于STATCOM与储能系统之间依然是独立设置,在一定程度上降低了利用率,造成资源浪费和成本升高,且故障或扰动来临时,系统参数变化快速多样,装置相互独立,造成系统协调控制能力下降。
2、在功率单元级联型STATCOM的基础之上,将储能元件与直流侧电容进行直接或者间接的并联。但是由于蓄电池输出电压低,而直流母线要求具有较高电压(输出线电压10kV时,母线电压可达1000V),直接并联蓄电池,多个蓄电池串联的现象依然难以避免。其次,功率单元直流母线电压存在波动,且会根据系统电压以及控制方式的变化进行调节,因此无法对储能元件的充放电进行优化控制,影响输出性能和工作寿命。此外,受充放电次数限制,装置主要用作削峰填谷或者后备电源用,不适用于吸收和释放系统工作周期中频繁出现的波动功率,技术仍有改进空间。
发明内容
为解决将STATCOM与大容量储能系统进行一体化结合存在的技术问题,本发明提出一种集成多元储能功率单元的级联型静止无功发生器及控制方法,能够实现大容量多元储能系统与STATCOM的高效一体化融合。
为解决上述技术问题,本发明采用如下技术方案:
集成多元储能功率单元的级联型静止无功发生器,其特征在于:由三相结构相同的桥臂A、B、C构成;各相桥臂均由至少一级至N级多元储能功率单元串联构成,其中,多元储能功率单元级数N为正整数,每个所述多元储能功率单元由多元储能功率模块、双向可控整流电路、H桥逆变功率模块连接构成;其中:多元储能功率模块中将多种储能部件按以下方式进行组合:各储能部件构成多元储能电路,多元储能电路与移相谐振电路连接,移相谐振电路输出端连接高频变压器的低压侧;高频变压器的高压侧采用并联形式连接,并与双向可控整流电路的输入端相连;H桥逆变功率模块包括直流母线和H桥逆变电路两部分,双向可控整流电路输出端与H桥逆变电路的直流母线相连接,直流母线输出端接H桥逆变电路;将各级多元储能功率单元中H桥逆变电路的输出端进行级联实现高压输出。
上述技术方案中,各相桥臂中至多有N级多元储能功率单元串联构成,且三相桥臂A、B、C中各自包含的多元储能功率单元级数相等。
上述技术方案中,所述多元储能功率单元中根据系统需求设置多种储能元件,并由各自连接的移相谐振电路将储能元件的直流输出变成高频交流,各移相谐振电路均由4只开关器件构成,高频交流电通过高频变压器实现电压的升高;双向可控整流电路由四只带续流二极管的开关器件构成;H桥逆变功率模块由直流电容构成直流母线,由四只带续流二极管的开关器件构成H桥逆变电路。
上述技术方案中,多种储能元件通过串并联达到设计的电压与容量,并连接至移相谐振电路的直流母线,再通过电感与移相谐振电路相连。
集成多元储能功率单元的级联型静止无功发生器的控制方法,其特征在于:在仅实现系统无功功率控制时,多元储能功率模块以及双向可控整流电路均不工作,H桥逆变功率模块按照静止同步补偿器的控制原理实现系统无功功率的控制以及稳定直流母线的电压。
上述技术方案中,在仅实现系统有功功率控制,并且系统为释放有功功率时,移相谐振电路工作在逆变状态,双向可控整流电路工作在整流状态,通过控制移相角将对应储能元件的能量进行释放,并实现H桥逆变功率模块直流母线电压的稳定控制;H桥逆变功率电路工作在有源逆变状态,并通过控制使得最后输出有功功率。
上述技术方案中,在仅实现系统有功功率控制时,并且系统为吸收有功功率时,H桥逆变功率模块与移相谐振电路均工作在整流状态,双向可控整流电路处于逆变工作状态,通过控制双向可控整流电路将直流母线上的能量进行储存。
本发明结合功率单元级联技术,将蓄电池和超级电容器设计成多个小型化的电路,再分别利用高频移相谐振电路与级联型STATCOM中各H桥逆变功率模块直流母线进行连接,实现装置大容量储能与有功、无功协同控制的新技术。其主要特点包括:
1、一体化后,可显著延长STATCOM的有功调控时间,并在紧急状态和电网故障情况下为系统提供后备支持,同时减小负荷高峰期的供电需求和发电系统的资本投入。
2、利用分散式的高频移相软开关变换电路将储能元件与STATCOM直流母线相连,能够大幅度减少蓄电池组串、并联数量,降低系统对蓄电池参数一致性的要求以及装置成本,并且可实现储能元件的最佳充放电控制,提高系统削峰填谷性能以及延长蓄电池组的使用寿命。
3、该拓扑结构可接入多种不同储能元件,例如超级电容器、高性能蓄电池组,可使得STATCOM能够灵活地吸收、释放较大的有功功率,能更好的平缓分布式电源工作周期中出现的频繁功率波动,有助于实现有功功率与频率的深度补偿与快速调节。
本发明的技术方案,除了具备常规蓄电池储能系统与静止无功发生器的主要优点之外,相对于国内外目前所提出的设计方案,还具有以下优点:
1、集成多元储能功率单元后,装置可同时实现有功与无功的调控。
2、装置可以接入超级电容、蓄电池等多种储能元件,超级电容可用来平缓系统中频繁的功率波动,蓄电池可用来实现系统消峰填谷的功能。
3、各储能元件利用独立的高频移相软开关变换电路以及高频变压器与静止无功发生器直流母线,变压器的存在可以大幅度减少储能单元的串联数量,降低对元件参数一致性的要求。
4、高频隔离变压器的存在,使得原、副方变换电路可进行独立的优化设计,同时实现储能元件的在线更换,延长装置不间断工作时间。
5、多种储能单元并联工作,并且独立控制,由此可实现各个储能元件的最佳充放电控制,而且便于扩展以增加系统容量。
附图说明
图1集成多元储能功率单元的级联型静止无功发生器主电路拓扑结构。
图2集成多元储能模块的功率单元内部结构。
其中,附图标记对应如下:1为多元储能功率模块、1-1为多元储能电路、1-2为移相谐振电路、1-3为高频变压器、2为双向可控整流电路、3为H桥逆变功率模块、3-1为直流母线、3-2为H桥逆变电路;4或AN、BN、CN分别为A、B、C三相分别对应的多元储能功率单元;5为移相谐振电路的直流母线电容(Cb,CS);Cdc为直流母线电容。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图1-2及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
集成多元储能功率单元的级联型静止无功发生器整体结构如图1所示,装置由A、B、C三相结构相同的桥臂构成,通过改变接线形式可以根据系统要求实现三相三线制输出,或者三相四线制输出。各相桥臂根据输出电压等级不同可设置1到N级集成多元储能模块的功率单元4或AN、BN、CN串联。N为正整数,且根据具体电压等级,以及采用开关器件的耐压等级通过设计决定N的数值;N在理论上可以1-200,优选1-30;当电压等级在10kV及其以下时,N为1到10级(380V到10kV),如10级(10kV系统)A、B、C三相桥臂分别为;A1,A2,A3…A10,B1,B2,B3…B10,C1,C2,C3…C10所示。
每个集成多元储能模块的多元储能功率单元4的内部包括多元储能功率模块1,双向可控整流模块2,H桥逆变功率模块3,拓扑结构如图2所示。其中多元储能功率模块可将多种储能元件进行并联组合,图2中给出了蓄电池与超级电容的组合,蓄电池通过串并联达到设计的电压与容量,并连接至移相谐振电路的直流母线(移相谐振电路1-2直流母线上设置移相谐振电路的直流母线电容5或Cb,CS),再通过电感L1与移相谐振电路1-2相连,S1_1,S1_2,S1_3,S1_4为蓄电池储能单元用移相谐振电路的开关器件,可由带并联续流二极管的IGBT器件构成。移相谐振电路1-2的输出接谐振电容Cr1,与谐振电感Lr1,之后通过高频变压器T1进行升压。同理,S2_1,S2_2,S2_3,S2_4为超级电容单元用移相谐振电路的开关器件,也可由带并联续流二极管的IGBT器件构成,移相谐振电路1-2的输出接谐振电容Cr2,与谐振电感Lr2,之后通过高频变压器T2进行升压。高频变压器1-3的高压侧采取并联结构,通过并联更多储能单元,可实现系统的扩容。S3_1,S3_2,S3_3,S3_4为双向可控整流电路的开关器件,也可由带并联续流二极管的IGBT器件构成。双向可控整流电路2输出与H桥逆变功率模块3直流母线电容5-1或Cdc相连。S4_1,S4_2,S4_3,S4_4为H桥逆变电路开关器件,由带并联续流二极管的IGBT器件构成,Out_1与Out_2为集成多元储能模块的功率单元输出。
当集成多元储能功率单元的级联型静止无功发生器,在仅实现系统无功功率控制时,多元储能功率模块1以及双向可控整流模块2均不工作,H桥逆变功率模块3按照STATCOM的控制原理控制S4_1,S4_2,S4_3,S4_4器件的开关,并实现系统无功功率的控制以及稳定直流母线的电压。
当集成多元储能功率单元的级联型静止无功发生器,在实现系统有功功率控制且系统为释放有功功率时,通过控制储能单元的移相谐振电路S1_1,S1_2,S1_3,S1_4,S2_1,S2_2,S2_3,S2_4的移相角将储能元件的能量进行释放,双向可控整流电路工作整流状态,即开关器件S3_1,S3_2,S3_3,S3_4不工作,仅并联的续流二极管工作,通过控制谐振电路的移相角实现H桥逆变功率模块直流母线电压的稳定控制。H桥逆变电路S4_1,S4_2,S4_3,S4_4工作在有源逆变状态,并通过控制使得装置输出有功功率。
当集成多元储能功率单元的级联型静止无功发生器,在实现系统有功功率控制且系统为吸收有功功率时,H桥逆变电路以及储能单元的移相谐振电路工作在整流状态,即S1_1,S1_2,S1_3,S1_4,S2_1,S2_2,S2_3,S2_4,S4_1,S4_2,S4_3,S4_4器件不工作,仅并联的续流二极管工作。双向可控整流电路工作在逆变状态,通过控制开关器件S3_1,S3_2,S3_3,S3_4实现能量的吸收与控制。
由此,本发明公开了一种集成多元储能功率单元的级联型静止无功发生器,整体结构由三相结构相同的桥臂构成,通过改变接线形式可以根据系统要求实现三相三线制输出,或者三相四线制输出。该发明可以将将蓄电池和超级电容器设计成多个小型化的电路,再分别利用高频移相谐振电路与级联型STATCOM中各H桥功率单元直流母线进行连接,由此,实现大容量多元储能系统与STATCOM的一体化融合。集成多元储能功率单元后,装置可同时实现有功与无功的调控。装置可以接入超级电容、蓄电池等多种储能元件,超级电容可用来平缓系统中频繁的功率波动,蓄电池可用来实现系统消峰填谷的功能。各储能元件利用独立的高频移相软开关变换电路以及高频变压器与静止无功发生器直流母线,变压器的存在可以大幅度减少储能单元的串联数量,降低对元件参数一致性的要求。高频隔离变压器的存在,使得原、副方变换电路可进行独立的优化设计,同时实现储能元件的在线更换,延长装置不间断工作时间。多种储能单元并联工作,并且独立控制,由此可实现各个储能元件的最佳充放电控制,而且便于扩展以增加系统容量。

Claims (7)

1.集成多元储能功率单元的级联型静止无功发生器,其特征在于:由三相结构相同的桥臂A、B、C构成;各相桥臂均由至少一级至N级多元储能功率单元串联构成,其中,多元储能功率单元级数N为正整数,每个所述多元储能功率单元由多元储能功率模块、双向可控整流电路、H桥逆变功率模块连接构成;其中:多元储能功率模块中将多种储能部件按以下方式进行组合:各储能部件构成多元储能电路,多元储能电路与移相谐振电路连接,移相谐振电路输出端连接高频变压器的低压侧;高频变压器的高压侧采用并联形式连接,并与双向可控整流电路的输入端相连;H桥逆变功率模块包括直流母线和H桥逆变电路两部分,双向可控整流电路输出端与H桥逆变电路的直流母线相连接,直流母线输出端接H桥逆变电路;将各级多元储能功率单元中H桥逆变电路的输出端进行级联实现高压输出。
2.根据权利要求1所述的集成多元储能功率单元的级联型静止无功发生器,其特征在于:各相桥臂中至多有N级多元储能功率单元串联构成,且三相桥臂A、B、C中各自包含的多元储能功率单元级数相等。
3.根据权利要求1所述的集成多元储能功率单元的级联型静止无功发生器,其特征在于:所述多元储能功率单元中根据系统需求设置多种储能元件,并由各自连接的移相谐振电路将储能元件的直流输出变成高频交流,各移相谐振电路均由4只开关器件构成,高频交流电通过高频变压器实现电压的升高;双向可控整流电路由四只带续流二极管的开关器件构成;H桥逆变功率模块由直流电容构成直流母线,由四只带续流二极管的开关器件构成H桥逆变电路。
4.根据权利要求4所述的集成多元储能功率单元的级联型静止无功发生器,其特征在于:多种储能元件通过串并联达到设计的电压与容量,并连接至移相谐振电路的直流母线,再通过电感与移相谐振电路相连。
5.一种上述权利要求1-4之一所述集成多元储能功率单元的级联型静止无功发生器的控制方法,其特征在于:在仅实现系统无功功率控制时,多元储能功率模块以及双向可控整流电路均不工作,H桥逆变功率模块按照静止同步补偿器的控制原理实现系统无功功率的控制以及稳定直流母线的电压。
6.根据权利要求5所述的级联型静止无功发生器的控制方法,其特征在于:在仅实现系统有功功率控制,并且系统为释放有功功率时,移相谐振电路工作在逆变状态,双向可控整流电路工作在整流状态,通过控制移相角将对应储能元件的能量进行释放,并实现H桥逆变功率模块直流母线电压的稳定控制;H桥逆变功率电路工作在有源逆变状态,并通过控制使得最后输出有功功率。
7.根据权利要求5所述的级联型静止无功发生器的控制方法,其特征在于:在仅实现系统有功功率控制时,并且系统为吸收有功功率时,H桥逆变功率模块与移相谐振电路均工作在整流状态,双向可控整流电路处于逆变工作状态,通过控制双向可控整流电路将直流母线上的能量进行储存。
CN201510545565.2A 2015-08-28 2015-08-28 级联型静止无功发生器及控制方法 Active CN105162135B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510545565.2A CN105162135B (zh) 2015-08-28 2015-08-28 级联型静止无功发生器及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510545565.2A CN105162135B (zh) 2015-08-28 2015-08-28 级联型静止无功发生器及控制方法

Publications (2)

Publication Number Publication Date
CN105162135A true CN105162135A (zh) 2015-12-16
CN105162135B CN105162135B (zh) 2019-10-08

Family

ID=54802930

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510545565.2A Active CN105162135B (zh) 2015-08-28 2015-08-28 级联型静止无功发生器及控制方法

Country Status (1)

Country Link
CN (1) CN105162135B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108233392A (zh) * 2018-01-24 2018-06-29 中国矿业大学(北京) 基于级联无桥变流电路的新型静止无功补偿器
CN108667025A (zh) * 2018-06-22 2018-10-16 国网湖北省电力有限公司电力科学研究院 一种中压侧电能质量多目标综合治理方法及系统
CN109100590A (zh) * 2018-07-23 2018-12-28 南京南瑞继保电气有限公司 一种试验电源及级联式静止同步补偿器换流阀测试系统
CN110350564A (zh) * 2019-07-30 2019-10-18 清华大学 高压直挂式储能装置及功率控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009033506A1 (en) * 2007-09-14 2009-03-19 Abb Technology Ag Stacom system for providing reactive and/or active power to a power network
CN101877486A (zh) * 2009-04-30 2010-11-03 比亚迪股份有限公司 一种用于平衡电网负荷的电池储能电站
CN101567564B (zh) * 2009-06-09 2011-04-20 华中科技大学 基于蓄电池和超级电容器复合储能的电压功率调节器
CN103178742A (zh) * 2013-03-19 2013-06-26 北京交通大学 一种组合式双向dc/ac变流器拓扑结构
CN103280829A (zh) * 2013-04-26 2013-09-04 上海交通大学 一种应用于大容量电池储能的隔离双级链式变流器
CN103457271A (zh) * 2013-08-02 2013-12-18 上海交通大学 带有功调节能力的链式静止同步补偿器及其级联单元
CN103490448A (zh) * 2013-10-12 2014-01-01 东南大学 一种基于级联h桥和多端口直流变换器的发电储能装置
CN104269875A (zh) * 2014-10-29 2015-01-07 国家电网公司 一种基于mmc模块化多电平变换器的混合储能拓扑结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009033506A1 (en) * 2007-09-14 2009-03-19 Abb Technology Ag Stacom system for providing reactive and/or active power to a power network
CN101877486A (zh) * 2009-04-30 2010-11-03 比亚迪股份有限公司 一种用于平衡电网负荷的电池储能电站
CN101567564B (zh) * 2009-06-09 2011-04-20 华中科技大学 基于蓄电池和超级电容器复合储能的电压功率调节器
CN103178742A (zh) * 2013-03-19 2013-06-26 北京交通大学 一种组合式双向dc/ac变流器拓扑结构
CN103280829A (zh) * 2013-04-26 2013-09-04 上海交通大学 一种应用于大容量电池储能的隔离双级链式变流器
CN103457271A (zh) * 2013-08-02 2013-12-18 上海交通大学 带有功调节能力的链式静止同步补偿器及其级联单元
CN103490448A (zh) * 2013-10-12 2014-01-01 东南大学 一种基于级联h桥和多端口直流变换器的发电储能装置
CN104269875A (zh) * 2014-10-29 2015-01-07 国家电网公司 一种基于mmc模块化多电平变换器的混合储能拓扑结构

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108233392A (zh) * 2018-01-24 2018-06-29 中国矿业大学(北京) 基于级联无桥变流电路的新型静止无功补偿器
CN108667025A (zh) * 2018-06-22 2018-10-16 国网湖北省电力有限公司电力科学研究院 一种中压侧电能质量多目标综合治理方法及系统
CN109100590A (zh) * 2018-07-23 2018-12-28 南京南瑞继保电气有限公司 一种试验电源及级联式静止同步补偿器换流阀测试系统
CN109100590B (zh) * 2018-07-23 2021-04-20 南京南瑞继保电气有限公司 一种试验电源及级联式静止同步补偿器换流阀测试系统
CN110350564A (zh) * 2019-07-30 2019-10-18 清华大学 高压直挂式储能装置及功率控制方法

Also Published As

Publication number Publication date
CN105162135B (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
Yu et al. System integration and hierarchical power management strategy for a solid-state transformer interfaced microgrid system
CN102856924B (zh) 一种基于复合储能的微电网平滑切换控制方法
CN103647302B (zh) 一种含多子微网的混合微网系统的双层协调控制方法
CN103532214A (zh) 集储能和并离网供电功能的光伏发电系统结构与控制方法
CN102244391A (zh) 基于锂电池和超级电容的储能并网电路及其控制方法
CN103944180B (zh) 基于固态变压器的混合储能风光互补并网发电系统
CN104810858A (zh) 一种光储微电网并网发电系统的控制方法
CN109698495B (zh) 一种基于超级电容的直流微电网系统
CN104821607A (zh) 一种基于三端协同控制的光伏微电网功率均衡控制方法
CN203800680U (zh) 一种支持多组电池接入的大功率双向变流装置
CN106877368A (zh) 一种光伏发电微网系统混合储能控制方法
CN103606942B (zh) 一种具有无功补偿功能的混合液流储能系统
CN102916435B (zh) 一种含z源网络的电池储能功率转换系统及其控制方法
CN105356774A (zh) 用于混合储能系统的变流器
CN105897018A (zh) 一种高压大容量储能变流器的拓扑结构及控制方法
CN105162135A (zh) 级联型静止无功发生器及控制方法
CN102810857B (zh) 一种串联型直流电力系统电能质量调节器
CN110932538A (zh) 适用于lcc-mmc混合级联直流输电系统的停运控制方法
CN110912242A (zh) 含混合储能直流微电网的大扰动暂态稳定协调控制方法
CN201766373U (zh) 分布式光伏电源并网电能质量调控装置
Guo et al. An overview of series-connected power electronic converter with function extension strategies in the context of high-penetration of power electronics and renewables
CN106877480A (zh) 一种复合电源储能结构与控制方法
CN105186919A (zh) 非隔离并网变换器、空调系统及变换器控制方法
Guo et al. A virtual inertia control strategy for dual active bridge dc-dc converter
Zhou et al. The study of power electronic transformer on power flow control and voltage regulation in DC micro-grid

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant