CN105161860B - Deformation planar array electrical performance compensation method based on mechanical-electric coupling and Fourier transformation - Google Patents
Deformation planar array electrical performance compensation method based on mechanical-electric coupling and Fourier transformation Download PDFInfo
- Publication number
- CN105161860B CN105161860B CN201510549051.4A CN201510549051A CN105161860B CN 105161860 B CN105161860 B CN 105161860B CN 201510549051 A CN201510549051 A CN 201510549051A CN 105161860 B CN105161860 B CN 105161860B
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- array antenna
- linear array
- electrical performance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000008878 coupling Effects 0.000 title claims abstract description 37
- 238000010168 coupling process Methods 0.000 title claims abstract description 37
- 238000005859 coupling reaction Methods 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000009466 transformation Effects 0.000 title description 14
- 230000005284 excitation Effects 0.000 claims abstract description 148
- 230000008859 change Effects 0.000 claims abstract description 24
- 230000005855 radiation Effects 0.000 claims description 25
- 239000000463 material Substances 0.000 claims description 13
- 230000000694 effects Effects 0.000 claims description 6
- 238000001228 spectrum Methods 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 5
- 230000002708 enhancing effect Effects 0.000 claims description 4
- 238000009434 installation Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 239000003351 stiffener Substances 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 8
- 239000000306 component Substances 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Landscapes
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明公开了一种基于机电耦合与傅里叶变换的变形面阵天线电性能补偿方法,包括:1)确定面阵天线即M个线阵天线的参数;2)有限元分析得到振动环境下面阵天线的结构变形量;3)采用线阵天线机电耦合模型计算第i个线阵天线变形后的电性能;4)将该电性能分解为理想线阵电性能和线阵电性能变化项;5)分别对4)进行快速傅里叶变换得到补偿天线空间相位误差的激励电流幅度和相位的调整量;6)判断是否已计算了所有激励电流幅度和相位的调整量;7)将激励电流幅度和相位的调整量入机电耦合模型,计算变形面阵天线电性能;8)判断补偿后的变形面阵天线电性能是否满足指标要求。本发明可对服役的面阵天线保证具有良好电性能。
The invention discloses a method for compensating electrical properties of deformed area array antennas based on electromechanical coupling and Fourier transform, including: 1) determining the parameters of the area array antennas, that is, M linear array antennas; 2) obtaining the vibration environment below by finite element analysis 3) Using the linear array antenna electromechanical coupling model to calculate the electrical performance of the i-th linear array antenna after deformation; 4) Decomposing the electrical performance into ideal linear array electrical performance and linear array electrical performance change items; 5) Perform fast Fourier transform on 4) respectively to obtain the adjustment amount of the excitation current amplitude and phase for compensating the antenna spatial phase error; 6) judge whether the adjustment amount of all excitation current amplitudes and phases has been calculated; 7) convert the excitation current Adjust the amplitude and phase into the electromechanical coupling model to calculate the electrical performance of the deformed area array antenna; 8) judge whether the electrical performance of the deformed area array antenna after compensation meets the index requirements. The invention can ensure good electrical performance for the area array antenna in service.
Description
技术领域technical field
本发明属于天线技术领域,具体涉及基于机电耦合与傅里叶变换的变形面阵天线电性能补偿方法。The invention belongs to the technical field of antennas, and in particular relates to a method for compensating the electric properties of deformed area array antennas based on electromechanical coupling and Fourier transform.
背景技术Background technique
天线广泛应用于通信、广播、电视、雷达和导航等无线电系统中,可辐射和接收无线电波,是无线电通信中必不可少的装置。相比于单部天线,面阵天线辐射强度大、可靠性高、功能多、探测和跟踪能力强、隐身性能好,因此广泛应用于各种雷达系统、导航系统和电子对抗等领域中。Antennas are widely used in radio systems such as communications, broadcasting, television, radar, and navigation. They can radiate and receive radio waves and are an indispensable device in radio communications. Compared with a single antenna, the area array antenna has high radiation intensity, high reliability, multiple functions, strong detection and tracking capabilities, and good stealth performance, so it is widely used in various radar systems, navigation systems, and electronic countermeasures.
天线是雷达系统的核心组成部分,雷达系统的性能在很大程度上取决于天线的电性能。天线结构是天线电性能实现的载体,天线位移场的变化直接影响着天线电磁场在空间中的幅度和相位分布。当天线服役时,工作环境载荷如自重、雨雪、太阳照射、振动、冲击等均会改变天线结构性能,使天线产生结构误差,而天线在加工、装配过程中其结构也会产生随机误差,这均会使天线辐射单元产生位置误差,最终导致天线增益下降、副瓣抬高、指向偏差。天线电性能的降低会直接导致雷达系统性能的下降,甚至无法实现。因此,为了降低结构误差对面阵天线电性能的影响,确保雷达系统能够正常工作,必须对天线电性能进行补偿。The antenna is the core component of the radar system, and the performance of the radar system largely depends on the electrical performance of the antenna. The antenna structure is the carrier for the realization of the electrical performance of the antenna, and the change of the displacement field of the antenna directly affects the amplitude and phase distribution of the electromagnetic field of the antenna in space. When the antenna is in service, the working environment loads such as self-weight, rain and snow, sunlight, vibration, impact, etc. will change the structural performance of the antenna, causing structural errors in the antenna, and random errors in the structure of the antenna during processing and assembly. All of these will cause position error of the antenna radiating unit, which will eventually lead to a decrease in antenna gain, elevation of side lobes, and pointing deviation. The reduction of the electrical performance of the antenna will directly lead to the reduction of the performance of the radar system, or even cannot be realized. Therefore, in order to reduce the impact of structural errors on the electrical performance of the area array antenna and ensure the normal operation of the radar system, the electrical performance of the antenna must be compensated.
有源补偿方法是天线电性能补偿的主要方式,对天线电性能进行有源补偿即通过调整天线辐射单元的激励电流来补偿天线电性能的变化,因此,在有源补偿方法中,准确获得变形天线激励电流的补偿量提高变形天线的电性能,是补偿方法是否有效的关键。国内外学者在使用有源补偿方法对变形天线电性能进行补偿方面进行了很多工作,如在Svensson B,Lanne M,Wingard J,et al.Element position error compensation inactive phased array antennas[C]//2010 Proceedings of the Fourth EuropeanConference on Antennas and Propagation.2010中即通过调整天线的激励电流对天线的单元位置误差进行了补偿,然而,该单元位置误差是假设服从高斯分布,并非实际工况下天线结构误差,因此,该方法得到的激励电流补偿量并不是补偿天线实际结构误差引起的电性能变化。此外,在Tsao J.Adaptive phase compensation for distorted phased arrayby minimum sidelobe response criteria[C]//Antennas and Propagation SocietyInternational Symposium.Merging Technologies for the 90's.Digest.IEEE,1990:1466-1469工作中,对变形相控阵天线电性能的补偿,仅通常调整天线单元激励电流的相位来实现,然而,调整激励电流的相位只能对天线的波束指向进行补偿,天线的副瓣电平不会得到有效补偿,而激励电流的幅度与天线增益和副瓣电平等直接相关,因此,应该对激励电流的相位和幅度同时进行调整,才能够使天线的电性能满足要求。The active compensation method is the main way to compensate the electrical performance of the antenna. The active compensation of the electrical performance of the antenna is to compensate the change of the electrical performance of the antenna by adjusting the excitation current of the antenna radiating unit. Therefore, in the active compensation method, the deformation The compensation amount of the antenna excitation current improves the electrical performance of the deformable antenna, which is the key to the effectiveness of the compensation method. Scholars at home and abroad have done a lot of work on using active compensation methods to compensate the electrical properties of deformed antennas, such as in Svensson B, Lanne M, Wingard J, et al.Element position error compensation inactive phased array antennas[C]//2010 In the Proceedings of the Fourth European Conference on Antennas and Propagation.2010, the unit position error of the antenna was compensated by adjusting the excitation current of the antenna. However, the position error of the unit is assumed to obey the Gaussian distribution, not the structural error of the antenna under actual working conditions. Therefore, the excitation current compensation obtained by this method does not compensate the electrical performance change caused by the actual structural error of the antenna. In addition, in Tsao J.Adaptive phase compensation for distorted phased array by minimum sidelobe response criteria[C]//Antennas and Propagation Society International Symposium.Merging Technologies for the 90's.Digest.IEEE,1990:1466-1469, the deformation phase control The compensation of the electrical performance of the array antenna can only be achieved by adjusting the phase of the excitation current of the antenna unit. However, adjusting the phase of the excitation current can only compensate the beam pointing of the antenna, and the sidelobe level of the antenna will not be effectively compensated, while the excitation The magnitude of the current is directly related to the antenna gain and the sidelobe level. Therefore, the phase and magnitude of the excitation current should be adjusted at the same time to make the electrical performance of the antenna meet the requirements.
因此,为了确保服役环境下面阵天线正常工作,如何通过调整激励电流幅度和相位,来补偿实际工况下变形面阵天线电性能已成为目前本领域目前亟待解决的技术问题。Therefore, in order to ensure the normal operation of the array antenna in the service environment, how to compensate the electrical performance of the deformed area array antenna under actual working conditions by adjusting the amplitude and phase of the excitation current has become an urgent technical problem in this field.
发明内容Contents of the invention
基于上述问题,为了补偿面阵天线在实际工作环境中电性能的下降,本发明使用阵列天线机电耦合模型,得到工作环境载荷下天线电性能的变化量,并结合FFT方法对所有的面阵天线辐射单元的激励电流幅度和相位进行调整,补偿变形阵列天线的电性能,确保了服役环境下面阵天线可以正常工作。该方法可有效解决因工作载荷导致的面阵天线电性能恶化问题,保证面阵天线在服役环境下正常工作,此外,该方法可快速实现对变形面阵天线电性能的补偿,为实时补偿天线电性能提供理论指导。Based on the above problems, in order to compensate for the decline of the electrical performance of the area array antenna in the actual working environment, the present invention uses the electromechanical coupling model of the array antenna to obtain the variation of the electrical performance of the antenna under the load of the working environment, and combines the FFT method for all the area array antennas The excitation current amplitude and phase of the radiating unit are adjusted to compensate the electrical performance of the deformed array antenna, ensuring that the array antenna can work normally under the service environment. This method can effectively solve the problem of the deterioration of the electrical performance of the area array antenna caused by the working load, and ensure the normal operation of the area array antenna in the service environment. Electrical properties provide theoretical guidance.
实现本发明的技术解决方案是,确定M行N列的面阵天线即M个线阵天线的结构参数和电磁参数;根据面阵天线结构参数,建立面阵天线结构有限元模型,分析得到面阵天线结构变形量;提取第i(1≤i≤M)个线阵天线,使用线阵天线机电耦合模型,计算机载环境下第i个线列天线变形后的电性能;将第i个变形线阵天线电性能分解为理想线阵电性能和结构变形引起的线阵电性能变化项,分别对理想线阵电性能和线阵电性能变化项进行快速傅里叶变换(Fast Fourier Transform,FFT),得到补偿天线空间相位误差的激励电流幅度和相位的调整量;判断是否已对所有线阵天线计算了激励电流幅度和相位的调整量,如果满足则得到了面阵天线单元激励电流幅度和相位的调整量,否则提取下一个线阵天线进行计算;将得到的面阵天线单元的激励电流幅度和相位的调整量,带入面阵天线机电耦合模型,计算变形面阵天线电性能;判断补偿后的变形面阵天线电性能是否满足指标要求,如满足,则表明得到了补偿变形面阵天线电性能最优的激励电流幅度和相位调整量,使面阵天线在服役环境下达到最优工作性能;否则,修改面阵天线的结构参数,重复上述步骤直至满足要求为止。The technical solution for realizing the present invention is to determine the structural parameters and electromagnetic parameters of the area array antennas of M rows and N columns, that is, M line array antennas; according to the area array antenna structure parameters, set up the area array antenna structure finite element model, analyze and obtain the area The amount of structural deformation of the array antenna; extract the i-th (1≤i≤M) line array antenna, use the electromechanical coupling model of the line array antenna, and calculate the electrical performance of the i-th line array antenna after deformation in the loading environment; the i-th deformation The electrical performance of the linear array antenna is decomposed into the electrical performance of the ideal linear array and the change item of the electrical performance of the linear array caused by structural deformation, and the Fast Fourier Transform (FFT) is performed on the electrical performance of the ideal linear array and the change item of the electrical performance of the linear array respectively. ), to get the adjustment of excitation current amplitude and phase to compensate antenna space phase error; to judge whether the adjustment of excitation current amplitude and phase has been calculated for all linear array antennas, and if it is satisfied, the excitation current amplitude and phase array antenna unit are obtained Phase adjustment, otherwise extract the next linear array antenna for calculation; bring the obtained excitation current amplitude and phase adjustment of the area array antenna unit into the electromechanical coupling model of the area array antenna to calculate the electrical performance of the deformed area array antenna; judge Whether the electrical performance of the deformed area array antenna after compensation meets the index requirements, if so, it indicates that the excitation current amplitude and phase adjustment with the best electrical performance of the compensated deformed area array antenna are obtained, so that the area array antenna can reach the optimum in the service environment work performance; otherwise, modify the structural parameters of the area array antenna and repeat the above steps until the requirements are met.
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
基于机电耦合与傅里叶变换的变形面阵天线电性能补偿方法,包括如下过程:The electrical performance compensation method of deformed area array antenna based on electromechanical coupling and Fourier transform includes the following process:
(1)根据M行N列的面阵天线即M个线阵天线的结构参数,确定面阵天线几何模型参数、材料属性,同时确定面阵天线工作参数;(1) According to the structural parameters of the area array antennas in M rows and N columns, that is, M line array antennas, determine the geometric model parameters and material properties of the area array antenna, and determine the operating parameters of the area array antenna;
(2)根据面阵天线几何模型参数及材料属性,建立面阵天线结构有限元模型;根据面阵天线安装形式确定天线有限元模型的约束条件;对面阵天线有限元模型施加机载随机振动功率谱,计算面阵天线结构变形量,并提取面阵天线辐射单元的中心节点在x,y,z方向上的位置偏移量;(2) Establish the structure finite element model of the area array antenna according to the geometric model parameters and material properties of the area array antenna; determine the constraints of the antenna finite element model according to the installation form of the area array antenna; apply the airborne random vibration power to the area array antenna finite element model spectrum, calculate the structural deformation of the area array antenna, and extract the position offset of the central node of the area array antenna radiating element in the x, y, and z directions;
(3)提取M个线阵天线中第i(1≤i≤M)个线阵天线以及其辐射单元中心节点的位置偏移量,使用线阵天线机电耦合模型,计算机载环境下第i个线阵天线变形后的电性能;(3) Extract the position offset of the i-th (1≤i≤M) line-array antenna and the central node of its radiating element among the M line-array antennas, and use the electromechanical coupling model of the line-array antenna to calculate the i-th line array antenna in the upload environment The electrical performance of the linear array antenna after deformation;
(4)将第i个变形线阵天线电性能分解为理想线阵电性能和结构变形引起的线阵电性能变化项,其中,线阵电性能变化项由理想线阵电性能的激励电流以及结构变形引起的天线空间相位误差组成;(4) Decompose the electrical performance of the ith deformed linear array antenna into the electrical performance of the ideal linear array and the change item of the electrical performance of the linear array caused by structural deformation, where the electrical performance change item of the linear array consists of the excitation current and Composition of antenna spatial phase error caused by structural deformation;
(5)分别对理想线阵电性能和线阵电性能变化项进行快速傅里叶变换(FastFourier Transform,FFT),得到补偿天线空间相位误差的激励电流幅度和相位的调整量;(5) Fast Fourier Transform (FFT) is performed on the ideal linear array electrical performance and the linear array electrical performance change item respectively to obtain the adjustment amount of the excitation current amplitude and phase for compensating the spatial phase error of the antenna;
(6)判断是否已对所有M个线阵天线计算了激励电流幅度和相位的调整量,如果是,则得到了M个线阵天线激励电流幅度和相位的调整量,否则提取下一个线阵天线,并重复步骤(3)到步骤(6);(6) Judging whether the adjustments of excitation current amplitude and phase have been calculated for all M linear array antennas, if yes, the adjustments of excitation current amplitude and phase of M linear array antennas are obtained, otherwise extract the next line array Antenna, and repeat step (3) to step (6);
(7)将得到的M个线阵天线,即所有的面阵天线的激励电流幅度和相位的调整量,带入面阵天线机电耦合模型,计算变形面阵天线电性能;(7) Bring the obtained M linear array antennas, i.e. the adjustments of the excitation current amplitude and phase of all the area array antennas, into the electromechanical coupling model of the area array antenna, and calculate the electrical performance of the deformed area array antenna;
(8)判断补偿后的变形面阵天线电性能是否满足指标要求,如果满足,则表明得到了补偿变形面阵天线电性能最优的激励电流幅度和相位调整量,使面阵天线在服役环境下达到最优工作性能;否则,修改面阵天线的结构参数,,并重复步骤(1)到步骤(7),直至满足要求。(8) Determine whether the electrical performance of the deformed area array antenna after compensation meets the index requirements. If it meets the requirements, it indicates that the excitation current amplitude and phase adjustment with the best electrical performance of the compensated deformed area array antenna have been obtained, so that the area array antenna can be used in the service environment. The optimal performance is achieved; otherwise, modify the structural parameters of the area array antenna, and repeat steps (1) to (7) until the requirements are met.
所述步骤(1)中,面阵天线的几何模型参数,包括面阵天线辐射单元的位置分布、个数、尺寸、单元间距,T/R组件、冷板和加强筋的尺寸参数;所述面阵天线的材料属性,包括密度ρ、弹性模量E和泊松比μ;所述面阵天线的电磁工作参数,包括面阵天线的中心工作频率f、激励电流的幅度和相位。In the step (1), the geometric model parameters of the area array antenna include the position distribution, number, size, and unit spacing of the area array antenna radiation elements, the size parameters of the T/R assembly, cold plate and stiffener; The material properties of the area array antenna include density ρ, elastic modulus E and Poisson's ratio μ; the electromagnetic working parameters of the area array antenna include the central operating frequency f of the area array antenna, the amplitude and phase of the excitation current.
所述步骤(2)中,面阵天线的结构变形量计算,根据面阵天线的结构参数及材料属性,建立面阵天线结构有限元模型,根据面阵天线实际安装确定面阵天线有限元模型约束条件,加载机载随机振动功率谱,计算面阵天线辐射单元中心节点在x,y,z方向上的位置偏移量。In the step (2), the structural deformation of the area array antenna is calculated, according to the structural parameters and material properties of the area array antenna, the structure finite element model of the area array antenna is established, and the finite element model of the area array antenna is determined according to the actual installation of the area array antenna Constraint conditions, load the airborne random vibration power spectrum, and calculate the position offset of the center node of the radiation element of the area array antenna in the x, y, and z directions.
所述步骤(3)中,使用线阵天线机电耦合模型,计算的第i个变形线阵天线电性能通过下式实现:In the step (3), using the electromechanical coupling model of the linear array antenna, the electric performance of the ith deformed linear array antenna calculated is realized by the following formula:
式中,d为辐射单元间距,Iin为第i个线阵天线中第n个辐射单元理想线阵电性能的激励电流,其中Ain为激励电流幅度,为激励电流相位,k为波常数,j为虚数单位;k=2π/λ,λ为面阵天线工作波长,θ为线阵天线俯仰角,Δyin和Δzin分别为第i个线阵中,第n个辐射单元产生的沿y向和z向的位置误差,Δyi0和Δzi0分别为第i个线阵中,第0个辐射单元即初始辐射单元在y向和z向的位置误差。In the formula, d is the distance between the radiating elements, I in is the excitation current of the ideal linear array electrical performance of the nth radiating element in the ith linear array antenna, where A in is the amplitude of the excitation current, is the excitation current phase, k is the wave constant, j is the imaginary number unit; k=2π/λ, λ is the working wavelength of the area array antenna, θ is the pitch angle of the line array antenna, Δy in and Δz in are the , the position error along the y-direction and z-direction generated by the nth radiation unit, Δy i0 and Δz i0 are the position errors of the 0th radiation unit, that is, the initial radiation unit in the y-direction and z-direction, respectively, in the i-th line array .
所述步骤(4)中,将第i个变形线阵天线电性能分解为理想线阵电性能和结构变形引起的线阵电性能变化项,按照如下过程进行:In the step (4), the electric performance of the i deformed linear array antenna is decomposed into the ideal linear array electric performance and the linear array electric performance change item caused by structural deformation, and is carried out according to the following process:
当线阵天线辐射单元的结构变形量不大于0.06λ/πcos(λ/2d)时,根据指数函数性质对变形线阵天线的阵因子方向图进行分解:When the structural deformation of the radiating element of the linear array antenna is not greater than 0.06λ/πcos(λ/2d), according to the nature of the exponential function Decompose the array factor pattern of the deformed linear array antenna:
其中,表示i个线阵天线结构变形引起的电性能变化项;fia(θ)表示第i个线阵天线理想电性能。in, Indicates the electrical performance change item caused by the structural deformation of the i-th linear array antenna; f ia (θ) indicates the ideal electrical performance of the i-th linear array antenna.
为了对线阵理想电性能和电性能变化项进行后续快速傅里叶变换,使用u表示sinθ,则fia(θ)和fiae(θ)分别表示为:In order to perform subsequent fast Fourier transform on the ideal electrical properties and electrical properties change items of the linear array, u is used to represent sinθ, then f ia (θ) and f iae (θ) are expressed as:
所述步骤(5)中,分别对第i个变形线阵天线的理想线阵电性能以及电性能变化项进行FFT变换,按照如下进行:In the described step (5), FFT transformation is carried out to the ideal linear array electrical performance and the electrical performance change item of the ith deformed linear array antenna respectively, as follows:
(5a)对第i个变形线阵天线的理想线阵电性能的激励电流Iin进行FFT变换:(5a) Perform FFT transformation on the excitation current I in of the ideal linear array electrical performance of the ith deformed linear array antenna:
其中,αim为激励电流的傅里叶级数,m表示快速傅里叶变换后电流信号的序号;Among them, αim is the Fourier series of the excitation current, and m represents the serial number of the current signal after the fast Fourier transform;
在理想线阵天线主波束方向上,建立天线电性能与理想线阵电性能的激励电流Iin之间的傅里叶变换关系,对第i个变形线阵天线的理想线阵电性能fia(u)进行FFT变换:In the ideal linear array antenna main beam direction In the above, the Fourier transform relationship between the electrical performance of the antenna and the excitation current I in of the ideal linear array electrical performance is established, and the FFT transformation is performed on the ideal linear array electrical performance f ia (u) of the ith deformed linear array antenna:
其中,u=sinθ;表示理想状态下线阵天线辐射单元产生的空间相位;表示线阵天线的主波束指向;Among them, u=sinθ; Indicates the spatial phase generated by the radiating element of the linear array antenna under ideal conditions; Indicates the main beam direction of the linear array antenna;
(5b)对线阵天线的电性能扰动项fiae(θ),建立其傅里叶级数表达式。采用FFT变换,使βim=FFT[kIin(Δyin-Δyi0)],γim=FFT[kIin(Δzin-Δzi0)],因为离散傅里叶变换满足线性叠加,因此fiae(θ)的傅里叶级数形式可表示为:(5b) For the electrical performance disturbance term f iae (θ) of the linear array antenna, establish its Fourier series expression. Using FFT transformation, make β im =FFT[kI in (Δy in -Δy i0 )], γ im =FFT[kI in (Δz in -Δz i0 )], because discrete Fourier transform satisfies linear superposition, so f iae The Fourier series form of (θ) can be expressed as:
将结构变形对方向u的影响,转换为对线阵天线主波束指向um的影响,则在线阵天线主波束指向上计算激励电流的调整量,上式Fiae(u)变为:The influence of the structural deformation on the direction u is converted into the influence on the main beam of the linear array antenna to u m , then the adjustment of the excitation current is calculated on the main beam of the linear array antenna, and the above formula F iae (u) becomes:
此时,存在结构误差的天线阵因子方向图fias(θ)的傅里叶级数形式为At this time, the Fourier series form of the antenna array factor pattern f ias (θ) with structural errors is
(5c)对变形线阵天线阵因子方向图的傅里叶级数Fias(u)进行FFT逆变换,得到变形线阵天线的阵因子方向图为:(5c) FFT inverse transform is carried out to the Fourier series F ias (u) of the array factor pattern of the deformed linear array antenna, and the array factor pattern of the deformed linear array antenna is obtained as follows:
其中,表示第i个变形线阵天线中包含结构误差的激励电流,通常调整该电流即可补偿结构变形对线阵电性能的影响;in, Indicates the excitation current containing structural errors in the i-th deformed linear array antenna, usually adjusting the current can compensate for the influence of structural deformation on the electrical performance of the linear array;
(5d)在线阵天线的主波束指向上,计算激励电流幅度和相位的调整量。在主波束指向um上,包含结构误差的激励电流Iins为:(5d) The main beam pointing of the line array antenna On, the adjustment amount of excitation current amplitude and phase is calculated. On the main beam pointing u m , the excitation current I ins including the structure error is:
该电流与理想线阵电性能的激励电流Iin关系如下:The relationship between this current and the excitation current I in of the ideal linear array electrical performance is as follows:
其中,表示变形面阵天线激励电流中因结构误差引起的幅度扰动系数;表示变形面阵天线激励电流中因结构误差引起的相位扰动,Im表示虚数的虚部;in, Indicates the amplitude disturbance coefficient caused by structural errors in the excitation current of the deformed area array antenna; Indicates the phase disturbance caused by structural errors in the excitation current of the deformed area array antenna, and Im represents the imaginary part of the imaginary number;
(5e)对线阵天线结构变形导致的激励电流幅度扰动系数ΔAn和相位扰动进行修正,以补偿结构变形对线阵天线电性能的影响。引入激励电流的幅度系数调整量ΔAinc=-ΔAin,激励电流的相位调整量则调整后的激励电流变为:(5e) The amplitude disturbance coefficient ΔA n and phase disturbance of the excitation current caused by the structural deformation of the linear array antenna A correction is made to compensate for the effect of structural deformation on the electrical performance of the linear array antenna. Introduce the amplitude coefficient adjustment amount of the excitation current ΔA inc = -ΔA in , the phase adjustment amount of the excitation current Then the adjusted excitation current becomes:
使用调整后的激励电流Iinc代替变形线阵天线阵因子fias(θ)中的理想线阵电性能的激励电流Iin,即可得到补偿后的变形线阵天线电性能为:Using the adjusted excitation current I inc to replace the excitation current I in of the ideal linear array electrical performance in the deformed linear array antenna array factor f ias (θ), the electrical performance of the deformed linear array antenna after compensation can be obtained as:
式中,表示激励电流的幅度系数调整量;表示激励电流的相位的调整量。In the formula, Indicates the amplitude coefficient adjustment amount of the excitation current; Indicates the adjustment amount of the phase of the excitation current.
所述步骤(6)中,判断是否已对所有线阵天线计算了激励电流幅度和相位的调整量,如满足则得到面阵单元激励电流幅度和相位调整量,若不满足,则提取下一个线阵天线,并重复步骤(3)到步骤(6)。In the step (6), it is judged whether the adjustments of excitation current amplitude and phase have been calculated for all linear array antennas, if satisfied, the excitation current amplitude and phase adjustment of the area array unit are obtained, if not satisfied, the next line array antenna, and repeat steps (3) to (6).
所述步骤(7)中,将得到的M个线阵天线,即所有的面阵天线的激励电流幅度和相位的调整量,带入面阵天线机电耦合模型,该模型为:In the described step (7), the M linear array antennas obtained, i.e. the adjustments of the excitation current amplitude and the phase of all the area array antennas, are brought into the area array antenna electromechanical coupling model, which is:
所述步骤(7)中,计算补偿后的变形线阵天线电性能,得到包括天线增益、副瓣电平以及波束指向等天线电性能参数。判断补偿后的变形面阵天线电性能是否满足指标要求,如满足,则表明得到了补偿变形面阵天线电性能最优的激励电流幅度和相位调整量,使面阵天线在服役环境下达到最优工作性能;否则,修改面阵天线的结构参数,包括增强天线结构刚度、修改面阵天线约束位置等,并重复步骤(1)到步骤(8),直至满足要求。In the step (7), the electrical performance of the deformed linear array antenna after compensation is calculated, and the electrical performance parameters of the antenna including antenna gain, sidelobe level and beam pointing are obtained. Judging whether the electrical performance of the deformed area array antenna after compensation meets the index requirements, if it meets the requirements, it indicates that the excitation current amplitude and phase adjustment with the best electrical performance of the compensated deformed area array antenna have been obtained, so that the area array antenna can achieve the best performance in the service environment. Otherwise, modify the structural parameters of the area array antenna, including enhancing the structural stiffness of the antenna, modifying the constraint position of the area array antenna, etc., and repeat steps (1) to (8) until the requirements are met.
所述步骤(8)中,修改面阵天线的结构参数,包括增强面阵天线结构刚度,修改面阵天线约束位置。In the step (8), modifying the structural parameters of the area array antenna includes enhancing the structural rigidity of the area array antenna and modifying the constraint position of the area array antenna.
本发明基于天线机电耦合模型与傅里叶变换,可对服役的面阵天线,补偿环境载荷对其电性能的影响,改善天线电性能,而且不增加天线的结构复杂度和结构重量,可用于解决由服役环境载荷引起的阵列天线电性能恶化问题,当面阵天线处于服役过程,即可补偿变形面阵天线电性能,确保天线正常工作,而且不增加天线的结构复杂度和结构重量。同时,补偿后的变形面阵天线,对工作环境具有强的抗干扰能力,当环境载荷小范围变化,无需对面阵天线进行额外的调整,即可保证变形面阵天线具有良好电性能。因此,该方法为改善天线电性能提供了重要技术保障,尤其适用于大型面阵天线。Based on the antenna electromechanical coupling model and Fourier transform, the invention can compensate the influence of environmental load on the electrical performance of the area array antenna in service, improve the electrical performance of the antenna, and do not increase the structural complexity and structural weight of the antenna, and can be used for To solve the problem of deterioration of the electrical performance of the array antenna caused by the service environment load, when the area array antenna is in service, the electrical performance of the deformed area array antenna can be compensated to ensure the normal operation of the antenna without increasing the structural complexity and weight of the antenna. At the same time, the compensated deformable area array antenna has strong anti-interference ability to the working environment. When the environmental load changes in a small range, the deformable area array antenna can be guaranteed to have good electrical performance without additional adjustments to the area array antenna. Therefore, this method provides an important technical guarantee for improving the electrical performance of the antenna, especially for large area array antennas.
本发明与现有技术相比,具有以下特点:Compared with the prior art, the present invention has the following characteristics:
1.本发明分析了实际机载环境下面阵天线的结构变形,并基于该结构变形与电性能之间的耦合关系,结合快速傅里叶变换求解了面阵天线激励电流幅度和相位的调整量,在不增加天线结构复杂度和结构重量情况下,实现了对变形面阵天线电性能的补偿,有效降低了天线在实际工况下环境载荷对其电性能的影响;1. The present invention analyzes the structural deformation of the array antenna under the actual airborne environment, and based on the coupling relationship between the structural deformation and electrical performance, combined with fast Fourier transform, the adjustment amount of the excitation current amplitude and phase of the area array antenna is solved , without increasing the structural complexity and structural weight of the antenna, the compensation of the electrical performance of the deformed area array antenna is realized, and the influence of the environmental load on the electrical performance of the antenna under actual working conditions is effectively reduced;
2.补偿后的变形面阵天线,对工作环境具有强的抗干扰能力,当环境载荷小范围变化,无需对面阵天线进行额外的调整,即可保证变形面阵天线具有良好电性能。因此本发明所提出的方法可用于补偿服役过程中面阵天线的电性能,为改善天线电性能提供了重要技术保障。2. The deformed area array antenna after compensation has strong anti-interference ability to the working environment. When the environmental load changes in a small range, the deformed area array antenna can be guaranteed to have good electrical performance without additional adjustments to the area array antenna. Therefore, the method proposed by the present invention can be used to compensate the electrical performance of the area array antenna during service, and provides an important technical guarantee for improving the electrical performance of the antenna.
附图说明Description of drawings
图1是本发明基于机电耦合与傅里叶变换的变形面阵天线电性能补偿方法;Fig. 1 is the method for compensating electrical performance of deformed area array antenna based on electromechanical coupling and Fourier transform in the present invention;
图2是面阵天线辐射单元排列示意图;Fig. 2 is a schematic diagram of arrangement of radiation elements of an area array antenna;
图3是观察点P相对于坐标系xyz的空间几何关系图;Fig. 3 is a spatial geometric relationship diagram of the observation point P relative to the coordinate system xyz;
图4是面阵天线的几何结构模型示意图;Fig. 4 is a schematic diagram of a geometric structure model of an area array antenna;
图5是面阵天线在ANSYS软件中的有限元模型示意图;Fig. 5 is a schematic diagram of the finite element model of the area array antenna in ANSYS software;
图6是机载随机振动加速度功率谱;Fig. 6 is the airborne random vibration acceleration power spectrum;
图7是面阵天线随机振动变形云图;Fig. 7 is the random vibration deformation cloud diagram of the area array antenna;
图8是理想和变形后面阵天线远场方向图比较图;Figure 8 is a comparison diagram of the far-field pattern of the ideal and deformed rear array antennas;
图9是理想和补偿后面阵天线远场方向图比较图。Figure 9 is a comparison diagram of the far-field pattern of the ideal and compensated rear array antennas.
具体实施方式detailed description
下面结合附图及实施例对本发明做进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
参照图1,本发明为基于机电耦合与傅里叶变换的变形面阵天线电性能补偿方法,具体步骤如下:With reference to Fig. 1, the present invention is based on electromechanical coupling and Fourier transform method for electrical performance compensation of deformed area array antenna, the specific steps are as follows:
步骤1,确定面阵天线的几何模型参数、材料属性和电磁工作参数Step 1, determine the geometric model parameters, material properties and electromagnetic working parameters of the area array antenna
1.1由面阵天线的阵面形状、口径尺寸、阵内辐射单元类型、个数及排布、天线框架这些结构参数,确定面阵天线结构几何模型;1.1 Determine the structural geometric model of the area array antenna based on the array shape, aperture size, type, number and arrangement of radiation elements in the array, and the structural parameters of the antenna frame;
1.2.确定面阵天线系统中冷板、T/R组件、加强筋以及辐射单元的材料属性,包括密度ρ、弹性模量E、泊松比μ。1.2. Determine the material properties of the cold plate, T/R components, ribs, and radiation elements in the area array antenna system, including density ρ, elastic modulus E, and Poisson’s ratio μ.
1.3.确定面阵天线的电磁工作参数,其中包括天线的中心工作频率f与激励电流幅度和相位。1.3. Determine the electromagnetic working parameters of the area array antenna, including the central working frequency f of the antenna and the amplitude and phase of the excitation current.
步骤2,有限元分析得到阵面变形量Step 2, finite element analysis to obtain the front deformation
2.1根据面阵天线的几何模型参数及材料属性在ANSYS中构建其结构有限元模型,其中冷板、T/R组件、加强筋的单元类型为实体单元SOLID92,辐射单元的单元类型为面单元SHELL63。其中,冷板与加强筋之间、冷板与T/R组件之间、T/R组件与辐射单元、辐射单元和加强筋之间相互连接,无相对位移。2.1 Construct the structural finite element model in ANSYS according to the geometric model parameters and material properties of the area array antenna, in which the element type of the cold plate, T/R component, and stiffener is the solid element SOLID92, and the element type of the radiation element is the surface element SHELL63 . Among them, there is no relative displacement between the cold plate and the rib, between the cold plate and the T/R component, between the T/R component and the radiation unit, and between the radiation unit and the rib.
2.2根据天线的安装方式,对面阵天线施加约束,并对面阵天线结构有限元模型施加机载随机振动加速度功率谱,计算得到阵面的随机振动变形,提取由振动变形引起的辐射单元的位置偏移量,第n个辐射单元在x,y,z方向上的位置偏移量为(Δx0,Δy0,Δz0)······(ΔxN-1,ΔyN-1,ΔzN-1),其中,(Δxn,Δyn,Δzn),n∈(0,N-1),n为0~N-1之间的自然数,代表面阵天线中N个辐射单元的编号。2.2 According to the installation method of the antenna, impose constraints on the area array antenna, and apply the airborne random vibration acceleration power spectrum to the finite element model of the area array antenna structure, calculate the random vibration deformation of the array, and extract the position deviation of the radiation element caused by the vibration deformation. displacement, the position displacement of the nth radiation unit in the x, y, z directions is (Δx 0 , Δy 0 , Δz 0 )······(Δx N-1 ,Δy N-1 ,Δz N-1 ), where, (Δx n , Δy n , Δz n ), n∈(0,N-1), n is a natural number between 0 and N-1, representing the N radiation elements in the area array antenna serial number.
步骤3,线阵天线机电耦合模型计算电性能Step 3, the linear array antenna electromechanical coupling model to calculate the electrical performance
提取M个线阵天线中第i个线阵天线,使用线阵天线机电耦合模型,计算的第i个变形线阵天线电性能为:Extract the i-th linear array antenna among the M linear array antennas, and use the electromechanical coupling model of the linear array antenna to calculate the electrical performance of the i-th deformed linear array antenna as follows:
式中,d为辐射单元间距,Iin为第i个线阵天线中第n个辐射单元理想线阵电性能的激励电流,其中Ain为激励电流幅度,为激励电流相位,k为波常数,k=2π/λ,λ为面阵天线工作波长,θ为线阵天线俯仰角,Δyin和Δzin分别为第i个线阵中,第n个辐射单元产生的沿y向和z向的位置误差,Δyi0和Δzi0分别为第i个线阵中,第0个辐射单元即初始辐射单元在y向和z向的位置误差。In the formula, d is the distance between the radiating elements, I in is the excitation current of the ideal linear array electrical performance of the nth radiating element in the ith linear array antenna, where A in is the amplitude of the excitation current, is the excitation current phase, k is the wave constant, k=2π/λ, λ is the working wavelength of the area array antenna, θ is the pitch angle of the line array antenna, Δy in and Δz in are the i-th line array, the n-th radiation The position error along the y-direction and z-direction generated by the unit, Δy i0 and Δz i0 are the position errors of the 0th radiating unit, that is, the initial radiating unit in the y-direction and z-direction in the i-th line array, respectively.
步骤4,分解第i个变形线阵天线电性能Step 4, decompose the electrical performance of the i-th deformed linear array antenna
当线阵天线辐射单元的结构变形量不大于0.06λ/πcos(λ/2d)时,对第i个变形线阵天线的阵因子方向图进行分解:When the structural deformation of the radiating element of the linear array antenna is not greater than 0.06λ/πcos(λ/2d), the array factor pattern of the ith deformed linear array antenna is decomposed:
其中,表示i个线阵天线结构变形引起的电性能变化项;fia(θ)表示第i个线阵天线理想电性能。in, Indicates the electrical performance change item caused by the structural deformation of the i-th linear array antenna; f ia (θ) indicates the ideal electrical performance of the i-th linear array antenna.
步骤5,分别对第i个线阵理想电性能以及电性能变化项进行FFT变换Step 5, perform FFT transformation on the i-th linear array ideal electrical performance and electrical performance change items respectively
(5a)对第i个变形线阵天线的理想线阵电性能中的激励电流Iin进行FFT变换:(5a) Perform FFT transformation on the excitation current I in the ideal linear array electrical performance of the ith deformed linear array antenna:
其中,αim为激励电流的傅里叶级数,m表示快速傅里叶变换后电流信号的序号。Among them, α im is the Fourier series of the excitation current, and m represents the serial number of the current signal after fast Fourier transform.
在理想线阵天线主波束方向上,建立天线电性能与理想线阵电性能的激励电流之间的傅里叶变换关系,对第i个变形线阵天线的理想线阵电性能fia(u)进行FFT变换:In the ideal linear array antenna main beam direction Above, the Fourier transform relationship between the electrical performance of the antenna and the excitation current of the ideal linear array electrical performance is established, and the FFT transformation is performed on the ideal linear array electrical performance f ia (u) of the ith deformed linear array antenna:
其中,u=sinθ;表示理想状态下线阵天线辐射单元产生的空间相位;表示线阵天线的主波束指向;Among them, u=sinθ; Indicates the spatial phase generated by the radiating element of the linear array antenna under ideal conditions; Indicates the main beam direction of the linear array antenna;
(5b)对线阵天线的电性能扰动项fiae(θ),建立其傅里叶级数表达式。采用FFT变换,使βim=FFT[kIin(Δyin-Δyi0)],γim=FFT[kIin(Δzin-Δzi0)],因为离散傅里叶变换满足线性叠加,因此fiae(θ)的傅里叶级数形式可表示为:(5b) For the electrical performance disturbance term f iae (θ) of the linear array antenna, establish its Fourier series expression. Using FFT transformation, make β im =FFT[kI in (Δy in -Δy i0 )], γ im =FFT[kI in (Δz in -Δz i0 )], because discrete Fourier transform satisfies linear superposition, so f iae The Fourier series form of (θ) can be expressed as:
将结构变形对方向u的影响,转换为对线阵天线主波束指向um的影响,则在线阵天线主波束指向上计算激励电流的调整量,上式Fiae(u)变为:The influence of the structural deformation on the direction u is converted into the influence on the main beam of the linear array antenna to u m , then the adjustment of the excitation current is calculated on the main beam of the linear array antenna, and the above formula F iae (u) becomes:
此时,存在结构误差的天线阵因子方向图fias(θ)的傅里叶级数形式为:At this time, the Fourier series form of the antenna array factor pattern f ias (θ) with structural errors is:
(5c)对变形线阵天线阵因子方向图的傅里叶级数Fias(u)进行FFT逆变换,得到变形线阵天线的阵因子方向图为:(5c) FFT inverse transform is carried out to the Fourier series F ias (u) of the array factor pattern of the deformed linear array antenna, and the array factor pattern of the deformed linear array antenna is obtained as follows:
其中,表示第i个变形线阵天线中包含结构误差的激励电流,通常调整该电流即可补偿结构变形对线阵电性能的影响。in, Indicates the excitation current that contains structural errors in the ith deformed linear array antenna. Usually, adjusting this current can compensate the influence of structural deformation on the electrical performance of the linear array.
(5d)在线阵天线的主波束指向上,计算激励电流幅度和相位的调整量。在主波束指向um上,包含结构误差的激励电流Iins为:(5d) The main beam pointing of the line array antenna On, the adjustment amount of excitation current amplitude and phase is calculated. On the main beam pointing u m , the excitation current I ins including the structure error is:
该电流与理想线阵电性能的激励电流Iin关系如下:The relationship between this current and the excitation current I in of the ideal linear array electrical performance is as follows:
其中,in,
表示变形面阵天线激励电流中因结构误差引起的幅度扰动系数;表示变形面阵天线激励电流中因结构误差引起的相位扰动,Im表示虚数的虚部; Indicates the amplitude disturbance coefficient caused by structural errors in the excitation current of the deformed area array antenna; Indicates the phase disturbance caused by structural errors in the excitation current of the deformed area array antenna, and Im represents the imaginary part of the imaginary number;
(5e)对线阵天线结构变形导致的激励电流幅度扰动系数ΔAn和相位扰动进行修正,以补偿结构变形对线阵天线电性能的影响。引入激励电流的幅度系数调整量ΔAinc=-ΔAin,激励电流的相位调整量则调整后的激励电流变为:(5e) The amplitude disturbance coefficient ΔA n and phase disturbance of the excitation current caused by the structural deformation of the linear array antenna A correction is made to compensate for the effect of structural deformation on the electrical performance of the linear array antenna. Introduce the amplitude coefficient adjustment amount of the excitation current ΔA inc = -ΔA in , the phase adjustment amount of the excitation current Then the adjusted excitation current becomes:
使用调整后的激励电流Iinc代替变形线阵天线阵因子fias(θ)中理想线阵电性能的激励电流Iin,即可得到补偿后的变形线阵天线电性能为:Using the adjusted excitation current I inc to replace the excitation current I in of the ideal linear array electrical performance in the deformed linear array antenna array factor f ias (θ), the electrical performance of the deformed linear array antenna after compensation can be obtained as:
式中,表示激励电流的幅度系数调整量;表示激励电流的相位的调整量。In the formula, Indicates the amplitude coefficient adjustment amount of the excitation current; Indicates the adjustment amount of the phase of the excitation current.
步骤6,判断是否已对所有线阵天线进行补偿Step 6. Determine whether all linear array antennas have been compensated
判断是否已对所有线阵天线计算了激励电流幅度和相位的调整量,如满足则得到面阵单元激励电流幅度和相位调整量,若不满足,则提取下一个线阵天线,并重复步骤(3)到步骤(6)。Judging whether the excitation current amplitude and phase adjustments have been calculated for all linear array antennas, if it is satisfied, the excitation current amplitude and phase adjustment of the area array unit are obtained, if not, extract the next linear array antenna, and repeat the steps ( 3) Go to step (6).
步骤7,面阵天线机电耦合计算Step 7, area array antenna electromechanical coupling calculation
将得到的M个线阵天线单元,即所有的面阵天线单元的激励电流幅度和相位的调整量,带入面阵天线机电耦合模型,该模型为:The obtained M linear array antenna units, that is, the adjustments of the excitation current amplitude and phase of all the area array antenna units, are brought into the electromechanical coupling model of the area array antenna, which is:
步骤8,判断补偿后变形面阵天线是否满足设计要求Step 8, judge whether the deformed area array antenna meets the design requirements after compensation
计算补偿后的变形线阵天线电性能,得到包括天线增益、副瓣电平以及波束指向等天线电性能参数。判断补偿后的变形面阵天线电性能是否满足指标要求,如满足,则表明得到了补偿变形面阵天线电性能最优的激励电流幅度和相位调整量,使面阵天线在服役环境下达到最优工作性能;否则,修改面阵天线的结构参数,包括增强天线结构刚度、修改面阵天线约束位置等,并重复步骤(1)到步骤(8),直至满足要求。Calculate the electrical performance of the deformed linear array antenna after compensation, and obtain the electrical performance parameters of the antenna, including antenna gain, sidelobe level and beam pointing. Judging whether the electrical performance of the deformed area array antenna after compensation meets the index requirements, if it meets the requirements, it indicates that the excitation current amplitude and phase adjustment with the best electrical performance of the compensated deformed area array antenna have been obtained, so that the area array antenna can achieve the best performance in the service environment. Otherwise, modify the structural parameters of the area array antenna, including enhancing the structural stiffness of the antenna, modifying the constraint position of the area array antenna, etc., and repeat steps (1) to (8) until the requirements are met.
本发明的优点可以通过仿真实验进一步说明:Advantage of the present invention can further illustrate by simulation experiment:
一、.确定面阵天线参数1. Determine the parameters of the area array antenna
本实例中以矩形面阵天线为例,如图2所示,中心工作频率为f=10Ghz(波长λ=30mm),辐射单元在xoy平面以等间距矩形栅格排列,取M=12,N=12,共计144个辐射单元组成有源相控阵天线阵列;dx=0.5λ=15mm,dy=0.5λ=15mm。观察点P相对于坐标系xyz的空间几何关系见图3所示。面阵天线的材料属性具体参数如表1所示。In this example, take the rectangular area array antenna as an example, as shown in Figure 2, the central operating frequency is f = 10Ghz (wavelength λ = 30mm), and the radiating elements are arranged in a rectangular grid with equal intervals on the xoy plane, M = 12, N =12, a total of 144 radiating elements form an active phased array antenna array; d x =0.5λ=15mm, d y =0.5λ=15mm. The spatial geometric relationship of the observation point P relative to the coordinate system xyz is shown in Figure 3. The specific parameters of the material properties of the area array antenna are shown in Table 1.
表1 面阵天线的材料属性Table 1 Material properties of the area array antenna
二.计算补偿激励电流2. Calculate the compensation excitation current
1.有限元分析得到阵面变形量1. Finite element analysis to get the front deformation
1.1根据面阵天线的几何模型尺寸在ANSYS中建立面阵天线的几何结构模型,如图4所示。冷板、T/R组件、加强筋的单元类型为实体单元SOLID92,辐射单元的单元类型为面单元SHELL63,按照设置的材料属性及单元类型对面阵天线的几何模型进行网格划分得到面阵天线的结构有限元模型如图5所示。其中冷板与加强筋之间、冷板与T/R组件之间、T/R组件与辐射单元、加强筋与辐射单元之间相互连接,之间没有相对位移。1.1 According to the geometric model size of the area array antenna, the geometric structure model of the area array antenna is established in ANSYS, as shown in Figure 4. The element type of the cold plate, T/R component, and rib is solid element SOLID92, and the element type of the radiation element is surface element SHELL63. According to the set material properties and element types, the geometric model of the area array antenna is meshed to obtain the area array antenna The finite element model of the structure is shown in Fig. 5. Among them, there is no relative displacement between the cold plate and the rib, between the cold plate and the T/R assembly, between the T/R assembly and the radiation unit, and between the rib and the radiation unit.
1.2根据面阵天线结构有限元模型约束条件和给定的随机振动加速度功率谱(如图6所示),通过ANSYS软件计算面阵天线随机振动变形量,得到面阵天线结构变形云图(如图7),分别提取振动载荷下的面阵天线结构有限元模型中,辐射单元中心在x,y,z三个方向上的位置偏移量(Δxn,Δyn,Δzn)。其中,n∈(0,N-1)。1.2 According to the constraints of the finite element model of the area array antenna structure and the given random vibration acceleration power spectrum (as shown in Figure 6), the random vibration deformation of the area array antenna is calculated by ANSYS software, and the deformation cloud diagram of the area array antenna structure is obtained (as shown in Figure 6 7), respectively extract the positional offsets (Δx n , Δy n , Δz n ) of the center of the radiation element in the three directions of x, y, and z in the finite element model of the area array antenna structure under the vibration load. Among them, n∈(0,N-1).
2.线阵天线机电耦合模型计算天线电性能2. Calculate the electrical performance of the antenna with the electromechanical coupling model of the linear array antenna
将面阵天线分为12个线阵天线,提取第i(1≤i≤12)个线阵天线,使用线阵天线机电耦合模型,计算的第i个变形线阵天线电性能为:Divide the area array antenna into 12 linear array antennas, extract the i-th (1≤i≤12) linear array antenna, use the electromechanical coupling model of the linear array antenna, and calculate the electrical performance of the i-th deformed linear array antenna as follows:
式中,d为辐射单元间距,Iin为第i个线阵天线中第n个辐射单元的激励电流,其中Ain为激励电流幅度,为激励电流相位,k为波常数,k=2π/λ,λ为面阵天线工作波长,θ为线阵天线俯仰角,Δyin和Δzin分别为第i个线阵中,第n个辐射单元产生的沿y向和z向的位置误差,Δyi0和Δzi0分别为第i个线阵中,第0个辐射单元即初始辐射单元在y向和z向的位置误差。In the formula, d is the distance between the radiating elements, I in is the excitation current of the nth radiating element in the ith linear array antenna, where A in is the amplitude of the excitation current, is the excitation current phase, k is the wave constant, k=2π/λ, λ is the working wavelength of the area array antenna, θ is the pitch angle of the line array antenna, Δy in and Δz in are the i-th line array, the n-th radiation The position error along the y-direction and z-direction generated by the unit, Δy i0 and Δz i0 are the position errors of the 0th radiating unit, that is, the initial radiating unit in the y-direction and z-direction in the i-th line array, respectively.
3.分解第i个变形线阵天线电性能3. Decompose the electrical performance of the i-th deformed linear array antenna
对第i个变形线阵天线的阵因子方向图进行分解:Decompose the array factor pattern of the i-th deformed linear array antenna:
其中,表示i个线阵天线结构变形引起的电性能变化项;fia(θ)表示第i个线阵天线理想电性能。理想和变形后面阵天线远场方向图比较见图8所示。in, Indicates the electrical performance change item caused by the structural deformation of the i-th linear array antenna; f ia (θ) indicates the ideal electrical performance of the i-th linear array antenna. The comparison of the far-field pattern of the ideal and deformed rear array antennas is shown in Figure 8.
4.使用FFT计算变形线阵天线激励电流幅度和相位补偿量4. Use FFT to calculate the excitation current amplitude and phase compensation amount of deformed linear array antenna
分别对第i个线阵理想电性能以及电性能变化项进行FFT变换,计算变形线阵天线激励电流补偿量,具体步骤为:Perform FFT transformation on the i-th linear array ideal electrical performance and electrical performance change items respectively, and calculate the excitation current compensation amount of the deformed linear array antenna. The specific steps are as follows:
4.1对第i个线阵理想电性能中的激励电流Iin进行FFT变换:4.1 Perform FFT transformation on the excitation current I in in the ideal electrical performance of the ith linear array:
其中,αim为激励电流的傅里叶级数,m表示快速傅里叶变换后电流信号的序号。Among them, α im is the Fourier series of the excitation current, and m represents the serial number of the current signal after fast Fourier transform.
在理想线阵天线主波束方向上,建立天线电性能与激励电流之间的傅里叶变换关系,对第i个线阵天线理想电性能fia(u)进行FFT变换:In the ideal linear array antenna main beam direction Above, the Fourier transform relationship between the electrical performance of the antenna and the excitation current is established, and the FFT transformation is performed on the ideal electrical performance f ia (u) of the i-th linear array antenna:
其中,u=sinθ;表示理想状态下线阵天线辐射单元产生的空间相位;表示线阵天线的主波束指向。Among them, u=sinθ; Indicates the spatial phase generated by the radiating element of the linear array antenna under ideal conditions; Indicates the main beam direction of the linear array antenna.
4.2对线阵天线的电性能扰动项fiae(θ),建立其傅里叶级数表达式。采用FFT变换,使βim=FFT[kIin(Δyin-Δyi0)],γim=FFT[kIin(Δzin-Δzi0)],因为离散傅里叶变换满足线性叠加,因此fiae(θ)的傅里叶级数形式可表示为:4.2 For the electrical performance disturbance term f iae (θ) of the linear array antenna, establish its Fourier series expression. Using FFT transformation, make β im =FFT[kI in (Δy in -Δy i0 )], γ im =FFT[kI in (Δz in -Δz i0 )], because discrete Fourier transform satisfies linear superposition, so f iae The Fourier series form of (θ) can be expressed as:
此时,存在结构误差的天线阵因子方向图fias(θ)的傅里叶级数形式为:At this time, the Fourier series form of the antenna array factor pattern f ias (θ) with structural errors is:
4.3对变形线阵天线阵因子方向图的傅里叶级数Fias(u)进行FFT逆变换,得到变形线阵天线的阵因子方向图为:4.3 Perform FFT inverse transformation on the Fourier series F ias (u) of the array factor pattern of the deformed linear array antenna, and obtain the array factor pattern of the deformed linear array antenna as follows:
其中,表示第i个变形线阵天线中包含结构误差的激励电流,通常调整该电流即可补偿结构变形对线阵电性能的影响。in, Indicates the excitation current that contains structural errors in the ith deformed linear array antenna. Usually, adjusting this current can compensate the influence of structural deformation on the electrical performance of the linear array.
4.4在线阵天线的主波束指向上,计算激励电流幅度和相位的调整量。在主波束指向um上,包含结构误差的激励电流Iins为:4.4 Main beam pointing of line array antenna On, the adjustment amount of excitation current amplitude and phase is calculated. On the main beam pointing u m , the excitation current I ins including the structure error is:
该电流与理想状态下线阵天线的激励电流Iin关系如下:The relationship between this current and the excitation current I in of the linear array antenna in an ideal state is as follows:
其中,in,
表示变形面阵天线激励电流中因结构误差引起的幅度扰动系数;表示变形面阵天线激励电流中因结构误差引起的相位扰动。 Indicates the amplitude disturbance coefficient caused by structural errors in the excitation current of the deformed area array antenna; Indicates the phase disturbance caused by the structural error in the excitation current of the deformed area array antenna.
4.5对线阵天线结构变形导致的激励电流幅度扰动系数ΔAn和相位扰动进行修正,以补偿结构变形对线阵天线电性能的影响。引入激励电流的幅度系数调整量ΔAinc=-ΔAin,激励电流的相位调整量则调整后的激励电流变为:4.5 The excitation current amplitude disturbance coefficient ΔA n and phase disturbance caused by the structural deformation of the linear array antenna A correction is made to compensate for the effect of structural deformation on the electrical performance of the linear array antenna. Introduce the amplitude coefficient adjustment amount of the excitation current ΔA inc = -ΔA in , the phase adjustment amount of the excitation current Then the adjusted excitation current becomes:
使用调整后的激励电流Iinc代替变形线阵天线阵因子fias(θ)中的激励电流Iin,即可得到补偿后的变形线阵天线电性能为:Using the adjusted excitation current I inc to replace the excitation current I in in the deformed linear array antenna factor f ias (θ), the electrical performance of the compensated deformed linear array antenna can be obtained as follows:
式中,表示激励电流的幅度系数调整量;表示激励电流的相位的调整量。In the formula, Indicates the amplitude coefficient adjustment amount of the excitation current; Indicates the adjustment amount of the phase of the excitation current.
5.判断是否已对所有线阵天线进行补偿5. Determine whether all linear array antennas have been compensated
判断是否已对所有线阵天线计算了激励电流幅度和相位的调整量,如满足则得到面阵单元激励电流幅度和相位调整量,若不满足,则提取下一个线阵天线,并重复步骤2到步骤4。Determine whether the excitation current amplitude and phase adjustments have been calculated for all linear array antennas. If satisfied, obtain the excitation current amplitude and phase adjustment of the area array unit. If not, extract the next linear array antenna and repeat step 2 Go to step 4.
6.面阵天线机电耦合计算天线电性能6. Electromechanical coupling of area array antenna to calculate antenna electrical performance
将得到的12个线阵天线单元,即所有的面阵天线单元的激励电流幅度和相位的调整量,带入面阵天线机电耦合模型,该模型为:The obtained 12 linear array antenna units, that is, the adjustments of the excitation current amplitude and phase of all the area array antenna units, are brought into the electromechanical coupling model of the area array antenna, which is:
三.仿真结果及分析3. Simulation results and analysis
由上述可知,面阵天线的结构变形会引起天线增益下降、副瓣电平抬高、波束指向偏差,导致天线性能恶化。将得到的补偿激励电流,带入变形面阵天线的方向图函数中,得到补偿后的面阵天线方向图函数,将理想情况面阵天线方向图和补偿后的面阵天线方向图绘制在同一坐标系中,如图9所示。由图9可以看出,补偿后的天线方向图函数和理想情况下天线方向图函数十分接近,补偿效果较好。表2分别给出了理想情况、振动变形情况以及补偿后三种不同状态下面阵天线的电性能参数,包括增益、副瓣电平及波束指向。It can be seen from the above that the structural deformation of the area array antenna will cause the decrease of antenna gain, the increase of sidelobe level, and the deviation of beam pointing, which will lead to the deterioration of antenna performance. Bring the obtained compensated excitation current into the pattern function of the deformed area array antenna to obtain the pattern function of the area array antenna after compensation, and draw the pattern of the area array antenna in the ideal situation and the pattern of the area array antenna after compensation on the same In the coordinate system, as shown in Figure 9. It can be seen from Fig. 9 that the antenna pattern function after compensation is very close to the antenna pattern function under ideal conditions, and the compensation effect is better. Table 2 gives the electrical performance parameters of the array antenna under the ideal condition, vibration deformation condition and three different states after compensation, including gain, sidelobe level and beam pointing.
表2 理想、变形和补偿后面阵天线电性能参数Table 2 Electrical performance parameters of ideal, deformed and compensated rear array antennas
由表2中的数据可以看出,面阵天线受到随机振动影响时,引起天线增益下降、副瓣电平抬高、波束指向偏差,采用本发明所述的补偿方法对天线电性能进行补偿,补偿后的天线增益损失由1.08dB减小为0.058dB,将增益损失降低了一个量级,且满足工程中增益损失小于0.5dB的指标要求;副瓣电平由-26.08dB降低为-29.45dB,副瓣电平明显改善;波束指向偏差由0.1°变成0°,波束指向性更准。从本实例可见,采用基于机电耦合与傅里叶变换的变形面阵天线电性能补偿方法,对天线电性能的补偿效果很好,补偿后的天线电性能满足指标要求,故可将该方法应用到天线电性能的实际服役工作中。It can be seen from the data in Table 2 that when the area array antenna is affected by random vibrations, the antenna gain decreases, the sidelobe level increases, and the beam pointing deviation is caused. The compensation method of the present invention is used to compensate the electrical performance of the antenna. After compensation, the antenna gain loss is reduced from 1.08dB to 0.058dB, which reduces the gain loss by an order of magnitude, and meets the project’s requirement that the gain loss is less than 0.5dB; the sidelobe level is reduced from -26.08dB to -29.45dB , the sidelobe level is significantly improved; the beam pointing deviation is changed from 0.1° to 0°, and the beam pointing is more accurate. From this example, it can be seen that the electrical performance compensation method of deformed area array antenna based on electromechanical coupling and Fourier transform has a good compensation effect on the electrical performance of the antenna, and the electrical performance of the antenna after compensation meets the index requirements, so this method can be applied To the actual service work of the electrical performance of the antenna.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510549051.4A CN105161860B (en) | 2015-08-31 | 2015-08-31 | Deformation planar array electrical performance compensation method based on mechanical-electric coupling and Fourier transformation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510549051.4A CN105161860B (en) | 2015-08-31 | 2015-08-31 | Deformation planar array electrical performance compensation method based on mechanical-electric coupling and Fourier transformation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105161860A CN105161860A (en) | 2015-12-16 |
CN105161860B true CN105161860B (en) | 2017-10-17 |
Family
ID=54802662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510549051.4A Active CN105161860B (en) | 2015-08-31 | 2015-08-31 | Deformation planar array electrical performance compensation method based on mechanical-electric coupling and Fourier transformation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105161860B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107026686B (en) * | 2016-01-29 | 2021-04-13 | 南京理工大学 | A Fast Forming Method of Arbitrary Shape Beams for Nulling Tracking Interference Sources |
CN106407723B (en) * | 2016-11-17 | 2018-10-09 | 西安电子科技大学 | The determination method of sparse arrangement array antenna exciting current amplitude towards Sidelobe |
CN107038299B (en) * | 2017-04-10 | 2019-10-22 | 西安电子科技大学 | A Compensation Method for Far Field Pattern of Deformable Array Antenna Considering Mutual Coupling Effect |
CN110196414B (en) * | 2019-06-04 | 2021-03-23 | 哈尔滨工业大学 | An Antenna Beam Pointing Method Based on Compensating Antenna Pattern Error |
CN111046592A (en) * | 2019-12-31 | 2020-04-21 | 深圳市华讯方舟微电子科技有限公司 | Design method of beam forming antenna and radar antenna |
CN117074783B (en) * | 2023-10-12 | 2024-01-19 | 国网吉林省电力有限公司通化供电公司 | Real-time monitoring and early warning method for overheat state of power equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102544755A (en) * | 2011-12-31 | 2012-07-04 | 哈尔滨工业大学 | Uniform linear array calibration method based on strong scattering points |
CN104701637A (en) * | 2015-02-12 | 2015-06-10 | 西安电子科技大学 | Method for compensating electrical property of deformable array antenna based on electromechanical coupling and least square method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7362266B2 (en) * | 2004-12-07 | 2008-04-22 | Lockheed Martin Corporation | Mutual coupling method for calibrating a phased array |
JP2014173875A (en) * | 2013-03-06 | 2014-09-22 | Mitsubishi Electric Corp | Synthetic aperture radar device, image reproduction method and image reproduction program |
-
2015
- 2015-08-31 CN CN201510549051.4A patent/CN105161860B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102544755A (en) * | 2011-12-31 | 2012-07-04 | 哈尔滨工业大学 | Uniform linear array calibration method based on strong scattering points |
CN104701637A (en) * | 2015-02-12 | 2015-06-10 | 西安电子科技大学 | Method for compensating electrical property of deformable array antenna based on electromechanical coupling and least square method |
Also Published As
Publication number | Publication date |
---|---|
CN105161860A (en) | 2015-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105161860B (en) | Deformation planar array electrical performance compensation method based on mechanical-electric coupling and Fourier transformation | |
CN102890741B (en) | Method for predicting influence of vibration deformation on electric performance of array antenna | |
CN105742817B (en) | Towards gain and the spaceborne active phase array antenna structure thermal distortion compensation method pointed to | |
CN104701637B (en) | Anamorphic array antenna electric performance compensation method based on mechanical-electric coupling Yu least square method | |
CN107038299B (en) | A Compensation Method for Far Field Pattern of Deformable Array Antenna Considering Mutual Coupling Effect | |
CN107103124B (en) | Analysis Method of Far Field Pattern of Deformable Array Antenna Based on Electromechanical Coupling Theory | |
CN104036078B (en) | Comprehensive design method of array antenna radiation and scattering performance based on installation height | |
CN104038295A (en) | Deformed array antenna scattering performance analyzing method based on electromechanical coupling | |
CN102104196B (en) | Module-level error analytic control method for phased array antenna system | |
CN106096218B (en) | An Optimization Method of Sparse Planar Antenna Array for Mobile Satellite Communication | |
CN106940739A (en) | It is a kind of to vibrate the method for quick predicting influenceed on wing conformal phased array antenna electrical property | |
CN105740502A (en) | Electric property prediction method of cylinder conformal array antenna under load distortion | |
CN102608580A (en) | Ultra-low side lobe adaptive digital beam forming (ADBF) method for digital array | |
CN111400919A (en) | Design Method of Low Sidelobe Beam in Array Antenna | |
CN104036093A (en) | Large deformation array antenna sidelobe performance prediction method based on array element mutual coupling | |
CN103037494B (en) | Control method for multi-beam antenna power | |
CN108984880A (en) | Anamorphic array antenna electric performance fast-compensation method under dynamic load based on least square method | |
Mustapha et al. | Optimization of sparse randomly spaced linear antenna array using hybrid iteratively reweighted least squares | |
Cao et al. | Conformal array element failure correction based on PSO-CS algorithm | |
CN110516299B (en) | Hybrid compensation method for electrical performance of active phased array antenna | |
Congsi et al. | Analysis of electrical performances of planar active phased array antennas with distorted array plane | |
Kang et al. | Analysis of influence of array plane error on performances of hexagonal phased array antennas | |
Schejbal et al. | Broadband Approximation of Radiation Patterns for Doubly Curved Reflector Antennas [Antenna Designer's Notebook] | |
Mitra et al. | Antenna Array Failure Correction Using Improved Particle Swarm Optimization with Wavelet Mutation | |
CN107703374A (en) | The fast determination method of characteristics of conformal array antenna critical load based on mechanical-electric coupling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |