CN105160105B - High ferro two is vertical and the cooperative optimization method of end longitudinal shock absorber damped coefficient - Google Patents
High ferro two is vertical and the cooperative optimization method of end longitudinal shock absorber damped coefficient Download PDFInfo
- Publication number
- CN105160105B CN105160105B CN201510559978.6A CN201510559978A CN105160105B CN 105160105 B CN105160105 B CN 105160105B CN 201510559978 A CN201510559978 A CN 201510559978A CN 105160105 B CN105160105 B CN 105160105B
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- mover
- centerdot
- mtd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
The present invention relates to high ferro two it is vertical and the cooperative optimization method of end longitudinal shock absorber damped coefficient, belongs to high speed railway car suspension technical field.The present invention cooperates with optimization Simulation model by establishing high ferro vehicle 6DOF vertical vibration, using track transition as input stimulus, with the minimum design object of vibration root mean square of weighed acceleration of car body catenary motion, it is vertical and body end portion longitudinal shock absorber optimal damping constant that optimization design, which obtains high ferro two,.By designing example and SIMPACK simulating, verifyings, this method it is available accurately and reliably two be vertical damper and body end portion longitudinal shock absorber damping coefficient, for high ferro two be vertical and the design of body end portion longitudinal shock absorber damped coefficient provides reliable design method.Using this method, the design level of high ferro suspension system can be not only improved, improves vehicle safety and stationarity, can also reduce product design and testing expenses, strengthens the competitiveness in the international market of China's rail vehicle.
Description
Technical field
The present invention relates to high speed railway car suspension, particularly high ferro two it is vertical and end longitudinal shock absorber damped coefficient
Cooperative optimization method.
Background technology
Two to be that vertical damper and body end portion longitudinal shock absorber have to the riding comfort and security of high ferro important
Influence.However, being understood according to institute's inspection information, because high ferro belongs to Mdof Vibration System, dynamic analysis is carried out to it
Calculate extremely difficult, be both at home and abroad at present vertical for high ferro two and the design of body end portion longitudinal shock absorber damped coefficient, one
The straight theoretical design method for not providing system, it is that vertical damper and body end portion longitudinal shock absorber are single respectively to two to be mostly
Solely studied, and by computer technology, using Dynamics Simulation soft sim PACK or ADAMS/Rail, led to respectively
Solid modelling is crossed to optimize and determine its size, although this method can obtain reliable simulation numerical, there is vehicle
Preferable power performance, however, due to two be vertical damper and body end portion longitudinal shock absorber be one intercouple answer
Miscellaneous system, it is this at present individually to model the method being designed to its shock absorber damping, it is difficult to the system of high ferro two is hung down
To and the damped coefficient of body end portion longitudinal shock absorber reach best match, and with the continuous improvement of high ferro travel speed, people
Be vertical to two and the design of body end portion longitudinal shock absorber damped coefficient proposes higher requirement, the system of high ferro two hangs down at present
To and the method for body end portion longitudinal shock absorber damped coefficient design can not provide the innovation theory with directive significance, it is impossible to it is full
Development in the case of the constantly speed-raising of sufficient rail vehicle to absorber designing requirement.Therefore, it is necessary to establish a kind of accurate, reliable high
Iron two is vertical and the cooperative optimization method of end longitudinal shock absorber damped coefficient, meets that rail vehicle is right in the case of constantly raising speed
The requirement of absorber designing, the design level and product quality of high ferro suspension system are improved, improve vehicle riding comfort and peace
Quan Xing;Meanwhile product design and testing expenses are reduced, shorten the product design cycle, strengthen the international market of China's rail vehicle
Competitiveness.
The content of the invention
For defect present in above-mentioned prior art, the technical problems to be solved by the invention be to provide it is a kind of accurate,
Reliable high ferro two is vertical and the cooperative optimization method of end longitudinal shock absorber damped coefficient, its design flow diagram such as Fig. 1 institutes
Show;The front view of high ferro vehicle 6DOF traveling vertical direction vibration model is as shown in Fig. 2 high ferro vehicle 6DOF travels vertical shake
The left view of movable model is as shown in Figure 3.
In order to solve the above technical problems, high ferro two provided by the present invention is vertical and end longitudinal shock absorber damped coefficient
Cooperative optimization method, it is characterised in that use following design procedure:
(1) the high ferro vehicle 6DOF traveling vertical vibration differential equation is established:
According to the quality m of the single-unit car body of high ferro2, nod rotary inertia J2φ;The quality m of every bogie frame1, nod
Rotary inertia J1φ;Forecarriage one is the vertical equivalent stiffness K of front suspension1zff, vertical equivalent damping Cd1ff, the system of forecarriage one
The vertical equivalent stiffness K of rear suspension1zfr, vertical equivalent damping Cd1fr;Trailing bogie one is the vertical equivalent stiffness of front suspension
K1zrf, vertical equivalent damping Cd1rf, trailing bogie one is the vertical equivalent stiffness K of rear suspension1zrr, vertical equivalent damping Cd1rr;Before
The vertical equivalent stiffness K of the system of bogie two suspension2zf;The vertical equivalent stiffness K of the system of trailing bogie two suspension2zr;Forward to be designed
It is the Equivalent damping coefficient C of vertical damper to frame twod2f, trailing bogie two to be designed be vertical damper equivalent damping system
Number Cd2r;The Equivalent damping coefficient C of body end portion longitudinal shock absorber to be designed3;Car body upper end end longitudinal shock absorber is to car body matter
The height h of the heart1, the height h of car body lower end longitudinal shock absorber to car body barycenter2, the half a of length between truck centers, wheel-base bogie
Half a0;Distinguish the barycenter O of former, trailing bogie framework and car body1、O2、O3For the origin of coordinates;Bogie frame in the past
Drift along displacement z1f, nod displacement φ1f, the displacement z that drifts along of trailing bogie framework1r, nod displacement φ1rAnd the displacement of drifting along of car body
z2, nod displacement φ2For coordinate;With the track transition at the forward and backward wheel of forecarriage and the forward and backward wheel of trailing bogie
Input z01(t)、z02(t)、z03(t)、z04(t) it is input stimulus, wherein, t is time variable;Establish high ferro vehicle 6DOF row
The vertical vibration differential equation is sailed, i.e.,:
(2) high ferro vehicle 6DOF vertical vibration collaboration optimization Simulation model is built:
The vertical vibration differential equation is travelled according to the high ferro vehicle 6DOF established in step (1), utilizes Matlab/
Simulink simulation softwares, structure high ferro vehicle 6DOF vertical vibration collaboration optimization Simulation model;
(3) it is vertical and the damping of end longitudinal shock absorber collaboration optimization object function J to establish high ferro two:
Optimization Simulation model is cooperateed with according to the high ferro vehicle 6DOF vertical vibration established in step (2), with front steering
Frame two is that the Equivalent damping coefficient of vertical damper, trailing bogie two are the Equivalent damping coefficient and body end portion of vertical damper
The Equivalent damping coefficient of longitudinal shock absorber is design variable, and the track transition stochastic inputs at place are swashed as input using each wheel
Encourage, utilize the vibration frequency root mean square of weighed acceleration of the car body porpoising obtained by emulationAnd car body is nodded motion
Vibration frequency root mean square of weighed accelerationEstablish high ferro two be vertical and the damping of end longitudinal shock absorber collaboration it is excellent
Change object function J, i.e.,:
In formula, vibration frequency root mean square of weighed accelerationCoefficient 1,0.4, respectively car body drifts along fortune
Move, put cephalomotor axle weight coefficient;Wherein, vibration frequency root mean square of weighed acceleration at different frequencies
Frequency weight values, be respectively:
(4) high ferro two is vertical damper optimal damping constant Cof、CorAnd body end portion longitudinal shock absorber optimal damping system
Number Co3Optimization design:
1. according to the half a of length between truck centers, the half a of wheel-base bogie0, institute in Vehicle Speed v, and step (2)
The high ferro vehicle 6DOF vertical vibration collaboration optimization Simulation model of foundation, it is random to the track transition at place with each wheel
Input z01(t)、z02(t)、z03(t)、z04(t) it is input stimulus, is asked using optimized algorithm in step (3) and establish the system of high ferro two
Vertical and end longitudinal shock absorber damping collaboration optimization object function J minimum value, corresponding design variable is forward
It is the best equivalence damped coefficient C of vertical damper to frame twod2f, trailing bogie two be vertical damper best equivalence damping
Coefficient Cd2rWith the best equivalence damped coefficient C of body end portion longitudinal shock absorber3;
Wherein, the relation between track transition stochastic inputs is:
2. it is the installation number n of vertical damper according to every bogie two1, the installation branch of body end portion longitudinal shock absorber
Number n2, and 1. the forecarriage two in step obtained by optimization design is the best equivalence damped coefficient C of vertical damperd2f, after
Bogie two is the best equivalence damped coefficient C of vertical damperd2rSystem is damped with the best equivalence of body end portion longitudinal shock absorber
Number C3, it is that vertical damper, trailing bogie two are vertical damper and body end portion longitudinal direction that single branch forecarriage two, which is calculated,
The optimal damping constant of shock absorber, it is respectively:Cof=Cd2f/n1, Cor=Cd2r/n1, Co3=C3/n2。
The present invention has the advantage that than prior art:
Because high ferro belongs to Mdof Vibration System, dynamic analysis is carried out to it and calculates extremely difficult, the current country
It is outside vertical for high ferro two and the design of body end portion longitudinal shock absorber damped coefficient, the theory for never providing system are set
Meter method, it is that vertical damper and body end portion longitudinal shock absorber are individually studied to two to be mostly, and by calculating
Machine technology, using Dynamics Simulation soft sim PACK or ADAMS/Rail, optimize and determine by solid modelling respectively
Its size, although this method can obtain reliable simulation numerical, make vehicle that there is preferable power performance, however, by
Be vertical damper in two and body end portion longitudinal shock absorber be a complication system to intercouple, it is this at present individually
Model the method that is designed to its shock absorber damping, it is difficult to make high ferro two be vertical and body end portion longitudinal shock absorber
Damped coefficient reaches best match, and with the continuous improvement of high ferro travel speed, people are vertical to two and body end portion is indulged
Design to shock absorber damping proposes higher requirement, and high ferro two is vertical at present and body end portion longitudinal shock absorber hinders
The method of Buddhist nun's factor design can not provide the innovation theory with directive significance, it is impossible in the case of meeting that rail vehicle constantly raises speed
Development to absorber designing requirement.
The present invention travels the vertical vibration differential equation by establishing high ferro vehicle 6DOF, utilizes MATLAB/Simulink
Simulation software, high ferro vehicle 6DOF vertical vibration collaboration optimization Simulation model is constructed, and using track transition to be defeated
Enter excitation, with the minimum design object of vibration root mean square of weighed acceleration of car body catenary motion, optimization design obtains high ferro
Two be vertical and body end portion longitudinal shock absorber optimal damping constant.By designing example and SIMPACK simulating, verifyings,
This method it is available accurately and reliably two be vertical damper and body end portion longitudinal shock absorber damping coefficient, be high ferro two
It is vertical and the design of body end portion longitudinal shock absorber damped coefficient provides reliable design method.Using this method, not only
The design level and product quality of high ferro suspension system can be improved, improves vehicle safety and stationarity;Meanwhile it can also drop
Low product design and testing expenses, shorten the product design cycle, strengthen the competitiveness in the international market of China's rail vehicle.
Brief description of the drawings
It is described further below in conjunction with the accompanying drawings for a better understanding of the present invention.
Fig. 1 is that high ferro two is vertical and the design flow diagram of end longitudinal shock absorber damped coefficient cooperative optimization method;
Fig. 2 is the front view of high ferro vehicle 6DOF traveling vertical direction vibration model;
Fig. 3 is the left view of high ferro vehicle 6DOF traveling vertical direction vibration model;
Fig. 4 is the high ferro vehicle 6DOF vertical vibration collaboration optimization Simulation illustraton of model of embodiment;
Fig. 5 is the German track transition random input stimuli z that embodiment is applied01(t);
Fig. 6 is the German track transition random input stimuli z that embodiment is applied02(t);
Fig. 7 is the German track transition random input stimuli z that embodiment is applied03(t);
Fig. 8 is the German track transition random input stimuli z that embodiment is applied04(t)。
Specific embodiment
The present invention is described in further detail below by an embodiment.
It is vertical damper that two two are provided with every bogie of certain high ferro, and four cars are provided between two adjacent car bodies
Body end portion longitudinal shock absorber, i.e. n1=2, n2=4;The quality m of its single-unit car body2=63966kg, nod rotary inertia J2φ=
2887500kg.m2;The quality m of every bogie frame1=2758kg, nod rotary inertia J1φ=2222kg.m2;Front steering
Frame one is the vertical equivalent stiffness K of front suspension1zff=2.74 × 106N/m, vertical equivalent damping Cd1ff=28.3kN.s/m, forward
It is the vertical equivalent stiffness K of rear suspension to frame one1zfr=2.74 × 106N/m, vertical equivalent damping Cd1fr=28.3kN.s/m;Afterwards
The vertical equivalent stiffness K of bogie primary front suspension1zrf=2.74 × 106N/m, vertical equivalent damping Cd1rf=28.3kN.s/m,
Trailing bogie one is the vertical equivalent stiffness K of rear suspension1zrr=2.74 × 106N/m, vertical equivalent damping Cd1rr=28.3kN.s/
m;The vertical equivalent stiffness K of the system of forecarriage two suspension2zf=1136.8kN/m;The system of trailing bogie two suspends vertical equivalent firm
Spend K2zr=1136.8kN/m;Height h of the car body upper end end longitudinal shock absorber to car body barycenter1=0.5m, car body lower end
Height h of the longitudinal shock absorber to car body barycenter2=0.5m, the half a=9.5m of length between truck centers, the half a of wheel-base bogie0=
1.35m;Forecarriage two to be designed is that the Equivalent damping coefficient of vertical damper is Cd2f, trailing bogie two to be designed be vertical
The Equivalent damping coefficient of shock absorber is Cd2r;The Equivalent damping coefficient of body end portion longitudinal shock absorber to be designed is C3.The high ferro two
It is vertical and Vehicle Speed v=300km/h that the design of body end portion longitudinal shock absorber damped coefficient is required, to the high ferro
Two be vertical and the optimal damping constant of body end portion longitudinal shock absorber is designed.
The high ferro two that present example is provided is vertical and the cooperative optimization method of end longitudinal shock absorber damped coefficient,
Its design flow diagram is as shown in figure 1, high ferro vehicle 6DOF travels the front view of vertical direction vibration model as shown in Fig. 2 high ferro is whole
The left view of car 6DOF traveling vertical direction vibration model is as shown in figure 3, comprise the following steps that:
(1) the high ferro vehicle 6DOF traveling vertical vibration differential equation is established:
According to the quality m of the single-unit car body of high ferro2=63966kg, nod rotary inertia J2φ=2887500kg.m2;Every
The quality m of bogie frame1=2758kg, nod rotary inertia J1φ=2222kg.m2;Forecarriage one is the vertical of front suspension
Equivalent stiffness K1zff=2.74 × 106N/m, vertical equivalent damping Cd1ff=28.3kN.s/m, forecarriage one are hanging down for rear suspension
To equivalent stiffness K1zfr=2.74 × 106N/m, vertical equivalent damping Cd1fr=28.3kN.s/m;Trailing bogie one is front suspension
Vertical equivalent stiffness K1zrf=2.74 × 106N/m, vertical equivalent damping Cd1rf=28.3kN.s/m, trailing bogie one are rear suspension
Vertical equivalent stiffness K1zrr=2.74 × 106N/m, vertical equivalent damping Cd1rr=28.3kN.s/m;The system of forecarriage two suspends
Vertical equivalent stiffness K2zf=1136.8kN/m;The vertical equivalent stiffness K of the system of trailing bogie two suspension2zr=1136.8kN/m;
Forecarriage two to be designed is the Equivalent damping coefficient C of vertical damperd2f, trailing bogie two to be designed be vertical damper
Equivalent damping coefficient Cd2r;The Equivalent damping coefficient C of body end portion longitudinal shock absorber to be designed3;Car body upper end end longitudinal damping
Height h of the device to car body barycenter1=0.5m, the height h of car body lower end longitudinal shock absorber to car body barycenter2=0.5m, vehicle
The half a=9.5m of spacing, the half a of wheel-base bogie0=1.35m;Distinguish the barycenter of former, trailing bogie framework and car body
O1、O2、O3For the origin of coordinates;The displacement z that drifts along of bogie frame in the past1f, nod displacement φ1f, trailing bogie framework drifts along
Displacement z1r, nod displacement φ1rAnd the displacement z that drifts along of car body2, nod displacement φ2For coordinate;With the forward and backward wheel of forecarriage and
Track transition excitation z at the forward and backward wheel of trailing bogie01(t)、z02(t)、z03(t)、z04(t) it is input, wherein, t
For time variable;The high ferro vehicle 6DOF traveling vertical vibration differential equation is established, i.e.,:
(2) high ferro vehicle 6DOF vertical vibration collaboration optimization Simulation model is built:
The vertical vibration differential equation is travelled according to the high ferro vehicle 6DOF established in step (1), utilizes Matlab/
Simulink simulation softwares, structure high ferro vehicle 6DOF vertical vibration collaboration optimization Simulation model, as shown in Figure 4;
(3) it is vertical and the damping of end longitudinal shock absorber collaboration optimization object function J to establish high ferro two:
Optimization Simulation model is cooperateed with according to the high ferro vehicle 6DOF vertical vibration established in step (2), with front steering
Frame two is that the Equivalent damping coefficient of vertical damper, trailing bogie two are the Equivalent damping coefficient and body end portion of vertical damper
The Equivalent damping coefficient of longitudinal shock absorber is design variable, and the track transition stochastic inputs at place are swashed as input using each wheel
Encourage, utilize the vibration frequency root mean square of weighed acceleration of the car body porpoising obtained by emulationAnd car body is nodded motion
Vibration frequency root mean square of weighed accelerationEstablish high ferro two be vertical and the damping of end longitudinal shock absorber collaboration it is excellent
Change object function J, i.e.,:
In formula, vibration frequency root mean square of weighed accelerationCoefficient 1,0.4, respectively car body drifts along fortune
Move, put cephalomotor axle weight coefficient;Wherein, vibration frequency root mean square of weighed acceleration at different frequencies
Frequency weight values, be respectively:
(4) high ferro two is vertical damper optimal damping constant Cof、CorAnd body end portion longitudinal shock absorber optimal damping system
Number Co3Optimization design:
1. according to the half a=9.5m of length between truck centers, the half a of wheel-base bogie0=1.35m, Vehicle Speed v=
The high ferro vehicle 6DOF vertical vibration collaboration optimization Simulation model established in 300km/h, and step (2), with each wheel to place
Track transition stochastic inputs z01(t)、z02(t)、z03(t)、z04(t) it is input stimulus, step is sought using optimized algorithm
(3) establish that high ferro two is vertical and the damping of end longitudinal shock absorber cooperates with optimization object function J minimum value in, optimization is set
Meter obtains the best equivalence damped coefficient C that forecarriage two is vertical damperd2f=113.5kN.s/m, the system of trailing bogie two hang down
To the best equivalence damped coefficient C of shock absorberd2r=116.3kN.s/m, the best equivalence damping system of body end portion longitudinal shock absorber
C3=2917.8kN.s/m;Wherein, the relation between track transition stochastic inputs is:z02(t)=z01(t-
0.0324s), z03(t)=z01(t-0.228s), z04(t)=z01(t-0.2604s);During Vehicle Speed v=300km/h,
The German track transition random input stimuli that each wheel applies to place, respectively as shown in Fig. 5, Fig. 6, Fig. 7, Fig. 8;
2. it is the installation number n of vertical damper according to every bogie two1=2, the peace of body end portion longitudinal shock absorber
Fill number n2=4, and 1. the forecarriage two in step obtained by optimization design is the best equivalence damping system of vertical damper
Number Cd2f=113.5kN.s/m, trailing bogie two are the best equivalence damped coefficient C of vertical damperd2r=116.3kN.s/m,
The best equivalence damped coefficient C of body end portion longitudinal shock absorber3=2917.8kN.s/m, single system of branch forecarriage two is calculated
Vertical damper, trailing bogie two are the optimal damping constant of vertical damper and body end portion longitudinal shock absorber, are respectively:Cof
=Cd2f/n1=56.75kN.s/m, Cor=Cd2r/n1=58.15kN.s/m, Co3=C3/n2=729.45kN.s/m.
The vehicle parameter provided according to embodiment, using rail vehicle special-purpose software SIMPACK, imitated by solid modelling
True checking can obtain, and the high ferro forecarriage two is the optimal damping constant C of vertical damperof=56.33kN.s/m, trailing bogie
Two be the optimal damping constant C of vertical damperor=58.31kN.s/m, the optimal damping constant of body end portion longitudinal shock absorber
Co3=729.17kN.s/m;Understand, using the high ferro forecarriage two obtained by cooperative optimization method be vertical damper most
Good damped coefficient Cof=56.75kN.s/m, trailing bogie two are the optimal damping constant C of vertical damperor=58.15kN.s/
M, the optimal damping constant C of body end portion longitudinal shock absorbero3Obtained by=729.45kN.s/m, with SIMPACK simulating, verifyings
Forecarriage two is the optimal damping constant C of vertical damperof=56.33kN.s/m, trailing bogie two are vertical damper
Optimal damping constant Cor=58.31kN.s/m, the optimal damping constant C of body end portion longitudinal shock absorbero3=729.17kN.s/m
Matching, both deviations are respectively 0.42kN.s/m, 0.16kN.s/m, 0.28kN.s/m, relative deviation is respectively 0.75%,
0.27%th, 0.038%, show that high ferro two provided by the present invention is vertical and the collaboration of end longitudinal shock absorber damped coefficient is excellent
Change method is correct.
Claims (1)
1. high ferro two is vertical and the cooperative optimization method of end longitudinal shock absorber damped coefficient, its specific design step are as follows:
(1) the high ferro vehicle 6DOF traveling vertical vibration differential equation is established:
According to the quality m of the single-unit car body of high ferro2, nod rotary inertia J2φ;The quality m of every bogie frame1, rotation of nodding
Inertia J1φ;Forecarriage one is the vertical equivalent stiffness K of front suspension1zff, vertical equivalent damping Cd1ff, forecarriage one is rear overhang
The vertical equivalent stiffness K of frame1zfr, vertical equivalent damping Cd1fr;Trailing bogie one is the vertical equivalent stiffness K of front suspension1zrf, hang down
To equivalent damping Cd1rf, trailing bogie one is the vertical equivalent stiffness K of rear suspension1zrr, vertical equivalent damping Cd1rr;Forecarriage
The vertical equivalent stiffness K of two systems suspension2zf;The vertical equivalent stiffness K of the system of trailing bogie two suspension2zr;Forecarriage two to be designed
It is the Equivalent damping coefficient C of vertical damperd2f, trailing bogie two to be designed be vertical damper Equivalent damping coefficient Cd2r;
The Equivalent damping coefficient C of body end portion longitudinal shock absorber to be designed3;Height of the car body upper end end longitudinal shock absorber to car body barycenter
Spend h1, the height h of car body lower end longitudinal shock absorber to car body barycenter2, the half a of length between truck centers, the half of wheel-base bogie
a0;Distinguish the barycenter O of former, trailing bogie framework and car body1、O2、O3For the origin of coordinates;The position of drifting along of bogie frame in the past
Move z1f, nod displacement φ1f, the displacement z that drifts along of trailing bogie framework1r, nod displacement φ1rAnd the displacement z that drifts along of car body2, nod
Displacement φ2For coordinate;Z is inputted with the track transition at the forward and backward wheel of forecarriage and the forward and backward wheel of trailing bogie01
(t)、z02(t)、z03(t)、z04(t) it is input stimulus, wherein, t is time variable;It is vertical to establish high ferro vehicle 6DOF traveling
Oscillatory differential equation, i.e.,:
<mrow>
<mfenced open = "{" close = "">
<mtable>
<mtr>
<mtd>
<mrow>
<msub>
<mi>m</mi>
<mn>2</mn>
</msub>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
<mo>+</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>d</mi>
<mn>2</mn>
<mi>f</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
<mo>-</mo>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
<mo>-</mo>
<mi>a</mi>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>d</mi>
<mn>2</mn>
<mi>r</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
<mo>-</mo>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
<mo>-</mo>
<mi>a</mi>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>K</mi>
<mrow>
<mn>2</mn>
<mi>z</mi>
<mi>f</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mi>z</mi>
<mn>2</mn>
</msub>
<mo>-</mo>
<msub>
<mi>z</mi>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>a&phi;</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>K</mi>
<mrow>
<mn>2</mn>
<mi>z</mi>
<mi>r</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mi>z</mi>
<mn>2</mn>
</msub>
<mo>-</mo>
<msub>
<mi>z</mi>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>a&phi;</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>J</mi>
<mrow>
<mn>2</mn>
<mi>&phi;</mi>
</mrow>
</msub>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
<mo>-</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>d</mi>
<mn>2</mn>
<mi>f</mi>
</mrow>
</msub>
<mi>a</mi>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
<mo>-</mo>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
<mo>-</mo>
<mi>a</mi>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>d</mi>
<mn>2</mn>
<mi>r</mi>
</mrow>
</msub>
<mi>a</mi>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
<mo>-</mo>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
<mo>+</mo>
<mi>a</mi>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
</mrow>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>K</mi>
<mrow>
<mn>2</mn>
<mi>z</mi>
<mi>f</mi>
</mrow>
</msub>
<mi>a</mi>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mi>z</mi>
<mn>2</mn>
</msub>
<mo>-</mo>
<msub>
<mi>z</mi>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>a&phi;</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>C</mi>
<mn>3</mn>
</msub>
<msub>
<mi>h</mi>
<mn>1</mn>
</msub>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
<mo>+</mo>
<msub>
<mi>C</mi>
<mn>3</mn>
</msub>
<msub>
<mi>h</mi>
<mn>2</mn>
</msub>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>+</mo>
<msub>
<mi>K</mi>
<mrow>
<mn>2</mn>
<mi>z</mi>
<mi>r</mi>
</mrow>
</msub>
<mi>a</mi>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mi>z</mi>
<mn>2</mn>
</msub>
<mo>-</mo>
<msub>
<mi>z</mi>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mi>a&phi;</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>m</mi>
<mn>1</mn>
</msub>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>d</mi>
<mn>2</mn>
<mi>f</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
<mo>-</mo>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
<mo>-</mo>
<mi>a</mi>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
</mrow>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>K</mi>
<mrow>
<mn>2</mn>
<mi>z</mi>
<mi>f</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mi>z</mi>
<mn>2</mn>
</msub>
<mo>-</mo>
<msub>
<mi>z</mi>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>a&phi;</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>d</mi>
<mn>1</mn>
<mi>f</mi>
<mi>f</mi>
</mrow>
</msub>
<mrow>
<mo>&lsqb;</mo>
<mrow>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>01</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
</mrow>
<mo>&rsqb;</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>d</mi>
<mn>1</mn>
<mi>f</mi>
<mi>r</mi>
</mrow>
</msub>
<mrow>
<mo>&lsqb;</mo>
<mrow>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>02</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
</mrow>
<mo>&rsqb;</mo>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>+</mo>
<msub>
<mi>K</mi>
<mrow>
<mn>1</mn>
<mi>z</mi>
<mi>f</mi>
<mi>f</mi>
</mrow>
</msub>
<mrow>
<mo>&lsqb;</mo>
<mrow>
<msub>
<mi>z</mi>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>z</mi>
<mn>01</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<msub>
<mi>&phi;</mi>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
</mrow>
<mo>&rsqb;</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>K</mi>
<mrow>
<mn>1</mn>
<mi>z</mi>
<mi>f</mi>
<mi>r</mi>
</mrow>
</msub>
<mrow>
<mo>&lsqb;</mo>
<mrow>
<msub>
<mi>z</mi>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>z</mi>
<mn>02</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<msub>
<mi>&phi;</mi>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
</mrow>
<mo>&rsqb;</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>J</mi>
<mrow>
<mn>1</mn>
<mi>&phi;</mi>
</mrow>
</msub>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>d</mi>
<mn>1</mn>
<mi>f</mi>
<mi>f</mi>
</mrow>
</msub>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<mrow>
<mo>&lsqb;</mo>
<mrow>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>01</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
</mrow>
<mo>&rsqb;</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>d</mi>
<mn>1</mn>
<mi>f</mi>
<mi>r</mi>
</mrow>
</msub>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<mrow>
<mo>&lsqb;</mo>
<mrow>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>02</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
</mrow>
<mo>&rsqb;</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>K</mi>
<mrow>
<mn>1</mn>
<mi>z</mi>
<mi>f</mi>
<mi>f</mi>
</mrow>
</msub>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<mrow>
<mo>&lsqb;</mo>
<mrow>
<msub>
<mi>z</mi>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>z</mi>
<mn>01</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<msub>
<mi>&phi;</mi>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
</mrow>
<mo>&rsqb;</mo>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>+</mo>
<msub>
<mi>K</mi>
<mrow>
<mn>1</mn>
<mi>z</mi>
<mi>f</mi>
<mi>r</mi>
</mrow>
</msub>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<mrow>
<mo>&lsqb;</mo>
<mrow>
<msub>
<mi>z</mi>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>z</mi>
<mn>02</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<msub>
<mi>&phi;</mi>
<mrow>
<mn>1</mn>
<mi>f</mi>
</mrow>
</msub>
</mrow>
<mo>&rsqb;</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>m</mi>
<mn>1</mn>
</msub>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>d</mi>
<mn>2</mn>
<mi>r</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
<mo>-</mo>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
<mo>+</mo>
<mi>a</mi>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
</mrow>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>K</mi>
<mrow>
<mn>2</mn>
<mi>z</mi>
<mi>r</mi>
</mrow>
</msub>
<mrow>
<mo>(</mo>
<mrow>
<msub>
<mi>z</mi>
<mn>2</mn>
</msub>
<mo>-</mo>
<msub>
<mi>z</mi>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
<mo>+</mo>
<msub>
<mi>a&phi;</mi>
<mn>2</mn>
</msub>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>d</mi>
<mn>1</mn>
<mi>r</mi>
<mi>f</mi>
</mrow>
</msub>
<mrow>
<mo>&lsqb;</mo>
<mrow>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>03</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
</mrow>
<mo>&rsqb;</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>d</mi>
<mn>1</mn>
<mi>r</mi>
<mi>r</mi>
</mrow>
</msub>
<mrow>
<mo>&lsqb;</mo>
<mrow>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>04</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
</mrow>
<mo>&rsqb;</mo>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>+</mo>
<msub>
<mi>K</mi>
<mrow>
<mn>1</mn>
<mi>z</mi>
<mi>r</mi>
<mi>f</mi>
</mrow>
</msub>
<mrow>
<mo>&lsqb;</mo>
<mrow>
<msub>
<mi>z</mi>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>z</mi>
<mn>03</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<msub>
<mi>&phi;</mi>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
</mrow>
<mo>&rsqb;</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>K</mi>
<mrow>
<mn>1</mn>
<mi>z</mi>
<mi>r</mi>
<mi>r</mi>
</mrow>
</msub>
<mrow>
<mo>&lsqb;</mo>
<mrow>
<msub>
<mi>z</mi>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>z</mi>
<mn>04</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<msub>
<mi>&phi;</mi>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
</mrow>
<mo>&rsqb;</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>J</mi>
<mrow>
<mn>1</mn>
<mi>&phi;</mi>
</mrow>
</msub>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>d</mi>
<mn>1</mn>
<mi>r</mi>
<mi>f</mi>
</mrow>
</msub>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<mrow>
<mo>&lsqb;</mo>
<mrow>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>03</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
</mrow>
<mo>&rsqb;</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>C</mi>
<mrow>
<mi>d</mi>
<mn>1</mn>
<mi>r</mi>
<mi>r</mi>
</mrow>
</msub>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<mrow>
<mo>&lsqb;</mo>
<mrow>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;</mo>
</mover>
<mn>04</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;</mo>
</mover>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
</mrow>
<mo>&rsqb;</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>K</mi>
<mrow>
<mn>1</mn>
<mi>z</mi>
<mi>r</mi>
<mi>f</mi>
</mrow>
</msub>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<mrow>
<mo>&lsqb;</mo>
<mrow>
<msub>
<mi>z</mi>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>z</mi>
<mn>03</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>-</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<msub>
<mi>&phi;</mi>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
</mrow>
<mo>&rsqb;</mo>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mo>+</mo>
<msub>
<mi>K</mi>
<mrow>
<mn>1</mn>
<mi>z</mi>
<mi>r</mi>
<mi>r</mi>
</mrow>
</msub>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<mrow>
<mo>&lsqb;</mo>
<mrow>
<msub>
<mi>z</mi>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
<mo>-</mo>
<msub>
<mi>z</mi>
<mn>04</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>+</mo>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
<msub>
<mi>&phi;</mi>
<mrow>
<mn>1</mn>
<mi>r</mi>
</mrow>
</msub>
</mrow>
<mo>&rsqb;</mo>
</mrow>
<mo>=</mo>
<mn>0</mn>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>;</mo>
</mrow>
(2) high ferro vehicle 6DOF vertical vibration collaboration optimization Simulation model is built:
The vertical vibration differential equation is travelled according to the high ferro vehicle 6DOF established in step (1), utilizes Matlab/
Simulink simulation softwares, structure high ferro vehicle 6DOF vertical vibration collaboration optimization Simulation model;
(3) it is vertical and the damping of end longitudinal shock absorber collaboration optimization object function J to establish high ferro two:
Optimization Simulation model is cooperateed with according to the high ferro vehicle 6DOF vertical vibration established in step (2), with forecarriage two
Equivalent damping coefficient, the trailing bogie two for being vertical damper are Equivalent damping coefficient and the body end portion longitudinal direction of vertical damper
The Equivalent damping coefficient of shock absorber is design variable, is taken turns using each to the track transition stochastic inputs at place as input stimulus,
Utilize the vibration frequency root mean square of weighed acceleration of the car body porpoising obtained by emulationAnd car body point is cephalomotor shakes
Dynamic frequency root mean square of weighed accelerationEstablish high ferro two be vertical and the damping of end longitudinal shock absorber collaboration optimization mesh
Scalar functions J, i.e.,:
<mrow>
<mi>J</mi>
<mo>=</mo>
<msqrt>
<mrow>
<msubsup>
<mi>&sigma;</mi>
<msub>
<mover>
<mi>z</mi>
<mo>&CenterDot;&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
<mn>2</mn>
</msubsup>
<mo>+</mo>
<msup>
<mrow>
<mo>(</mo>
<mn>0.4</mn>
<msub>
<mi>&sigma;</mi>
<msub>
<mover>
<mi>&phi;</mi>
<mo>&CenterDot;&CenterDot;</mo>
</mover>
<mn>2</mn>
</msub>
</msub>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</msqrt>
<mo>;</mo>
</mrow>
In formula, vibration frequency root mean square of weighed accelerationCoefficient 1,0.4, respectively car body porpoising, point
Cephalomotor axle weight coefficient;Wherein, vibration frequency root mean square of weighed acceleration at different frequenciesFrequency
Weighted value, it is respectively:
<mrow>
<msub>
<mi>w</mi>
<mi>k</mi>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>f</mi>
<mi>i</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfenced open = "{" close = "">
<mtable>
<mtr>
<mtd>
<mn>0.5</mn>
</mtd>
<mtd>
<mrow>
<msub>
<mi>f</mi>
<mi>i</mi>
</msub>
<mo>&Element;</mo>
<mo>&lsqb;</mo>
<mn>0.5</mn>
<mo>,</mo>
<mn>2</mn>
<mo>&rsqb;</mo>
<mi>H</mi>
<mi>z</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<msub>
<mi>f</mi>
<mi>i</mi>
</msub>
<mo>/</mo>
<mn>4</mn>
</mrow>
</mtd>
<mtd>
<mrow>
<msub>
<mi>f</mi>
<mi>i</mi>
</msub>
<mo>&Element;</mo>
<mo>(</mo>
<mn>2</mn>
<mo>,</mo>
<mn>4</mn>
<mo>&rsqb;</mo>
<mi>H</mi>
<mi>z</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mrow>
<msub>
<mi>f</mi>
<mi>i</mi>
</msub>
<mo>&Element;</mo>
<mo>(</mo>
<mn>4</mn>
<mo>,</mo>
<mn>12.5</mn>
<mo>&rsqb;</mo>
<mi>H</mi>
<mi>z</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>12.5</mn>
<mo>/</mo>
<msub>
<mi>f</mi>
<mi>i</mi>
</msub>
</mrow>
</mtd>
<mtd>
<mrow>
<msub>
<mi>f</mi>
<mi>i</mi>
</msub>
<mo>&Element;</mo>
<mo>(</mo>
<mn>12.5</mn>
<mo>,</mo>
<mn>80</mn>
<mo>&rsqb;</mo>
<mi>H</mi>
<mi>z</mi>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>;</mo>
</mrow>
<mrow>
<msub>
<mi>w</mi>
<mi>e</mi>
</msub>
<mrow>
<mo>(</mo>
<msub>
<mi>f</mi>
<mi>i</mi>
</msub>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mfenced open = "{" close = "">
<mtable>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mrow>
<msub>
<mi>f</mi>
<mi>i</mi>
</msub>
<mo>&Element;</mo>
<mo>&lsqb;</mo>
<mn>0.5</mn>
<mo>,</mo>
<mn>1</mn>
<mo>&rsqb;</mo>
<mi>H</mi>
<mi>z</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>1</mn>
<mo>/</mo>
<msub>
<mi>f</mi>
<mi>i</mi>
</msub>
</mrow>
</mtd>
<mtd>
<mrow>
<msub>
<mi>f</mi>
<mi>i</mi>
</msub>
<mo>&Element;</mo>
<mo>(</mo>
<mn>1</mn>
<mo>,</mo>
<mn>80</mn>
<mo>&rsqb;</mo>
<mi>H</mi>
<mi>z</mi>
</mrow>
</mtd>
</mtr>
</mtable>
</mfenced>
<mo>;</mo>
</mrow>
(4) high ferro two is vertical damper optimal damping constant Cof、CorAnd body end portion longitudinal shock absorber optimal damping constant Co3
Optimization design:
1. according to the half a of length between truck centers, the half a of wheel-base bogie0, established in Vehicle Speed v, and step (2)
High ferro vehicle 6DOF vertical vibration cooperates with optimization Simulation model, the track transition stochastic inputs z with each wheel to place01
(t)、z02(t)、z03(t)、z04(t) be input stimulus, asked using optimized algorithm establish in step (3) high ferro two be it is vertical and
The damping collaboration optimization object function J of end longitudinal shock absorber minimum value, corresponding design variable is forecarriage two
It is the best equivalence damped coefficient C of vertical damperd2f, trailing bogie two be vertical damper best equivalence damped coefficient Cd2r
With the best equivalence damped coefficient C of body end portion longitudinal shock absorber3;
Wherein, the relation between track transition stochastic inputs is:
<mrow>
<msub>
<mi>z</mi>
<mn>04</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<msub>
<mi>z</mi>
<mn>01</mn>
</msub>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>-</mo>
<mfrac>
<mrow>
<mn>2</mn>
<mi>a</mi>
<mo>+</mo>
<mn>2</mn>
<msub>
<mi>a</mi>
<mn>0</mn>
</msub>
</mrow>
<mi>v</mi>
</mfrac>
<mo>)</mo>
</mrow>
<mo>;</mo>
</mrow>
2. it is the installation number n of vertical damper according to every bogie two1, the installation number n of body end portion longitudinal shock absorber2,
And 1. the forecarriage two in step obtained by optimization design is the best equivalence damped coefficient C of vertical damperd2f, rear steering
Frame two is the best equivalence damped coefficient C of vertical damperd2rWith the best equivalence damped coefficient of body end portion longitudinal shock absorber
C3, it is that vertical damper, trailing bogie two are that vertical damper and body end portion longitudinally subtract that single branch forecarriage two, which is calculated,
Shake the optimal damping constant of device, is respectively:Cof=Cd2f/n1, Cor=Cd2r/n1, Co3=C3/n2。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510559978.6A CN105160105B (en) | 2015-09-06 | 2015-09-06 | High ferro two is vertical and the cooperative optimization method of end longitudinal shock absorber damped coefficient |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510559978.6A CN105160105B (en) | 2015-09-06 | 2015-09-06 | High ferro two is vertical and the cooperative optimization method of end longitudinal shock absorber damped coefficient |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105160105A CN105160105A (en) | 2015-12-16 |
CN105160105B true CN105160105B (en) | 2018-02-13 |
Family
ID=54800961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510559978.6A Expired - Fee Related CN105160105B (en) | 2015-09-06 | 2015-09-06 | High ferro two is vertical and the cooperative optimization method of end longitudinal shock absorber damped coefficient |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105160105B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110823542B (en) * | 2019-11-06 | 2021-08-20 | 中车青岛四方机车车辆股份有限公司 | Shock absorber testing device and shock absorber testing method |
CN111382536B (en) * | 2020-03-14 | 2023-06-09 | 郑州轻工业大学 | Collaborative optimization design method for constraint damping structure |
CN112434379B (en) * | 2020-12-10 | 2021-07-23 | 湖南省潇振工程科技有限公司 | Vehicle suspension with adjustable damping coefficient of shock absorber and collaborative design method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6298294B1 (en) * | 1999-06-22 | 2001-10-02 | Toyota Jidosha Kabushiki Kaisha | Device for controlling suspension shock absorbers of vehicles based upon phantom substitute therefor |
CN103294919A (en) * | 2013-05-31 | 2013-09-11 | 山东理工大学 | Method for calculating radial stress of annular superposed valve slices of shock absorber under nonuniform pressure |
JP2014069759A (en) * | 2012-09-28 | 2014-04-21 | Hitachi Automotive Systems Ltd | Suspension control device |
CN103991458A (en) * | 2014-05-22 | 2014-08-20 | 江苏大学 | Railway vehicle second level vertical suspension applying inerter and parameter determining method thereof |
CN104636561A (en) * | 2015-02-12 | 2015-05-20 | 铁道第三勘察设计院集团有限公司 | High-speed railway line design and evaluation method based on train-track system dynamics |
-
2015
- 2015-09-06 CN CN201510559978.6A patent/CN105160105B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6298294B1 (en) * | 1999-06-22 | 2001-10-02 | Toyota Jidosha Kabushiki Kaisha | Device for controlling suspension shock absorbers of vehicles based upon phantom substitute therefor |
JP2014069759A (en) * | 2012-09-28 | 2014-04-21 | Hitachi Automotive Systems Ltd | Suspension control device |
CN103294919A (en) * | 2013-05-31 | 2013-09-11 | 山东理工大学 | Method for calculating radial stress of annular superposed valve slices of shock absorber under nonuniform pressure |
CN103991458A (en) * | 2014-05-22 | 2014-08-20 | 江苏大学 | Railway vehicle second level vertical suspension applying inerter and parameter determining method thereof |
CN104636561A (en) * | 2015-02-12 | 2015-05-20 | 铁道第三勘察设计院集团有限公司 | High-speed railway line design and evaluation method based on train-track system dynamics |
Non-Patent Citations (1)
Title |
---|
"二系横向减振器阻尼系数对车辆";池毓敢 等;《铁道车辆》;20140430;第52卷(第4期);第15-16页 * |
Also Published As
Publication number | Publication date |
---|---|
CN105160105A (en) | 2015-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105069261B (en) | Low speed rail vehicle two is the design method of lateral damper optimum damping coefficient | |
CN105117556B (en) | One system of high ferro and the cooperative optimization method of two systems and end shock absorber damping | |
CN105160105B (en) | High ferro two is vertical and the cooperative optimization method of end longitudinal shock absorber damped coefficient | |
CN104636562B (en) | A kind of high-speed railway circuit method for designing based on fare system dynamics | |
CN104175920B (en) | Seat suspends the design method of magneto-rheological vibration damper optimal control current | |
CN105138783B (en) | The design method of car body of high speed railway car end cross shock absorber damping | |
CN104390795A (en) | Method and device for analyzing vibration modes of rail vehicles | |
CN105069260B (en) | High speed railway car two is the Optimization Design of vertical suspension Optimal damping ratio | |
CN105183979B (en) | High ferro is vertical and the cooperative optimization method of body end portion longitudinal shock absorber damped coefficient | |
CN107539332A (en) | Bullet train lateral semi-active suspension control system and control method based on resonance control | |
CN105183982B (en) | The design method of car body of high speed railway car end longitudinal shock absorber damped coefficient | |
CN105160103B (en) | The system of high speed railway car one and two be vertical suspension damping ratio cooperative optimization method | |
CN107207017A (en) | Vehicle damper | |
CN208673333U (en) | A kind of suspension type monorail vehicle Coupled Dynamics analogue system | |
CN105117554B (en) | High speed railway car one is the design method of vertical suspension Optimal damping ratio | |
CN105138786A (en) | Collaborative optimization method for damping coefficients of high-speed rail secondary transverse damper and vehicle body end transverse damper | |
CN105138784B (en) | The Analytic Calculation Method of high speed railway car seat suspension optimum damping ratio | |
CN107832518A (en) | A kind of Alignment Design of Railway Line method based on motion sickness induction rate | |
CN105160180B (en) | High speed railway car two is the Analytic Calculation Method of vertical suspension Optimal damping ratio | |
CN105069263B (en) | High speed railway car seat and two be vertical suspension damping ratio cooperative optimization method | |
CN105183984B (en) | Low speed rail vehicle two is the Optimization Design of vertical suspension optimum damping ratio | |
Dumitriu | Numerical analysis of the influence of lateral suspension parameters on the ride quality of railway vehicles | |
CN105069259A (en) | Analytic calculating method for optimal damping ratio of secondary vertical suspension of low-speed rail vehicle | |
CN105183983B (en) | The optimum design method of high speed railway car seat suspension optimum damping ratio | |
Niu et al. | Dynamic stiffness characteristics analysis of bogie suspension for rail vehicle based on big data-driven bench test |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180213 Termination date: 20200906 |
|
CF01 | Termination of patent right due to non-payment of annual fee |