CN105158795A - 利用地层叠前纹理属性值来检测缝洞的方法 - Google Patents

利用地层叠前纹理属性值来检测缝洞的方法 Download PDF

Info

Publication number
CN105158795A
CN105158795A CN201510536730.8A CN201510536730A CN105158795A CN 105158795 A CN105158795 A CN 105158795A CN 201510536730 A CN201510536730 A CN 201510536730A CN 105158795 A CN105158795 A CN 105158795A
Authority
CN
China
Prior art keywords
gradient
work area
seismic data
target work
gradient body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510536730.8A
Other languages
English (en)
Other versions
CN105158795B (zh
Inventor
张洞君
杨晓
徐敏
章雄
罗晶
郑虹
陆林超
范晓晓
邹琴
顾雯
兰馨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BGP Inc
China Petroleum and Natural Gas Co Ltd
Original Assignee
Geophysical Prospecting Co of CNPC Chuanqing Drilling Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geophysical Prospecting Co of CNPC Chuanqing Drilling Engineering Co Ltd filed Critical Geophysical Prospecting Co of CNPC Chuanqing Drilling Engineering Co Ltd
Priority to CN201510536730.8A priority Critical patent/CN105158795B/zh
Publication of CN105158795A publication Critical patent/CN105158795A/zh
Application granted granted Critical
Publication of CN105158795B publication Critical patent/CN105158795B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明提供一种利用地层叠前纹理属性值来检测缝洞的方法,所述方法包括:(A)分别读取目标工区中的各个点在不同方位的三维地震数据体中所对应的地震数据;(B)获取目标工区的待处理梯度体结构张量方阵;(C)从待处理梯度体结构张量方阵的每个元素中抽取与目标工区的一个点的坐标位置相对应的位置处的数据,构成一个点的结构张量方阵;(D)确定一个点的结构张量方阵的特征值;(E)获取一个点的叠前纹理属性值;(F)利用目标工区所有点的叠前纹理属性值来产生目标工区的缝洞检测结果。根据所述方法,能够有效地检测具有较小尺度的缝洞。

Description

利用地层叠前纹理属性值来检测缝洞的方法
技术领域
本发明总体来说涉及油气田勘探领域,更具体地说,涉及一种利用地层叠前纹理属性值来检测缝洞的方法。
背景技术
据统计,在全球的沉积岩中,碳酸盐岩尽管只占20%左右,但却拥有已探明油气资源的50%以上。碳酸盐岩储层储集类型通常由孔隙型、溶洞型、裂缝型、溶洞-裂缝型综合构成,这些裂缝和孔、洞系统对油气的赋存和运移起着控制作用,因此,从一定意义上说,对缝洞进行准确预测就等于直接在此类储层中找到油气,从而可确定地下地质储层的真实状态并较为精确地确定勘探目标。
缝洞具有多尺度性,但地震勘探只有几米至数十米的分辨率,除了大的缝和洞之外,绝大多数单个的缝、洞无法利用地震勘探方法进行分辨和识别,但是,由众多细小的缝洞系统或缝洞却能被检测到。目前国内外常用的缝洞解释技术包括缝洞正演模拟技术、多波多分量地震技术、纵波裂缝检测方法各向异性技术、地震属性分析技术及三维可视化技术等。实际应用中,主要采用一些常规的技术手段,如横波分裂法、相干、地应力、倾角、倾向、曲率、边缘检测等。
纹理属性来源于图像处理技术,所谓的纹理是指二维空间变化的灰度和颜色所组成的图案,它是图像区域所具有的重要特征之一。而地震剖面、切片甚至三维数据体本身也是图像,所以,从理论上来说,可利用纹理属性来分析地震数据纹理属性来描述地震数据的结构特征,并且在断裂、河道、乱岗状结构、平行与亚平行结构、倾斜层理、波状层理等地震相的描述中有明确的物理意义和良好的应用效果。Chopra(乔普拉)等人就成功地应用纹理属性来识别断层、河道以及地震相划分,并且,纹理属性应用于缝洞检测并获得成功的实例也屡见不鲜。
当前,纹理属性的计算都是针对常规的叠后地震数据来处理的,这种计算方法以叠后地震数据体为基础输入,一定程度上能够预测地层中尺度较大、数量较少的缝洞,但是缺点在于:叠后纹理属性值是基于空间各点与周围点的反射振幅差异形成的,而事实上该差异有可能是岩性横向变化带来的,且叠后地震资料的信息量比较小,缺乏偏移距信息和方位角信息,这样不利于基于各向异性来检测较小尺度缝洞。
因此,现有的利用纹理属性值来检测缝洞的方法在检测不同类型的缝洞方面具有局限性。
发明内容
本发明的目的在于提供一种利用地层叠前纹理属性值来检测缝洞的方法,以克服现有技术中无法检测小尺度的缝洞的缺陷。
根据本发明的示例性实施例,提供一种利用地层叠前纹理属性值来检测缝洞的方法,所述方法包括:(A)分别读取目标工区中的各个点在不同方位的三维地震数据体中所对应的地震数据,其中,所述各个点在每个方位的三维地震数据体中的坐标位置相同;(B)根据读取的地震数据来获取目标工区的待处理梯度体结构张量方阵;(C)从待处理梯度体结构张量方阵的每个元素中抽取与目标工区的一个点的坐标位置相对应的位置处的数据,并将抽取的数据按所对应的元素在待处理梯度体结构张量方阵中的位置排列,以构成所述一个点的结构张量方阵;(D)确定所述一个点的结构张量方阵的特征值;(E)基于所述特征值,获取所述一个点的叠前纹理属性值;(F)利用目标工区所有点的叠前纹理属性值来产生目标工区的缝洞检测结果,其中,通过重复步骤(C)-(E)来获取目标工区所有点的叠前纹理属性值。
可选地,步骤(B)可包括:(B1)分别确定目标工区中的各个点在不同方位的三维地震数据体中所对应的地震数据在线号、道号、时间三个方向的梯度,以分别得到所述不同方位的三维地震数据体的线号梯度体、道号梯度体和时间梯度体;(B2)将所述各个方位的三维地震数据体的线号梯度体、道号梯度体和时间梯度体分别进行加权叠加处理,以获得待处理线号梯度体、待处理道号梯度体和待处理时间梯度体,并形成包括待处理线号梯度体、待处理道号梯度体和待处理时间梯度体的待处理梯度体向量;(B3)基于待处理梯度体向量,构建目标工区的待处理梯度体结构张量方阵。
可选地,在步骤(B1)中,得到三维地震数据的线号梯度体的步骤可包括:获取目标工区的每个点在三维地震数据体中所对应的地震数据在线号方向的梯度,并将获取的梯度按各个点在三维地震数据体中的位置排列,以构成线号梯度体;得到三维地震数据的道号梯度体的步骤可包括:获取目标工区的每个点在三维地震数据体中所对应的地震数据在道号方向的梯度,并将获取的梯度按各个点在三维地震数据体中的位置排列,以构成道号梯度体;得到三维地震数据的时间梯度体的步骤可包括:获取目标工区的每个点在三维地震数据体中所对应的地震数据在时间方向的梯度,并将获取的梯度按各个点在三维地震数据体中的位置排列,以构成时间梯度体。
可选地,在步骤(B2)中,可将待处理线号梯度体、待处理道号梯度体和待处理时间梯度体的顺序纵向排列,以构成待处理梯度体向量。
可选地,确定目标工区的每个点在三维地震数据体中所对应的地震数据在线号方向的梯度的步骤可包括:将与线号方向对应的卷积核与目标工区的每个点在三维地震数据体中所对应的地震数据沿线号方向进行卷积,以得到目标工区的每个点在三维地震数据体中所对应的地震数据在线号方向的梯度;确定目标工区的每个点在三维地震数据体中所对应的地震数据在道号方向的梯度的步骤可包括:将与道号方向对应的卷积核与目标工区的每个点在三维地震数据体中所对应的地震数据沿道号方向进行卷积,以得到目标工区的每个点在三维地震数据体中所对应的地震数据在道号方向的梯度;确定目标工区的每个点在三维地震数据体中所对应的地震数据在时间方向的梯度的步骤可包括:将与时间方向对应的卷积核与目标工区的每个点在三维地震数据体中所对应的地震数据沿时间方向进行卷积,以得到目标工区的每个点在三维地震数据体中所对应的地震数据在时间方向的梯度。
可选地,与线号方向对应的卷积核、与道号方向对应的卷积核、与时间方向对应的卷积核分别可通过将一维零均值离散高斯核函数的导数在离散变量为相应的取值范围内的各个整数值时的函数值按对应的离散变量的从小到大的顺序排列构成,所述各卷积核中的函数值的计算式为:
G ′ ( t ) = - 1 2 πσ i 2 te [ - t 2 / ( 2 σ i 2 ) ] ,
其中,G′(t)为一维零均值离散高斯核函数的导数,t为离散变量,t的取值范围为[-Ri,+Ri],Ri 2=42σi,Ri为核半径,σi为预定尺度因子,i为方向。
可选地,在步骤(B3)中可通过下面的等式构建待处理梯度体结构张量方阵:
T = gg T = g x L i n e 2 g x l i n e g i n L i n e g x l i n e g t i m e g i n L i n e g x l i n e g i n L i n e 2 g i n l i n e g t i m e g t i m e 2 g t i m e g i n L i n e g t i m e 2 ,
其中,T为待处理梯度体结构张量方阵,g为待处理梯度体向量, g = g x L i n e g i n L i n e g t i m e , gxLine为线号梯度体,ginLine为道号梯度体,gtime为时间梯度体,gT为梯度体向量的转置,待处理梯度体结构张量方阵T的任意元素gugv表示gu中的每个位置的元素与gv中的相同位置的元素相乘,u∈{x,y,z},v∈{x,y,z}。
可选地,在步骤(A)中,可分别读取目标工区中的各个点在至少三个方位的三维地震数据体中所对应的地震数据。
在根据本发明示例性实施例的利用地层叠前纹理属性来检测缝洞的方法中,能够有效检测较小尺度的缝洞,并在一定程度上降低缝洞检测的多解性。
附图说明
通过下面结合附图进行的对实施例的描述,本发明的上述和/或其它目的和优点将会变得更加清楚,其中:
图1是示出根据本发明示例性实施例的获取地层纹理属性的方法的流程图;
图2示出根据本发明示例性实施例的方位为p度-q度的方位角区间的三维地震数据体的空间模型;
图3示出根据本发明示例性实施例的根据读取的地震数据来获取目标工区的待处理梯度体结构张量方阵的步骤的流程图;
图4示出根据本发明示例性实施例的根据读取的地震数据获取包括线号梯度体、道号梯度体和时间梯度体的方法的流程图;
图5A示出现有技术的缝洞检测效果图;
图5B示出采用本发明示例性实施例的利用地层叠前纹理属性值来检测缝洞的方法的缝洞检测效果图。
具体实施方式
现将详细描述本发明的示例性实施例,所述实施例的示例在附图中示出,其中,相同的标号指示相同的部分。以下将通过参照附图来说明所述实施例,以便解释本发明。
图1示出根据本发明示例性实施例的利用地层叠前纹理属性值来检测缝洞的方法的流程图。这里,作为示例,所述方法可由用于利用地层叠前纹理属性值来检测缝洞的设备来实现,也可完全通过计算机程序来实现。
如图1所示,在步骤S100,分别读取目标工区中的各个点在不同方位的三维地震数据体中所对应的地震数据,其中,所述各个点在每个方位的三维地震数据体中的坐标位置相同。作为示例,所述目标工区可以是一个地层、层位或一个由多个地层组成的工程工区。所述方位可指示方位角或方位角的区间。这里,所述方位角是指激发点和检波点的连线与正北方向的夹角。
这里,作为示例,为了保证缝洞检测的准确性,可分别读取目标工区中的各个点在多个不同方位的三维地震数据体中所对应的地震数据,例如,可分别读取目标工区中的各个点在至少三个方位的三维地震数据体中所对应的地震数据。具体说来,可通过对采集的原始地震数据进行地震资料预处理(例如,球面发散校正、对地震吸收的Q补偿、振幅处理、子波反褶积、地表一致性静校正、速度分析、动校正以及剩余静校正等)来获取同一目标工区不同方位的三维地震数据体,并进而获取目标工区中的各个点在不同方位的三维地震数据中所对应的地震数据。
此外,作为示例,图2示出方位为p度-q度的方位角区间的三维地震数据体的空间模型。在三维地震勘探中,得到的三维地震数据体的空间模型如图2所示,图2中的黑点代表地震数据,可将地震数据表示为Dp-q(x,y,z)。这里的x表示线号,y表示道号,z表示时间。地震数据Dp-q可理解为目标工区中由线号(inLine)、道号(xLine)、时间(time)所确定的点(即,采样点)在方位为p度-q度的方位角区间的三维地震数据体中所对应的地震数据。在这里,地震数据可采用部分方位叠加的地震数据,具体地可以为振幅等。可以理解,x、y、z为取整数的离散变量。
再次参照图1,在步骤S200,根据在步骤S100读取的地震数据来获取目标工区的待处理梯度体结构张量方阵。下面,将结合图3和图4来详细描述如何获取目标工区的待处理梯度体结构张量方阵的方法。
图3示出根据本发明示例性实施例的根据读取的地震数据来获取目标工区的待处理梯度体结构张量方阵的步骤的流程图。
如图3所示,在步骤S201,分别确定目标工区中的各个点在不同方位的三维地震数据体中所对应的地震数据在线号、道号、时间三个方向的梯度,以分别得到所述不同方位的三维地震数据体的线号梯度体、道号梯度体和时间梯度体。下面,将结合图4来详细描述如何得到所述不同方位的三维地震数据体的线号梯度体、道号梯度体和时间梯度体。
如图4所示,以一个方位的三维地震数据体为例,在步骤S301,获取目标工区的每个点在三维地震数据体中所对应的地震数据在线号方向的梯度,并将获取的梯度按各个点在三维地震数据体中的位置排列,以构成线号梯度体。这里,可通过各种梯度计算方法来获取各个点在三维地震数据体中所对应的地震数据在线号方向的梯度,从而得到线号梯度体。
优选地,可利用本发明提出的方式来获取所述各个点的地震数据在线号方向的梯度。具体说来,将与线号方向对应的卷积核与三维地震数据体中每个点所对应的地震数据沿线号方向进行卷积,以得到各个点在三维地震数据体中所对应的地震数据在线号方向的梯度,计算式如下式(1):
hα,xLine(x,y,z)=fxLine*Dα(x,y,z)(1)
这里,hα,xLine(x,y,z)为三维地震数据体α中的坐标位置为(x,y,z)的点的地震数据在线号方向的梯度,fxLine为与线号方向对应的卷积核,*为卷积符号,Dα(x,y,z)为三维地震数据体α中由x、y、z的值确定的点的地震数据。
这里,与线号方向对应的卷积核fxLine通过将一维零均值离散高斯核函数的导数在离散变量为与线号方向对应的取值范围内的各个整数值时的函数值按对应的离散变量的从小到大的顺序排列构成。具体地,对一维零均值离散高斯核函数求导数,得到等式(2):
G ′ ( t ) = - 1 2 πσ x L i n e te [ - t 2 - / 2 σ x L i n e 2 ) - - - ( 2 )
这里,G'(t)为一维零均值离散高斯核函数的导数,t为离散变量,t的取值范围为[-RxLine,+RxLine],其中,RxLine为与线号方向对应的核半径,σxLine为与线号方向对应的预定尺度因子。
接下来,将与线号方向对应的一维零均值离散高斯核函数的导数G'(t)在离散变量t为与线号方向对应的取值范围[-RxLine,+RxLine]内的各个整数值时的函数值按对应的离散变量t的从小到大的顺序排列得到卷积核。例如,假设与线号方向对应的预定尺度因子σxLine为1,则相应的核半径RxLine等于4。那么,离散变量t的取值范围为[-4,+4],t的从小到大的取值为{-4,-3,-2,-1,0,+1,+2,+3,+4}。将离散变量t的各个取值代入到等式(2)中则得到相应的一维零均值离散高斯核函数的导数的函数值分别为{0.0002,0.0053,0.043,0.0965,0,-0.0965,-0.043,-0.0053,-0.0002}。最后,按对应的离散变量t的从小到大的顺序将所述函数值排列得到与线号方向对应的卷积核fxLine为(0.0002,0.0053,0.043,0.0965,0,-0.0965,-0.043,-0.0053,-0.0002)。
在步骤S302,获取目标工区的每个点在三维地震数据体中所对应的地震数据在道号方向的梯度,并将获取的梯度按各个点在三维地震数据体中的位置排列,以构成道号梯度体。这里,可通过各种梯度计算方法来获取各个点在三维地震数据体中所对应的地震数据在道号方向的梯度,从而得到道号梯度体。
优选地,可利用本发明提出的方式来获取所述各个点的地震数据在道号方向的梯度。具体说来,将与道号方向对应的卷积核与三维地震数据体中每个点所对应的地震数据沿道号方向进行卷积,以得到各个点在三维地震数据体中所对应的地震数据在道号方向的梯度,计算式如下式(3):
hα,inLine(x,y,z)=finLine*Dα(x,y,z)(3)
这里,hα,inLine(x,y,z)为三维地震数据体α中的坐标位置为(x,y,z)的点的地震数据在道号方向的梯度,finLine为与道号方向对应的卷积核。
这里,与道号方向对应的卷积核finLine通过将一维零均值离散高斯核函数的导数在离散变量为与道号方向对应的取值范围内的各个整数值时的函数值按对应的离散变量的从小到大的顺序排列构成,所述卷积核的获得方法与步骤S301中的与线号方向对应的卷积核的获得方法相同,区别在于,与线号方向对应的预定尺度因子σxLine变更为与道号方向对应的预定尺度因子σinLine,相应的,与线号方向对应的核半径RxLine变更为与道号方向对应的核半径RinLine
在步骤S303,获取目标工区的每个点在三维地震数据体中所对应的地震数据在时间方向的梯度,并将获取的梯度按各个点在三维地震数据体中的位置排列,以构成时间梯度体。这里,可通过各种梯度计算方法来获取各个点在三维地震数据体中所对应的地震数据在时间方向的梯度,从而得到时间梯度体。
优选地,可利用本发明提出的方式来获取所述各个点的三维地震数据在时间方向的梯度。具体地说,将与时间方向对应的卷积核与三维地震数据体中每个点所对应的地震数据沿时间方向进行卷积,以得到各个点在三维地震数据体中所对应的地震数据在时间方向的梯度,计算式如下式(4):
hα,time(x,y,z)=ftime*Dα(x,y,z)(4)
这里,hα,time(x,y,z)为三维地震数据体α中的坐标位置为(x,y,z)的点地震数据在时间方向的梯度,ftime为与时间方向对应的卷积核。
这里,与时间方向对应的卷积核ftime通过将一维零均值离散高斯核函数的导数在离散变量为与时间方向对应的取值范围内的各个整数值时的函数值按对应的离散变量的从小到大的顺序排列构成,所述卷积核的获得方法与步骤301中的与线号方向对应的卷积核的获得方法相同,区别在于,与线号方向对应的预定尺度因子σxLine变更为与时间方向对应的预定尺度因子σtime,相应的,与线号方向对应的核半径RxLine变更为与道号方向对应的核半径Rtime
这里,应注意,在本发明中,对步骤S301、步骤S302、步骤S303的执行顺序不做限制。
再次参照图3,在步骤S202,将所述各个方位的三维地震数据体的线号梯度体、道号梯度体和时间梯度体分别进行加权叠加处理,以获得待处理线号梯度体、待处理道号梯度体和待处理时间梯度体,并形成包括待处理线号梯度体、待处理道号梯度体和待处理时间梯度体的待处理梯度体向量。
例如,可通过下面的式(5)对不同方位的三维地震数据体的线号梯度体进行叠加处理:
gxLine=w1gα1,xLine+w2gα2,xLine+......+wngαn,xLine(5)
其中,gxLine表示待处理线号梯度体,gα1,xLine表示方位为α1的三维地震数据体的线号梯度体,w1为gα1,xLine的权重,gα2,xLine表示方位为α2的三维地震数据体的线号梯度体,w2表示gα2,xLine的权重,gαn,xLine表示方位为αn的三维地震数据体的线号梯度体,wn表示gαn,xLine的权重,其中,w1+w2+......+wn=1,其中,w1、w2......wn可由经验给出,也可在叠后缝洞检测QC的基础上得到。例如,如果某一方位的缝洞发育,可加强该线号梯度体的权重,以获得更精细的缝洞表征。
类似地,可基于同样的方式获取待处理道号梯度体ginLine和待处理时间梯度体gtime
接下来,可将得到的待处理线号梯度体gxLine、待处理道号梯度体ginLine、待处理时间梯度体gtime按线号梯度体、道号梯度体、时间梯度体的顺序纵向排列,以构成待处理梯度体向量。例如,在使用gxLine表示待处理线号梯度体,ginLine表示待处理道号梯度体,gtime表示待处理时间梯度体时,按线号梯度体、道号梯度体、时间梯度体的顺序纵向排列所构成的待处理梯度体向量g表示为等式(6):
g = g x L i n e g i n L i n e g t i m e - - - ( 6 )
接下来,在步骤S203,可基于待处理梯度体向量,构建目标工区的待处理梯度体结构张量方阵。
这里,可通过下面的等式(7)构建目标工区的梯度体结构张量方阵:
T = gg T = g x L i n e 2 g x l i n e g i n L i n e g x l i n e g t i m e g i n L i n e g x l i n e g i n L i n e 2 g i n l i n e g t i m e g t i m e 2 g t i m e g i n L i n e g t i m e 2 - - - ( 7 )
这里,T为目标工区的梯度体结构张量方阵,gT为梯度体向量g的转置。梯度体结构张量方阵T的任意元素gugv表示gu中的每个位置的元素与gv中的相同位置的元素相乘,u∈{x,y,z},v∈{x,y,z}。
本发明中将梯度体gu与梯度体gv相乘定义为两个梯度体中的相同位置处的元素相乘。
再次参照图1,在步骤S300,从待处理梯度体结构张量方阵的每个元素中抽取与目标工区的一个点的坐标位置相对应的位置处的数据,并将抽取的数据按所对应的元素在待处理梯度体结构张量方阵中的位置排列,以构成所述一个点的结构张量方阵。根据前述的内容可知目标工区的梯度体结构张量方阵为3×3的方阵,所以所述一个点的结构张量方阵也为3×3的方阵。
在步骤S400,确定步骤S300构成的所述一个点的结构张量方阵的特征值。这里,可通过现有的各种方法来确定结构张量方阵的特征值。由于结构张量方阵为3×3的方阵,所以将得到三个特征值。
在步骤S500,基于在步骤S400得到的特征值来获取所述一个点的纹理属性值。具体说来,可基于在步骤S400得到的特征值来获取与所述一个点相关的各种纹理属性值,例如,混沌属性和断裂属性等。
例如,可通过下面的式(8)来获取所述一个点的混沌属性:
C n , c h a o s = 2 λ n 2 λ n 1 + λ n 3 - 1 - - - ( 8 )
其中,Cn,chaos表示点n的混沌属性,λn1、λn2和λn3为点n的结构张量方阵的三个特征值。
此外,作为示例,还可通过下面的(9)来获取所述一个点的断裂属性:
C m , f a u l t = 2 λ m 2 ( λ m 2 + λ m 3 ) ( λ m 1 ) - - - ( 9 )
其中,Cm,fault表示点m的断裂属性,λm1、λm2和λm3为点m的结构张量方阵的三个特征值。
这里,应理解,所述一个点的叠前纹理属性不仅限于混沌属性和断裂属性,还可是其他的属性,在这里就不一一进行举例。
接下来,在获取了目标工区的一个点后,还可获取目标工区的其他点的叠前纹理属性值。
在步骤S610,判断所述一个点是否是目标工区的最后一个点。当所述一个点不是目标工区的最后一个点时,在步骤S620,将所述一个点的下一个点作为下次抽取的点(即,将步骤300-500中的所述一个点替换为所述其他点中的每个点),并返回执行步骤S300,由此可得到三维地震数据体中所有点的地震数据的不连续性属性值。
当所述一个点是目标工区的最后一个点时,执行步骤S630,利用目标工区所有点的叠前纹理属性值来产生目标工区的缝洞检测结果。这里,作为示例,所述缝洞检测结果可以是一个目标工区的缝洞检测效果图。根据所述缝洞检测结果可以有效地检测出具有较小尺度的缝洞。
图5A示出现有技术的缝洞检测效果图。图5B示出采用本发明示例性实施例的利用地层叠前纹理属性值来检测缝洞的方法的缝洞检测效果图。对比可知,本发明示例性实施例的缝洞检测的方法的效果更好,断裂刻画更精细、连续性更好,溶洞响应更明显—圆形、椭圆形黑色异常,并且,其正确性也得到了实钻的验证。
综上所述,在根据本发明示例性实施例的利用地层叠前纹理属性值来检测缝洞的方法中,可以充分利用宽方位角三维地震数据的充足信息量(例如,偏移距信息和方位角信息等)来检测缝洞,通过这种方式,能够有效检测较小尺度的缝洞,并在一定程度上降低缝洞检测的多解性。
本发明的以上实施例仅仅是示例性的,而本发明并不受限于此。本领域技术人员应该理解:在不脱离本发明的原理和精神的情况下,可对这些实施例进行改变,其中,本发明的范围在权利要求及其等同物中限定。

Claims (8)

1.一种利用地层叠前纹理属性值来检测缝洞的方法,所述方法包括:
(A)分别读取目标工区中的各个点在不同方位的三维地震数据体中所对应的地震数据,其中,所述各个点在每个方位的三维地震数据体中的坐标位置相同;
(B)根据读取的地震数据来获取目标工区的待处理梯度体结构张量方阵;
(C)从待处理梯度体结构张量方阵的每个元素中抽取与目标工区的一个点的坐标位置相对应的位置处的数据,并将抽取的数据按所对应的元素在待处理梯度体结构张量方阵中的位置排列,以构成所述一个点的结构张量方阵;
(D)确定所述一个点的结构张量方阵的特征值;
(E)基于所述特征值,获取所述一个点的叠前纹理属性值;
(F)利用目标工区所有点的叠前纹理属性值来产生目标工区的缝洞检测结果,其中,通过重复步骤(C)-(E)来获取目标工区所有点的叠前纹理属性值。
2.如权利要求1所述的方法,其中,步骤(B)包括:
(B1)分别确定目标工区中的各个点在不同方位的三维地震数据体中所对应的地震数据在线号、道号、时间三个方向的梯度,以分别得到所述不同方位的三维地震数据体的线号梯度体、道号梯度体和时间梯度体;
(B2)将所述各个方位的三维地震数据体的线号梯度体、道号梯度体和时间梯度体分别进行加权叠加处理,以获得待处理线号梯度体、待处理道号梯度体和待处理时间梯度体,并形成包括待处理线号梯度体、待处理道号梯度体和待处理时间梯度体的待处理梯度体向量;
(B3)基于待处理梯度体向量,构建目标工区的待处理梯度体结构张量方阵。
3.如权利要求2所述的方法,其中,在步骤(B1)中,
得到三维地震数据的线号梯度体的步骤包括:获取目标工区的每个点在三维地震数据体中所对应的地震数据在线号方向的梯度,并将获取的梯度按各个点在三维地震数据体中的位置排列,以构成线号梯度体;
得到三维地震数据的道号梯度体的步骤包括:获取目标工区的每个点在三维地震数据体中所对应的地震数据在道号方向的梯度,并将获取的梯度按各个点在三维地震数据体中的位置排列,以构成道号梯度体;
得到三维地震数据的时间梯度体的步骤包括:获取目标工区的每个点在三维地震数据体中所对应的地震数据在时间方向的梯度,并将获取的梯度按各个点在三维地震数据体中的位置排列,以构成时间梯度体。
4.如权利要求2所述的方法,其中,在步骤(B2)中,将待处理线号梯度体、待处理道号梯度体和待处理时间梯度体的顺序纵向排列,以构成待处理梯度体向量。
5.如权利要求3所述的方法,其中,
确定目标工区的每个点在三维地震数据体中所对应的地震数据在线号方向的梯度的步骤包括:将与线号方向对应的卷积核与目标工区的每个点在三维地震数据体中所对应的地震数据沿线号方向进行卷积,以得到目标工区的每个点在三维地震数据体中所对应的地震数据在线号方向的梯度;
确定目标工区的每个点在三维地震数据体中所对应的地震数据在道号方向的梯度的步骤包括:将与道号方向对应的卷积核与目标工区的每个点在三维地震数据体中所对应的地震数据沿道号方向进行卷积,以得到目标工区的每个点在三维地震数据体中所对应的地震数据在道号方向的梯度;
确定目标工区的每个点在三维地震数据体中所对应的地震数据在时间方向的梯度的步骤包括:将与时间方向对应的卷积核与目标工区的每个点在三维地震数据体中所对应的地震数据沿时间方向进行卷积,以得到目标工区的每个点在三维地震数据体中所对应的地震数据在时间方向的梯度。
6.如权利要求5所述的方法,其中,与线号方向对应的卷积核、与道号方向对应的卷积核、与时间方向对应的卷积核分别通过将一维零均值离散高斯核函数的导数在离散变量为相应的取值范围内的各个整数值时的函数值按对应的离散变量的从小到大的顺序排列构成,所述各卷积核中的函数值的计算式为:
G ′ ( t ) = - 1 2 πσ i 2 te [ - t 2 / ( 2 σ i 2 ) ] ,
其中,G′(t)为一维零均值离散高斯核函数的导数,t为离散变量,t的取值范围为[-Ri,+Ri],Ri 2=42σi,Ri为核半径,σi为预定尺度因子,i为方向。
7.如权利要求3所述的方法,其中,在步骤(B3)中通过下面的等式构建待处理梯度体结构张量方阵:
T = gg T = g x L i n e 2 g x l i n e g i n L i n e g x l i n e g t i m e g i n L i n e g x l i n e g i n L i n e 2 g i n l i n e g t i m e g t i m e 2 g t i m e g i n L i n e g t i m e 2 ,
其中,T为待处理梯度体结构张量方阵,g为待处理梯度体向量, g = g x L i n e g i n L i n e g t i m e , gxLine为线号梯度体,ginLine为道号梯度体,gtime为时间梯度体,gT为梯度体向量的转置,待处理梯度体结构张量方阵T的任意元素gugv表示gu中的每个位置的元素与gv中的相同位置的元素相乘,u∈{x,y,z},v∈{x,y,z}。
8.如权利要求1所述的方法,其中,在步骤(A)中,分别读取目标工区中的各个点在至少三个方位的三维地震数据体中所对应的地震数据。
CN201510536730.8A 2015-08-27 2015-08-27 利用地层叠前纹理属性值来检测缝洞的方法 Active CN105158795B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510536730.8A CN105158795B (zh) 2015-08-27 2015-08-27 利用地层叠前纹理属性值来检测缝洞的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510536730.8A CN105158795B (zh) 2015-08-27 2015-08-27 利用地层叠前纹理属性值来检测缝洞的方法

Publications (2)

Publication Number Publication Date
CN105158795A true CN105158795A (zh) 2015-12-16
CN105158795B CN105158795B (zh) 2018-03-02

Family

ID=54799711

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510536730.8A Active CN105158795B (zh) 2015-08-27 2015-08-27 利用地层叠前纹理属性值来检测缝洞的方法

Country Status (1)

Country Link
CN (1) CN105158795B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105607122A (zh) * 2015-12-23 2016-05-25 西南科技大学 一种基于全变分地震数据分解模型的地震纹理提取与增强方法
CN105954800A (zh) * 2016-04-29 2016-09-21 地大汇能(北京)科技有限公司 利用地震纹理特性识别小断层的方法
CN107437260A (zh) * 2016-05-27 2017-12-05 中国石油化工股份有限公司 基于纹理分析的缝洞储集体形态描述方法
CN108037527A (zh) * 2017-12-07 2018-05-15 中国石油大学(华东) 一种基于魔方算子的复杂断层识别及检测方法
CN111983680A (zh) * 2020-08-31 2020-11-24 中国海洋石油集团有限公司 基于嵌入三维卷积算子的小尺度岩性边界刻画方法
CN112379435A (zh) * 2020-10-30 2021-02-19 中国石油天然气集团有限公司 相控岩溶型缝洞集合体刻画方法及装置
CN114721046A (zh) * 2021-01-05 2022-07-08 中国石油天然气股份有限公司 缝洞检测方法、装置、计算机存储介质
CN116165709A (zh) * 2023-01-19 2023-05-26 中国石油大学(华东) 一种基于缝洞体识别的油气勘探方法、装置及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110010098A1 (en) * 2008-02-25 2011-01-13 China National Petroleum Corporation Method of pre-stack two-dimension-like transformation of three-dimensional seismic record
CN102879815A (zh) * 2011-07-15 2013-01-16 中国石油天然气集团公司 基于空间型灰度伴随矩阵的结构性地震属性提取方法
CN104122584A (zh) * 2014-08-08 2014-10-29 中国石油集团川庆钻探工程有限公司地球物理勘探公司 根据地震数据确定方向性的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110010098A1 (en) * 2008-02-25 2011-01-13 China National Petroleum Corporation Method of pre-stack two-dimension-like transformation of three-dimensional seismic record
CN102879815A (zh) * 2011-07-15 2013-01-16 中国石油天然气集团公司 基于空间型灰度伴随矩阵的结构性地震属性提取方法
CN104122584A (zh) * 2014-08-08 2014-10-29 中国石油集团川庆钻探工程有限公司地球物理勘探公司 根据地震数据确定方向性的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
夏义平 等: "叠前偏移及储层预测技术研发进展与应用", 《石油学报》 *
赵裕辉 等: "碳酸盐岩缝洞型储集体识别与体积估算", 《石油地球物理勘探》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105607122A (zh) * 2015-12-23 2016-05-25 西南科技大学 一种基于全变分地震数据分解模型的地震纹理提取与增强方法
CN105954800A (zh) * 2016-04-29 2016-09-21 地大汇能(北京)科技有限公司 利用地震纹理特性识别小断层的方法
CN105954800B (zh) * 2016-04-29 2018-01-16 地大汇能(北京)科技有限公司 利用地震纹理特性识别小断层的方法
CN107437260A (zh) * 2016-05-27 2017-12-05 中国石油化工股份有限公司 基于纹理分析的缝洞储集体形态描述方法
CN108037527A (zh) * 2017-12-07 2018-05-15 中国石油大学(华东) 一种基于魔方算子的复杂断层识别及检测方法
CN111983680A (zh) * 2020-08-31 2020-11-24 中国海洋石油集团有限公司 基于嵌入三维卷积算子的小尺度岩性边界刻画方法
CN112379435A (zh) * 2020-10-30 2021-02-19 中国石油天然气集团有限公司 相控岩溶型缝洞集合体刻画方法及装置
CN114721046A (zh) * 2021-01-05 2022-07-08 中国石油天然气股份有限公司 缝洞检测方法、装置、计算机存储介质
CN116165709A (zh) * 2023-01-19 2023-05-26 中国石油大学(华东) 一种基于缝洞体识别的油气勘探方法、装置及设备
CN116165709B (zh) * 2023-01-19 2024-01-30 中国石油大学(华东) 一种基于缝洞体识别的油气勘探方法、装置及设备

Also Published As

Publication number Publication date
CN105158795B (zh) 2018-03-02

Similar Documents

Publication Publication Date Title
CN105158795A (zh) 利用地层叠前纹理属性值来检测缝洞的方法
EP2846175B1 (en) Seismic survey analysis
US20180203144A1 (en) Interferometric Microseismic Imaging Methods and Apparatus
Qi et al. Volumetric aberrancy to map subtle faults and flexures
US8055449B2 (en) Determining fault transmissivity in a subterranean reservoir
US9684089B2 (en) Determining P-wave azimuthal anisotropy from walkaround VSP with offset dependent slowness corrections
US20140278120A1 (en) Methods and systems for locating seismic events
Share et al. Seismic imaging of the southern California plate boundary around the south-central transverse ranges using double-difference tomography
Improta et al. Seismic imaging of complex structures by non-linear traveltime inversion of dense wide-angle data: application to a thrust belt
EP3341759B1 (en) Optimal survey design
Grana et al. A rock physics and seismic reservoir characterization study of the Rock Springs Uplift, a carbon dioxide sequestration site in Southwestern Wyoming
US10534100B2 (en) System and method for assessing the presence of hydrocarbons in a subterranean reservoir based on time-lapse seismic data
US10274623B2 (en) Determining displacement between seismic images using optical flow
Witten et al. Microseismic image-domain velocity inversion: Marcellus Shale case study
Langet et al. Joint focal mechanism inversion using downhole and surface monitoring at the Decatur, Illinois, CO2 injection site
US10451757B2 (en) Determining displacement between seismic images using optical flow
US20160377752A1 (en) Method of Digitally Identifying Structural Traps
Shaban et al. Comparison between curvature and 3D strain analysis methods for fracture predicting in the Gachsaran oil field (Iran)
Panara et al. Fracture intensity and associated variability: A new methodology for 3D digital outcrop model analysis of carbonate reservoirs
Foulger et al. Earthquakes and errors: Methods for industrial applications
Dando et al. Complexity in microseismic phase identification: full waveform modelling, traveltime computations and implications for event locations within the Groningen gas field
EP3359983B1 (en) Seismic polynomial filter
Velásquez et al. Depth-conversion techniques and challenges in complex sub-Andean provinces
Zhang et al. Using geomechanics to reveal the production controlling factors of the tectonically stressed Jurassic tight gas reservoir in western China
Thagafy et al. Predictive fracture modeling: Example fields from Saudi Arabia

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180404

Address after: 100007 Beijing, Dongzhimen, North Street, No. 9, No.

Co-patentee after: Dongfang Geophysical Exploration Co., Ltd., China Petrochemical Corp.

Patentee after: China Petroleum and Natural Gas Group Co., Ltd.

Address before: Shuangliu County Huayang Huayang Road in Chengdu city of Sichuan Province in 610213 section of No. 216, Igawa geophysical exploration company of the Ministry of science and technology

Patentee before: China National Petroleum Corporation Chuanqing Drilling Engineering Geophysical Exploration Company Ltd.