CN105147310B - 乳房图像获取方法及装置、乳房摄影系统 - Google Patents

乳房图像获取方法及装置、乳房摄影系统 Download PDF

Info

Publication number
CN105147310B
CN105147310B CN201510642259.0A CN201510642259A CN105147310B CN 105147310 B CN105147310 B CN 105147310B CN 201510642259 A CN201510642259 A CN 201510642259A CN 105147310 B CN105147310 B CN 105147310B
Authority
CN
China
Prior art keywords
breast
image
edge
area
medical image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510642259.0A
Other languages
English (en)
Other versions
CN105147310A (zh
Inventor
张娜
周海华
陈皓
杨乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai United Imaging Healthcare Co Ltd
Original Assignee
Shanghai United Imaging Healthcare Co Ltd
Filing date
Publication date
Application filed by Shanghai United Imaging Healthcare Co Ltd filed Critical Shanghai United Imaging Healthcare Co Ltd
Priority to CN201510642259.0A priority Critical patent/CN105147310B/zh
Publication of CN105147310A publication Critical patent/CN105147310A/zh
Priority to CN201680070175.7A priority patent/CN108471995B/zh
Priority to PCT/CN2016/101186 priority patent/WO2017054775A1/en
Priority to US15/323,056 priority patent/US10297024B2/en
Application granted granted Critical
Publication of CN105147310B publication Critical patent/CN105147310B/zh
Priority to US16/416,577 priority patent/US10636143B2/en
Priority to US16/859,973 priority patent/US11250567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种乳房图像获取方法及装置、乳房摄影系统。所述乳房图像获取方法包括:分割医学图像以获得乳房区域;基于乳房边缘的灰度变化特性检测所述医学图像中的乳房边缘;基于所述乳房区域和所述乳房边缘确定所述乳房图像。本发明技术方案可以获取不同剂量的医学图像中的乳房图像,且最终获得的乳房图像的精确度较高,在提高了乳房图像质量的同时也降低了误诊率,进而在一定程度上也提高了医生对乳房区域病灶的诊断效率。

Description

乳房图像获取方法及装置、乳房摄影系统
技术领域
本发明涉及图像处理技术领域,特别涉及一种乳房图像获取方法及装置、乳房摄影系统。
背景技术
随着计算机科学和信息技术的发展,医学成像技术也得到了迅速的发展,各种医用影像系统不断涌现。全视野数字乳房X线摄影系统(FFDM,full-field digitalmammography)作为乳腺癌的筛查和诊断得到了广泛的应用。
对采用FFDM拍摄获得的医学图像而言,乳房图像的提取是基于FFDM进行摄片的计算机辅助诊断中的关键步骤。对乳房图像进行提取能够将病灶的检测范围限定在乳房区域之内,进而降低背景区域的干扰。
目前,通常采用以下三种方法对乳房图像进行分割:
第一种:大津法,利用阈值分割原图像中的前景图像和背景图像。采用大津法实现对乳房图像的分割较简单,但是分割后获得的乳房图像不精确,有所缺失。
第二种:分水岭算法,相对于大津法而言采用分水岭算法分割后获得的乳房图像比采用大津法分割获得的乳房图像较精确,但是对于剂量较高的医学图像,采用分水岭算法分割后获得的乳房图像仍不精确。
第三种:Snake算法,采用Snake算法对医学图像进行分割,分割获得的乳房图像较精确,但其分割速度较慢,不适合用于实际的产品中。
因此,如何能够提供一种精确度高且速度快的乳房图像获取方法,成为目前亟待解决的问题之一。
发明内容
本发明要解决的问题是提供一种乳房图像获取方法及装置、乳房摄影系统,以使得获得的乳房图像精度高且获得所述乳房图像的速度快。
为解决上述问题,本发明技术方案提供一种乳房图像获取方法,包括:
分割医学图像以获得乳房区域;
基于乳房边缘的灰度变化特性检测所述医学图像中的乳房边缘;
基于所述乳房区域和所述乳房边缘确定所述乳房图像。
可选的,所述基于乳房边缘的灰度变化特性检测所述医学图像中的乳房边缘包括:
对所述医学图像进行第一预处理以使得待检测乳房边缘的灰度值最高,获得第一图像;
对所述第一图像进行第二预处理以获得第二图像,所述第二图像中乳房区域的灰度值介于背景区域和待检测乳房边缘的灰度值之间;
基于边缘检测方法对所述第二图像中的乳房边缘进行检测。
可选的,对所述医学图像进行第一预处理包括:对所述医学图像进行梯度变换或差分运算。
可选的,所述乳房图像获取方法,还包括对所述医学图像执行负片操作以获得第三图像,对所述第一图像进行第二预处理包括:将所述第一图像与所述第三图像相乘。
可选的,所述乳房图像获取方法,还包括对所述医学图像执行负片操作和归一化以获得第四图像,对所述第一图像进行第二预处理包括:将所述第一图像与所述第四图像相乘。
可选的,基于迭代法或大津法对所述第二图像中的乳房边缘进行检测。
可选的,基于大津法分割所述医学图像以获得乳房区域。
可选的,所述乳房图像获取方法,还包括去除所述乳房图像中的孤立像素点。
为解决上述问题,本发明技术方案还提供一种乳房图像获取装置,包括:
分割单元,用于分割医学图像以获得乳房区域;
检测单元,用于基于乳房边缘的灰度变化特性检测所述医学图像中的乳房边缘;
确定单元,用于基于所述乳房区域和所述乳房边缘确定所述乳房图像。
可选的,所述检测单元包括:
第一预处理单元,用于对所述医学图像进行第一预处理以使得待检测乳房边缘的灰度值最高,获得第一图像;
第二预处理单元,用于对所述第一图像进行第二预处理以获得第二图像,所述第二图像中乳房区域的灰度值介于背景区域和待检测乳房边缘的灰度值之间;
检测子单元,用于基于边缘检测方法对所述第二图像中的乳房边缘进行检测。
为解决上述问题,本发明技术方案还提供一种乳房摄影系统,包括上述的乳房图像获取装置。
与现有技术相比,本发明技术方案具有以下优点:
先分割医学图像以获得乳房区域,然后基于乳房边缘的灰度变化特性检测所述医学图像中的乳房边缘,进而基于所述乳房区域和所述乳房边缘确定所述乳房图像,由于先分割出乳房区域且考虑了实际医学图像中乳房边缘的灰度变化特性来检测所述乳房边缘,因此对于不同剂量的医学图像而言,最终获得的乳房图像的精确度较高,减少了背景区域的干扰,提高了乳房图像的质量,进而也降低了误诊率,在一定程度上也提高了医生对乳房区域病灶的诊断效率。
进一步地,对所述医学图像进行第一预处理以使得所述待检测乳房边缘的灰度值最高,并对所述第一图像进行第二预处理,以使得乳房区域的灰度值介于背景区域和待检测乳房边缘的灰度值之间,进而使得后续采用边缘检测方法对所述第二图像中的乳房边缘进行检测时,减少将背景区域的像素点检测为乳房区域的像素点的概率,进一步的提高了最终获得的乳房图像的精确度,提高了获得的乳房图像的质量。
进一步地,采用大津法对所述医学图像进行分割以获得乳房区域,由于乳房图像的灰度直方图为双峰图,故采用大津法分割所述医学图像以获得乳房区域的速度快且精度高,同时由于考虑了实际医学图像中乳房边缘的灰度变化特性来检测所述乳房边缘,因此对于不同剂量的医学图像而言,最终获得的乳房图像的精确度较高,进而提高了乳房图像的质量,在降低了误诊率的同时也提高了医生对乳房区域的病灶的诊断效率。此外采用迭代法检测所述第二图像中的乳房边缘,计算量小,因此进一步的提高了获得乳房图像的速度。
附图说明
图1是本发明实施方式的乳房图像获取方法的流程示意图;
图2是FFDM拍摄的医学图像;
图3是本发明实施例的乳房图像获取方法的流程示意图;
图4是采用本发明实施例的乳房图像获取方法获得的乳房图像;
图5是本发明实施方式的乳房图像获取装置的结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在以下描述中阐述了具体细节以便于充分理解本发明。但是本发明能够以多种不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广。因此本发明不受下面公开的具体实施方式的限制。
正如现有技术中所描述的,目前所采用的对乳房图像进行分割的算法,分割后获得的乳房图像的精确度低,不符合实际的临床需求,若要获得精确度较高的乳房图像,则获得乳房图像的速度较慢,不能应用在实际的产品中。因此,现有的乳房图像分割算法无法实现以较快的速度获得精确度较高的乳房图像。
发明人对FFDM获得的医学图像进行分析后得出,对于实际拍摄获得的医学图像而言,乳房边缘的灰度值与背景区域的灰度值比较接近,尤其是对于高剂量的医学图像,其乳房边缘和背景区域基本上难以区分,进而导致采用分割算法分割乳房图像(包括乳房区域和乳房边缘)时,乳房边缘会被分割到背景区域中,出现过分割的现象,分割获得的乳房图像的精确度较低。
因此,发明人考虑先将医学图像中的乳房区域进行提取,然后基于乳房边缘的灰度变化特性来检测乳房边缘,将获得的乳房区域和乳房边缘进行叠加,以获得乳房图像。
参见图1,图1是本发明实施方式的乳房图像获取方法的流程示意图,如图1所示,本发明实施方式的乳房图像获取方法包括:
S101:分割医学图像以获得乳房区域;
S102:基于乳房边缘的灰度变化特性检测所述医学图像中的乳房边缘;
S103:基于所述乳房区域和所述乳房边缘确定所述乳房图像。
以下结合具体的实施例对本发明实施方式的乳房图像获取方法进行详细的说明。
执行S101,对通过FFDM采集到的医学图像进行分割,获得乳房区域,考虑到乳房图像的灰度直方图为双峰图,采用大津法分割乳房区域在速度和精度上最为有效,因此本实施例中先获取所述医学图像的灰度直方图,然后采用大津法对所述医学图像进行分割,分割后获得的乳房区域精度高,且分割速度较快。在其他实施例中,也可以采用其他的图像分割算法对所述医学图像中的乳房区域进行分割,如:采用分水岭算法对所述医学图像进行分割。
执行S102,基于乳房边缘的灰度变化特性检测所述医学图像中的乳房边缘。由上述可知对于临床获得的医学图像而言,乳房边缘的灰度值和背景区域的灰度值非常接近,此外乳房边缘的灰度值又是所述医学图像中灰度变化最剧烈的部分,因此,本步中具体地先对所述医学图像进行第一预处理以使得待检测乳房边缘的灰度值最高,获得第一图像;也即抬高所述医学图像中待检测乳房边缘的灰度值,使得所述待检测乳房边缘在所述医学图像中凸显出来以便于后续对所述乳房边缘的检测。本实施例中所述第一预处理包括对所述医学图像进行梯度变换,具体的通过sobel梯度算子对所述医学图像进行梯度变换,也即通过所述梯度变换的方式使得所述待检测乳房边缘的灰度值提高。在其他实施例中,也可以采用对所述医学图像进行差分运算,也即采用差分法来提高所述医学图像中待检测乳房边缘的灰度值。
本领域技术人员知晓,对于采用FFDM获得的医学图像而言,其乳房区域的灰度值通常低于背景区域的灰度值,即为正片,如图2所示,正片中背景区域的灰度值>乳房边缘的灰度值>乳房区域的灰度值,通过对所述医学图像进行第一预处理后,使得待检测乳房边缘的灰度值最高,因此第一图像中待检测乳房边缘的灰度值>背景区域的灰度值>乳房区域的灰度值,考虑到后续对乳房边缘进行检测的过程中,也即将乳房边缘从所述医学图像中分割出来的过程中,若背景区域的灰度值较高的话,可能会将背景区域中的像素点检测为乳房边缘的像素点,因此为了提高乳房边缘检测的精确度,本实施例中,在对所述医学图像进行第一预处理后,对其进行第二预处理以获得第二图像,通过对所述第一图像进行第二预处理后,使得所述第二图像中乳房区域的灰度值介于背景区域和待检测乳房边缘的灰度值之间,也即待检测乳房边缘的灰度值>乳房区域的灰度值>背景区域的灰度值。
具体地,本实施例中通过如下方式对所述第一图像进行第二预处理:
对所述医学图像执行负片操作和归一化以获得第四图像,将所述第一图像与所述第四图像相乘以获得所述第二图像。本实施例中先计算所述医学图像的最大灰度值,用所述最大灰度值减去所述医学图像中每一个像素点的灰度值即可以获得与所述医学图像对应的负片,此外考虑到在实际应用中,由于处理器处理范围有限,若待处理的图像的像素点灰度值较大时会超出处理器的处理范围,因此,本实施例中,在对所述医学图像执行负片操作后还对执行了负片操作的所述医学图像进行归一化以获得第四图像。将执行了梯度变换的医学图像(第一图像)和所述第四图像相乘,即进行第二预处理以获得第二图像,此时所述第二图像中各区域的灰度值分布满足乳房边缘的灰度值>乳房区域的灰度值>背景区域的灰度值。
在其他实施例中,也可以采用其他的方式对所述第一图像进行第二预处理,只要使得经过第二预处理后的第一图像中乳房边缘的灰度值>乳房区域的灰度值>背景区域的灰度值即可。
在对所述医学图像进行了第一预处理和第二预处理后,基于边缘检测方法对所述第二图像中的乳房边缘进行检测。考虑到实际应用中获得的第二图像为浮点型的数据,而采用迭代法对乳房边缘进行检测时,不需要将浮点型的数据转换为整型数据故图像精度不会有所损失,此外迭代法计算量较小且速度快,因此本实施例中,采用迭代法检测所述第二图像中的乳房边缘。具体地:
设置初始阈值T0,为了加快迭代速度,本实施例中以所述第二图像中最大灰度值和最小灰度值之和的一半为所述初始阈值T0,第一次迭代时,根据所述初始阈值T0,所述第二图像被分为两个区域,像素点灰度值大于所述初始阈值T0的第一区域和像素点灰度值小于等于所述初始阈值T0的第二区域,计算所述第一区域和第二区域的灰度均值(各区域像素点灰度值之和除以对应的像素点个数),以所述第一区域和第二区域的灰度均值之和的一半T1为新的阈值以更新初始阈值T0,判断abs(T1-T0)是否大于1,若abs(T1-T0)>1,则以T1为阈值继续对所述第二图像进行分割,直至abs(Ti+1-Ti)<1,迭代终止,Ti+1为最终的分割阈值,像素点灰度值大于Ti+1的像素点的集合为乳房边缘。
在其他实施例中,也可以采用大津法或其他分割方法对第二图像中的乳房边缘进行提取。
此外,在实际迭代过程中,还可以对迭代过程中获得的阈值乘以小于1的权重因子,所述权重因子可以根据对多幅医学图像的乳房边缘进行检测时的实际迭代过程中迭代收敛前阈值的变化规律而定。对迭代过程中获得的阈值乘以小于1的权重因子,可以进一步的提高获取的乳房边缘的精确度。
执行S103,基于所述乳房区域和所述乳房边缘确定所述乳房图像。本实施例中,具体地就是将S101获得的乳房区域和S102获得的乳房边缘进行叠加以获得最终的乳房图像。考虑到实际处理过程中,可能会有背景区域的像素点被误判为乳房图像的像素点,因此需对叠加后获得的乳房图像中的孤立像素点进行去除,以提高乳房图像的精确度。
以下结合实际的应用和图3对本发明实施例的乳房图像获取方法进行简单的说明。
如图3所示,输入原始投影图像(RawImage,即FFDM获得的医学图像),计算RawImage的灰度直方图,采用大津法(Otsu)分割RawImage以获得乳房区域。对RawImage进行梯度变换得到Image_1,对RawImage进行负片操作和归一化得到Image-2,Image_1乘以Image_2得到Image_3,采用迭代法检测Image_3中的乳房边缘,将检测得到的乳房区域和乳房边缘进行叠加以获得乳房图像,去除所述乳房图像中的孤立像素点以输出最终的乳房图像。
参见图4,图4是采用本发明实施例的乳房图像获取方法获得的乳房图像,图中白色区域所示即为最终获得的乳房图像,从图4中可以看出采用本发明实施例的乳房图像获取方法获得的乳房边缘清晰,可以精确的将乳房图像从医学图像中分割出。
本实施例中,采用大津法分割乳房区域,通过迭代法对第二图像中的乳房边缘进行检测,对分割后的乳房区域和检测获得的乳房边缘进行叠加获得的乳房图像的精确度较高,且采用大津法分割乳房区域,迭代法检测乳房边缘速度快,此外,去除获得的乳房图像中的孤立像素点进一步地提高了最终获得的乳房图像的精确度,提高了乳房图像的质量,进而在降低了误诊率的同时也提高了医生对乳房区域病灶的诊断效率。
本发明实施方式还提供一种乳房获取装置,请参见图5,图5是本发明实施方式的乳房图像获取装置的结构示意图,如图5所示所述乳房获取装置1包括:
分割单元10,用于分割医学图像以获得乳房区域;
检测单元11,用于基于乳房边缘的灰度变化特性检测所述医学图像中的乳房边缘;
确定单元12,用于基于所述乳房区域和所述乳房边缘确定所述乳房图像。
本实施例中,所述检测单元11包括:
第一预处理单元110,用于对所述医学图像进行第一预处理以使得待检测乳房边缘的灰度值最高,获得第一图像;
第二预处理单元111,用于对所述第一图像进行第二预处理以获得第二图像,所述第二图像中乳房区域的灰度值介于背景区域和待检测乳房边缘的灰度值之间;
检测子单元112,用于基于边缘检测方法对所述第二图像中的乳房边缘进行检测。
本实施例还提供一种乳房摄影系统,包括上述的乳房图像获取装置。
综上所述,本发明实施方式提供的乳房图像获取方法,至少具有如下有益效果:
先分割医学图像以获得乳房区域,然后基于乳房边缘的灰度变化特性检测所述医学图像中的乳房边缘,进而基于所述乳房区域和所述乳房边缘确定所述乳房图像,由于先分割出乳房区域且考虑了实际医学图像中乳房边缘的灰度变化特性来检测所述乳房边缘,因此对于不同剂量的医学图像而言,最终获得的乳房图像的精确度较高,减少了背景区域的干扰,提高了乳房图像的质量,进而也降低了误诊率,在一定程度上也提高了医生对乳房区域病灶的诊断效率。
进一步地,对所述医学图像进行第一预处理以使得所述待检测乳房边缘的灰度值最高,并对所述第一图像进行第二预处理,以使得乳房区域的灰度值介于背景区域和待检测乳房边缘的灰度值之间,进而使得后续采用边缘检测方法对所述第二图像中的乳房边缘进行检测时,减少将背景区域的像素点检测为乳房区域的像素点的概率,进一步的提高了最终获得的乳房图像的精确度,提高了获得的乳房图像的质量。
进一步地,采用大津法对所述医学图像进行分割以获得乳房区域,由于乳房图像的灰度直方图为双峰图,故采用大津法分割所述医学图像以获得乳房区域的速度快且精度高,同时由于考虑了实际医学图像中乳房边缘的灰度变化特性来检测所述乳房边缘,因此对于不同剂量的医学图像而言,最终获得的乳房图像的精确度较高,进而提高了乳房图像的质量,在降低了误诊率的同时也提高了医生对乳房区域的病灶的诊断效率。此外采用迭代法检测所述第二图像中的乳房边缘,计算量小,因此进一步的提高了获得乳房图像的速度。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (9)

1.一种乳房图像获取方法,其特征在于,包括:
分割医学图像以获得乳房区域;
基于乳房边缘的灰度变化特性检测所述医学图像中的乳房边缘;
基于所述乳房区域和所述乳房边缘确定所述乳房图像;
其中,所述基于乳房边缘的灰度变化特性检测所述医学图像中的乳房边缘包括:对所述医学图像进行第一预处理以使得待检测乳房边缘的灰度值最高,获得第一图像;
对所述第一图像进行第二预处理以获得第二图像,所述第二图像中乳房区域的灰度值介于背景区域和待检测乳房边缘的灰度值之间;
基于边缘检测方法对所述第二图像中的乳房边缘进行检测。
2.如权利要求1所述的乳房图像获取方法,其特征在于,对所述医学图像进行第一预处理包括:对所述医学图像进行梯度变换或差分运算。
3.如权利要求1或2所述的乳房图像获取方法,其特征在于,还包括对所述医学图像执行负片操作以获得第三图像,对所述第一图像进行第二预处理包括:将所述第一图像与所述第三图像相乘。
4.如权利要求1或2所述的乳房图像获取方法,其特征在于,还包括对所述医学图像执行负片操作和归一化以获得第四图像,对所述第一图像进行第二预处理包括:将所述第一图像与所述第四图像相乘。
5.如权利要求1所述的乳房图像获取方法,其特征在于,基于迭代法或大津法对所述第二图像中的乳房边缘进行检测。
6.如权利要求1或5所述的乳房图像获取方法,其特征在于,基于大津法分割所述医学图像以获得乳房区域。
7.如权利要求1所述的乳房图像获取方法,其特征在于,还包括去除所述乳房图像中的孤立像素点。
8.一种乳房图像获取装置,其特征在于,包括:
分割单元,用于分割医学图像以获得乳房区域;
检测单元,用于基于乳房边缘的灰度变化特性检测所述医学图像中的乳房边缘;
确定单元,用于基于所述乳房区域和所述乳房边缘确定所述乳房图像;
其中,所述检测单元包括:
第一预处理单元,用于对所述医学图像进行第一预处理以使得待检测乳房边缘的灰度值最高,获得第一图像;
第二预处理单元,用于对所述第一图像进行第二预处理以获得第二图像,所述第二图像中乳房区域的灰度值介于背景区域和待检测乳房边缘的灰度值之间;
检测子单元,用于基于边缘检测方法对所述第二图像中的乳房边缘进行检测。
9.一种乳房摄影系统,其特征在于,包括权利要求8所述的乳房图像获取装置。
CN201510642259.0A 2015-09-30 2015-09-30 乳房图像获取方法及装置、乳房摄影系统 Active CN105147310B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201510642259.0A CN105147310B (zh) 2015-09-30 乳房图像获取方法及装置、乳房摄影系统
CN201680070175.7A CN108471995B (zh) 2015-09-30 2016-09-30 确定医学图像中乳房区域的系统和方法
PCT/CN2016/101186 WO2017054775A1 (en) 2015-09-30 2016-09-30 System and method for determining a breast region in a medical image
US15/323,056 US10297024B2 (en) 2015-09-30 2016-09-30 System and method for determining a breast region in a medical image
US16/416,577 US10636143B2 (en) 2015-09-30 2019-05-20 System and method for determining a breast region in a medical image
US16/859,973 US11250567B2 (en) 2015-09-30 2020-04-27 System and method for determining a breast region in a medical image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510642259.0A CN105147310B (zh) 2015-09-30 乳房图像获取方法及装置、乳房摄影系统

Publications (2)

Publication Number Publication Date
CN105147310A CN105147310A (zh) 2015-12-16
CN105147310B true CN105147310B (zh) 2018-08-31

Family

ID=

Similar Documents

Publication Publication Date Title
Vijayarajeswari et al. Classification of mammogram for early detection of breast cancer using SVM classifier and Hough transform
US10580137B2 (en) Systems and methods for detecting an indication of malignancy in a sequence of anatomical images
Maitra et al. Technique for preprocessing of digital mammogram
US9262822B2 (en) Malignant mass detection and classification in radiographic images
EP3807839B1 (en) Deformity edge detection
CN110046627B (zh) 一种乳腺影像识别的方法及装置
CN105447879B (zh) 乳房图像中检测胸肌的方法及装置
US20120099771A1 (en) Computer aided detection of architectural distortion in mammography
Bandyopadhyay Pre-processing of mammogram images
CN105701796B (zh) 乳房图像的厚度均衡方法及装置、乳房摄影系统
CN105374025B (zh) 乳房图像获取方法及装置、乳房摄影系统
CN107169975B (zh) 超声图像的分析方法及装置
Maitra et al. Accurate breast contour detection algorithms in digital mammogram
CN112184733A (zh) 一种宫颈异常细胞检测装置及方法
KR20140048449A (ko) 의료영상에서의 간 영역 검출방법
Sultana et al. Detection of pectoral muscle in mammograms using a mean-shift segmentation approach
Liu et al. Segmentation of mass in mammograms by a novel integrated active contour method
CN114757953B (zh) 医学超声图像识别方法、设备及存储介质
CN111062909A (zh) 乳腺肿块良恶性判断方法及设备
CN105147310B (zh) 乳房图像获取方法及装置、乳房摄影系统
Marrocco et al. Detection of cluster of microcalcifications based on watershed segmentation algorithm
Lipková et al. Automated unsupervised segmentation of liver lesions in ct scans via cahn-hilliard phase separation
Parvaze et al. Extraction of multiple cellular objects in HEp-2 images using LS segmentation
Joykutty et al. Automatic tuberculosis detection using adaptive thresholding in chest radiographs
KR101494975B1 (ko) 3차원 자동 유방 초음파 영상의 유두 자동 검출 시스템 및 그 검출 방법

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 201807 No. 2258 Chengbei Road, Jiading Industrial Zone, Jiading District, Shanghai.

Patentee after: Shanghai Lianying Medical Technology Co., Ltd

Address before: 201807 No. 2258 Chengbei Road, Jiading Industrial Zone, Jiading District, Shanghai.

Patentee before: SHANGHAI UNITED IMAGING HEALTHCARE Co.,Ltd.