CN105120587B - 具有充电模式切换机制的led路灯系统 - Google Patents

具有充电模式切换机制的led路灯系统 Download PDF

Info

Publication number
CN105120587B
CN105120587B CN201510655558.8A CN201510655558A CN105120587B CN 105120587 B CN105120587 B CN 105120587B CN 201510655558 A CN201510655558 A CN 201510655558A CN 105120587 B CN105120587 B CN 105120587B
Authority
CN
China
Prior art keywords
charging
voltage
negative terminal
solar
lead acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510655558.8A
Other languages
English (en)
Other versions
CN105120587A (zh
Inventor
汤勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENZHEN WEIERSHENG PHOTOELECTRIC CO., LTD.
Original Assignee
Shenzhen Weiersheng Photoelectric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Weiersheng Photoelectric Co Ltd filed Critical Shenzhen Weiersheng Photoelectric Co Ltd
Priority to CN201510999420.XA priority Critical patent/CN105515160A/zh
Priority to CN201510655558.8A priority patent/CN105120587B/zh
Publication of CN105120587A publication Critical patent/CN105120587A/zh
Application granted granted Critical
Publication of CN105120587B publication Critical patent/CN105120587B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/08Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems requiring starting of a prime-mover
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Abstract

本发明涉及一种具有充电模式切换机制的LED路灯系统,所述路灯系统包括太阳能电池电压检测设备、太阳能电池组件和太阳能充电控制器,太阳能充电控制器在所述路灯系统使用太阳能电池组件充电时控制太阳能电池组件的充电方式,太阳能电池电压检测设备采集太阳能电池组件的输出电压,用以提供太阳能电池组件充电和非太阳能电池组件充电的切换信号。通过本发明,能够实现在太阳能电池组件充电和非太阳能电池组件充电之间的灵活切换。

Description

具有充电模式切换机制的LED路灯系统
技术领域
本发明涉及LED照明领域,尤其涉及一种具有充电模式切换机制的LED路灯系统。
背景技术
现有技术中,对LED路灯的节能供电主要偏重于太阳能供电,很少使用风能供电,太阳能供电在阴雨天或者黑夜环境下无法进行充电,同时,现有太阳能供电结构功耗高,未经过优化。
为此,本发明提出了一种具有充电模式切换机制的LED路灯系统,优化太阳能供电电路和风能供电电路,并引入兼容电路将二者供电电路进行有机结合,关键的是,还引入与太阳能电板的电能输出接口连接的电压采集设备,以根据太阳能电板的输出电压进行太阳能供电和风能供电之间的切换,从而保障LED路灯系统的供电效率,节省供电开销。
发明内容
为了解决现有技术存在的技术问题,本发明提供了一种具有充电模式切换机制的LED路灯系统,采用与太阳能电板的电能输出接口连接的电压采集设备,以根据太阳能电板的输出电压提供太阳能供电和风能供电之间的充电切换控制信号,同时设计了一套具体供电电路以可靠地兼容太阳能和风能两种供电模式。
根据本发明的一方面,提供了一种具有充电模式切换机制的LED路灯系统,所述路灯系统包括太阳能电池电压检测设备、太阳能电池组件和太阳能充电控制器,太阳能充电控制器在所述路灯系统使用太阳能电池组件充电时控制太阳能电池组件的充电方式,太阳能电池电压检测设备采集太阳能电池组件的输出电压,用以提供太阳能电池组件充电和非太阳能电池组件充电的切换信号。
更具体地,在所述具有充电模式切换机制的LED路灯系统中,还包括:太阳能电池组件,设置在灯架顶部,具有电能输出接口,用于输出太阳能电池组件将太阳能转换后的电能,电能输出接口包括输出正端和输出负端;太阳能电池电压检测设备,设置在灯架顶部,与太阳能电池组件的电能输出接口连接,用于采集太阳能电池组件的输出电压,当输出电压大于等于预设太阳能电池组件电压阈值时,发出白天判断信号,当输出电压小于预设太阳能电池组件电压阈值时,发出黑夜判断信号;第六防反二极管,其正端与电能输出接口的输出正端连接;第八电容,并联在第六防反二极管的负端和电能输出接口的输出负端之间;第四开关管,为一P沟增强型MOS管,其漏极与第六防反二极管的负端连接,其衬底与源极相连;第七防反二极管,并联在第四开关管的源极和电能输出接口的输出负端之间;第一电感,其一端与第四开关管的源极连接;第九电容,并联在第一电感的另一端和电能输出接口的输出负端之间;熔断器,其一端与第一电感的另一端连接,另一端与铅酸蓄电池的正极连接;蓄电池电压检测设备,用于实时检测铅酸蓄电池的充电电压;蓄电池电流检测设备,用于实时检测铅酸蓄电池的充电电流;太阳能充电控制器,与电能输出接口、铅酸蓄电池、蓄电池电压检测设备和蓄电池电流检测设备分别连接,在检测到电能输出接口对铅酸蓄电池供电时,当接收到的充电电压小于预设蓄电池电压阈值时,采用恒流充电方式对铅酸蓄电池进行充电,当接收到的充电电压大于等于预设蓄电池电压阈值且接收到的充电电流大于等于预设蓄电池电流阈值时,采用恒压充电方式对铅酸蓄电池进行充电,当接收到的充电电压大于等于预设蓄电池电压阈值且接收到的充电电流小于预设蓄电池电流阈值时,采用浮充充电方式对铅酸蓄电池进行充电;升力风机主结构,设置在灯架顶部,包括三个叶片、偏航设备、轮毂和传动设备;三个叶片在风通过时,由于每一个叶片的正反面的压力不等而产生升力,所述升力带动对应叶片旋转;偏航设备与三个叶片连接,用于提供三个叶片旋转的可靠性并解缆;轮毂与三个叶片连接,用于固定三个叶片,以在叶片受力后被带动进行顺时针旋转,将风能转化为低转速的动能;传动设备包括低速轴、齿轮箱、高速轴、支撑轴承、联轴器和盘式制动器,齿轮箱通过低速轴与轮毂连接,通过高速轴与风力发电机连接,用于将轮毂的低转速的动能转化为风力发电机所需要的高转速的动能,联轴器为一柔性轴,用于补偿齿轮箱输出轴和发电机转子的平行性偏差和角度误差,盘式制动器,为一液压动作的盘式制动器,用于机械刹车制动;风力发电机,与升力风机主结构的齿轮箱连接,为一双馈异步发电机,用于将接收到的高转速的动能转化为风力电能,风力发电机包括定子绕组、转子绕组、双向背靠背IGBT电压源变流器和风力发电机输出接口,定子绕组直连风力发电机输出接口,转子绕组通过双向背靠背IGBT电压源变流器与风力发电机输出接口连接,风力发电机输出接口为三相交流输出接口,用于输出风力电能;整流电路,与风力发电机输出接口连接,对风力发电机输出接口输出的三相交流电压进行整流以获得风力直流电压;滤波稳压电路,与整流电路连接以对风力直流电压进行滤波稳压,以输出稳压直流电压;第三电阻和第四电阻,串联后并联在滤波稳压电路的正负二端,第三电阻的一端连接滤波稳压电路的正端,第四电阻的一端连接滤波稳压电路的负端;第一电容和第二电容,串联后并联在滤波稳压电路的正负二端,第一电容的一端连接滤波稳压电路的正端,第二电容的一端连接滤波稳压电路的负端,第一电容的另一端连接第一电阻的另一端,第二电容的另一端连接第二电阻的另一端;第三电容,并联在滤波稳压电路的正负二端;第五电阻,其一端连接滤波稳压电路的正端;第一开关管,为一P沟增强型MOS管,其漏极与第三电阻的另一端连接,其衬底与源极相连,其源极与滤波稳压电路的负端连接;手动卸荷电路,其两端分别与第一开关管的漏极和源极连接;第一防反二极管,其正端与滤波稳压电路的正端连接,其负端与第一开关管的漏极连接;第二开关管,为一P沟增强型MOS管,其漏极与滤波稳压电路的正端连接,其衬底与源极相连;第二防反二极管,其正端与第二开关管的源极连接;第四电容和第五电容,都并联在第二防反二极管的负端和滤波稳压电路的负端之间;第三防反二极管,并联在第二防反二极管的负端和滤波稳压电路的负端之间;第三开关管,为一P沟增强型MOS管,其漏极与第二防反二极管的负端连接,其衬底与源极相连;第四防反二极管,并联在第三开关管的源极和滤波稳压电路的负端之间;第二电感,其一端与第三开关管的源极连接;第六电容和第七电容,都并联在第二电感的另一端和滤波稳压电路的负端之间;第五防反二极管,并联在第二电感的另一端和滤波稳压电路的负端之间;铅酸蓄电池,其正极与熔断器的另一端连接,其负极与电能输出接口的输出负端,同时其正极与第五防反二极管的负极连接,其负极与第五防反二极管的正极连接;继电器,位于LED灯管和铅酸蓄电池之间,通过是否切断LED灯管和铅酸蓄电池之间的连接来控制LED灯管的打开和关闭;光耦,位于继电器和DSP控制芯片之间,用于在DSP控制芯片的控制下,决定继电器的切断操作;DSP控制芯片与第一开关管的栅极和第二开关管的栅极分别连接,通过在第一开关管的栅极上施加PWM控制信号,确定第一开关管的通断,以控制风力发电机输出接口对铅酸蓄电池的充电的通断,还通过在第二开关管的栅极上施加占空比可调的PWM控制信号,以控制风力发电机输出接口对铅酸蓄电池的充电电压;其中,DSP控制芯片还与太阳能电池电压检测设备连接,当接收到黑夜判断信号,断开电能输出接口对铅酸蓄电池的充电,打通风力发电机输出接口对铅酸蓄电池的充电,当接收到白天判断信号,打通电能输出接口对铅酸蓄电池的充电,断开风力发电机输出接口对铅酸蓄电池的充电。
更具体地,在所述具有充电模式切换机制的LED路灯系统中:风力发电机设置在灯架顶部。
更具体地,在所述具有充电模式切换机制的LED路灯系统中,所述路灯系统还包括:存储设备,用于预先存储预设蓄电池电压阈值、预设蓄电池电流阈值和预设太阳能电池组件电压阈值。
更具体地,在所述具有充电模式切换机制的LED路灯系统中:存储设备为移动硬盘。
更具体地,在所述具有充电模式切换机制的LED路灯系统中:存储设备与太阳能电池电压检测设备和太阳能充电控制器分别连接。
附图说明
以下将结合附图对本发明的实施方案进行描述,其中:
图1为根据本发明实施方案示出的具有充电模式切换机制的LED路灯系统的结构方框图。
附图标记:1太阳能电池电压检测设备;2太阳能电池组件;3太阳能充电控制器
具体实施方式
下面将参照附图对本发明的具有充电模式切换机制的LED路灯系统的实施方案进行详细说明。
大功率LED光源已可以满足一般路灯所需的。一般的高压钠灯的光效是100LM/W,常用的大功率LED是50-60LM/W,用国外最好的LED芯片可以达到80LM/W,发光效率越高,意味着节能效果越好,这也是选择LED路灯最重要的指标之一。
现有技术中,LED路灯大批量应用还存在以下几个难点需要克服:1)LED路灯对供电设备要求较高,在为了节能环保而使用自然界的能源时,缺少一套能兼顾太阳能和风能的具体供电电路,以保障在自行充电的情况下LED路灯的持续供电;2)如何进行太阳能和风能之间供电的灵活切换;3)如何优化现有的太阳能供电结构和风能供电结构,以提高供电效率。
为了克服上述不足,本发明搭建了一种具有充电模式切换机制的LED路灯系统,一方面,能够提供兼顾太阳能和风能的优化供电电路对LED路灯进行可靠的自行充电,另一方面,能够科学地根据太阳能的具体情况,启动太阳能供电和风能供电之间的灵活切换,从而全面提高LED路灯的充电效率。
图1为根据本发明实施方案示出的具有充电模式切换机制的LED路灯系统的结构方框图,所述路灯系统包括太阳能电池电压检测设备、太阳能电池组件和太阳能充电控制器,太阳能充电控制器在所述路灯系统使用太阳能电池组件充电时控制太阳能电池组件的充电方式,太阳能电池电压检测设备采集太阳能电池组件的输出电压,用以提供太阳能电池组件充电和非太阳能电池组件充电的切换信号。
接着,继续对本发明的具有充电模式切换机制的LED路灯系统的具体结构进行进一步的说明。
所述路灯系统还包括:太阳能电池组件,设置在灯架顶部,具有电能输出接口,用于输出太阳能电池组件将太阳能转换后的电能,电能输出接口包括输出正端和输出负端。
所述路灯系统还包括:太阳能电池电压检测设备,设置在灯架顶部,与太阳能电池组件的电能输出接口连接,用于采集太阳能电池组件的输出电压,当输出电压大于等于预设太阳能电池组件电压阈值时,发出白天判断信号,当输出电压小于预设太阳能电池组件电压阈值时,发出黑夜判断信号。
所述路灯系统还包括:第六防反二极管,其正端与电能输出接口的输出正端连接;第八电容,并联在第六防反二极管的负端和电能输出接口的输出负端之间;第四开关管,为一P沟增强型MOS管,其漏极与第六防反二极管的负端连接,其衬底与源极相连;第七防反二极管,并联在第四开关管的源极和电能输出接口的输出负端之间。
所述路灯系统还包括:第一电感,其一端与第四开关管的源极连接;第九电容,并联在第一电感的另一端和电能输出接口的输出负端之间;熔断器,其一端与第一电感的另一端连接,另一端与铅酸蓄电池的正极连接;蓄电池电压检测设备,用于实时检测铅酸蓄电池的充电电压。
所述路灯系统还包括:蓄电池电流检测设备,用于实时检测铅酸蓄电池的充电电流。
所述路灯系统还包括:太阳能充电控制器,与电能输出接口、铅酸蓄电池、蓄电池电压检测设备和蓄电池电流检测设备分别连接,在检测到电能输出接口对铅酸蓄电池供电时,当接收到的充电电压小于预设蓄电池电压阈值时,采用恒流充电方式对铅酸蓄电池进行充电,当接收到的充电电压大于等于预设蓄电池电压阈值且接收到的充电电流大于等于预设蓄电池电流阈值时,采用恒压充电方式对铅酸蓄电池进行充电,当接收到的充电电压大于等于预设蓄电池电压阈值且接收到的充电电流小于预设蓄电池电流阈值时,采用浮充充电方式对铅酸蓄电池进行充电。
所述路灯系统还包括:升力风机主结构,设置在灯架顶部,包括三个叶片、偏航设备、轮毂和传动设备;三个叶片在风通过时,由于每一个叶片的正反面的压力不等而产生升力,所述升力带动对应叶片旋转;偏航设备与三个叶片连接,用于提供三个叶片旋转的可靠性并解缆;轮毂与三个叶片连接,用于固定三个叶片,以在叶片受力后被带动进行顺时针旋转,将风能转化为低转速的动能;传动设备包括低速轴、齿轮箱、高速轴、支撑轴承、联轴器和盘式制动器,齿轮箱通过低速轴与轮毂连接,通过高速轴与风力发电机连接,用于将轮毂的低转速的动能转化为风力发电机所需要的高转速的动能,联轴器为一柔性轴,用于补偿齿轮箱输出轴和发电机转子的平行性偏差和角度误差,盘式制动器,为一液压动作的盘式制动器,用于机械刹车制动。
所述路灯系统还包括:风力发电机,与升力风机主结构的齿轮箱连接,为一双馈异步发电机,用于将接收到的高转速的动能转化为风力电能,风力发电机包括定子绕组、转子绕组、双向背靠背IGBT电压源变流器和风力发电机输出接口,定子绕组直连风力发电机输出接口,转子绕组通过双向背靠背IGBT电压源变流器与风力发电机输出接口连接,风力发电机输出接口为三相交流输出接口,用于输出风力电能。
所述路灯系统还包括:整流电路,与风力发电机输出接口连接,对风力发电机输出接口输出的三相交流电压进行整流以获得风力直流电压;滤波稳压电路,与整流电路连接以对风力直流电压进行滤波稳压,以输出稳压直流电压;第三电阻和第四电阻,串联后并联在滤波稳压电路的正负二端,第三电阻的一端连接滤波稳压电路的正端,第四电阻的一端连接滤波稳压电路的负端。
所述路灯系统还包括:第一电容和第二电容,串联后并联在滤波稳压电路的正负二端,第一电容的一端连接滤波稳压电路的正端,第二电容的一端连接滤波稳压电路的负端,第一电容的另一端连接第一电阻的另一端,第二电容的另一端连接第二电阻的另一端;第三电容,并联在滤波稳压电路的正负二端;第五电阻,其一端连接滤波稳压电路的正端;第一开关管,为一P沟增强型MOS管,其漏极与第三电阻的另一端连接,其衬底与源极相连,其源极与滤波稳压电路的负端连接。
所述路灯系统还包括:手动卸荷电路,其两端分别与第一开关管的漏极和源极连接;第一防反二极管,其正端与滤波稳压电路的正端连接,其负端与第一开关管的漏极连接;第二开关管,为一P沟增强型MOS管,其漏极与滤波稳压电路的正端连接,其衬底与源极相连;第二防反二极管,其正端与第二开关管的源极连接;第四电容和第五电容,都并联在第二防反二极管的负端和滤波稳压电路的负端之间;第三防反二极管,并联在第二防反二极管的负端和滤波稳压电路的负端之间。
所述路灯系统还包括:第三开关管,为一P沟增强型MOS管,其漏极与第二防反二极管的负端连接,其衬底与源极相连;第四防反二极管,并联在第三开关管的源极和滤波稳压电路的负端之间;第二电感,其一端与第三开关管的源极连接;第六电容和第七电容,都并联在第二电感的另一端和滤波稳压电路的负端之间;第五防反二极管,并联在第二电感的另一端和滤波稳压电路的负端之间。
所述路灯系统还包括:铅酸蓄电池,其正极与熔断器的另一端连接,其负极与电能输出接口的输出负端,同时其正极与第五防反二极管的负极连接,其负极与第五防反二极管的正极连接;继电器,位于LED灯管和铅酸蓄电池之间,通过是否切断LED灯管和铅酸蓄电池之间的连接来控制LED灯管的打开和关闭;光耦,位于继电器和DSP控制芯片之间,用于在DSP控制芯片的控制下,决定继电器的切断操作。
所述路灯系统还包括:DSP控制芯片,与第一开关管的栅极和第二开关管的栅极分别连接,通过在第一开关管的栅极上施加PWM控制信号,确定第一开关管的通断,以控制风力发电机输出接口对铅酸蓄电池的充电的通断,还通过在第二开关管的栅极上施加占空比可调的PWM控制信号,以控制风力发电机输出接口对铅酸蓄电池的充电电压。
其中,DSP控制芯片还与太阳能电池电压检测设备连接,当接收到黑夜判断信号,断开电能输出接口对铅酸蓄电池的充电,打通风力发电机输出接口对铅酸蓄电池的充电,当接收到白天判断信号,打通电能输出接口对铅酸蓄电池的充电,断开风力发电机输出接口对铅酸蓄电池的充电。
可选地,在所述路灯系统中:风力发电机设置在灯架顶部;所述路灯系统还包括:存储设备,用于预先存储预设蓄电池电压阈值、预设蓄电池电流阈值和预设太阳能电池组件电压阈值;存储设备为移动硬盘;存储设备与太阳能电池电压检测设备和太阳能充电控制器分别连接。
另外,太阳能电池又称为“太阳能芯片”或“光电池”,是一种利用太阳光直接发电的光电半导体薄片。它只要被光照到,瞬间就可输出电压及在有回路的情况下产生电流。在物理学上称为太阳能光伏(Photovoltaic,photo光,voltaics伏特,缩写为PV),简称光伏。太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。以光电效应工作的薄膜式太阳能电池为主流,而以光化学效应工作的实施太阳能电池则还处于萌芽阶段。
自20世纪58年代起,美国发射的人造卫星就已经利用太阳能电池作为能量的来源。20世纪70年代能源危机时,让世界各国察觉到能源开发的重要性。1973年发生了石油危机,人们开始把太阳能电池的应用转移到一般的民生用途上。在美国、日本和以色列等国家,已经大量使用太阳能装置,更朝商业化的目标前进。在这些国家中,美国于1983年在加州建立世界上最大的太阳能电厂,它的发电量可以高达16百万瓦特。南非、博茨瓦纳、纳米比亚和非洲南部的其他国家也设立专案,鼓励偏远的乡村地区安装低成本的太阳能电池发电系统。而推行太阳能发电最积极的国家首推日本。1994年日本实施补助奖励办法,推广每户3,000瓦特的“市电并联型太阳光电能系统”。在第一年,政府补助49%的经费,以后的补助再逐年递减。“市电并联型太阳光电能系统”是在日照充足的时候,由太阳能电池提供电能给自家的负载用,若有多余的电力则另行储存。当发电量不足或者不发电的时候,所需要的电力再由电力公司提供。到了1996年,日本有2,600户装置太阳能发电系统,装设总容量已经有8百万瓦特。一年后,已经有9,400户装置,装设的总容量也达到了32百万瓦特。随着环保意识的高涨和政府补助金的制度,预估日本住家用太阳能电池的需求量,也会急速增加。
采用本发明的具有充电模式切换机制的LED路灯系统,针对现有技术中LED路灯系统供电开销大、无法兼容风能和太阳能供电电路的技术问题,采用与太阳能电板的电能输出接口连接的电压采集设备,以根据太阳能电板的输出电压进行太阳能供电和风能供电之间的切换,同时,优化并结合太阳能供电电路和风能供电电路,进一步提高LED路灯系统供电电路的供电效率。
可以理解的是,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (1)

1.一种具有充电模式切换机制的LED路灯系统,所述路灯系统包括太阳能电池电压检测设备、太阳能电池组件和太阳能充电控制器,太阳能充电控制器在所述路灯系统使用太阳能电池组件充电时控制太阳能电池组件的充电方式,太阳能电池电压检测设备采集太阳能电池组件的输出电压,用以提供太阳能电池组件充电和非太阳能电池组件充电的切换信号;
所述路灯系统还包括:
太阳能电池组件,设置在灯架顶部,具有电能输出接口,用于输出太阳能电池组件将太阳能转换后的电能,电能输出接口包括输出正端和输出负端;
太阳能电池电压检测设备,设置在灯架顶部,与太阳能电池组件的电能输出接口连接,用于采集太阳能电池组件的输出电压,当输出电压大于等于预设太阳能电池组件电压阈值时,发出白天判断信号,当输出电压小于预设太阳能电池组件电压阈值时,发出黑夜判断信号;
第六防反二极管,其正端与电能输出接口的输出正端连接;
第八电容,并联在第六防反二极管的负端和电能输出接口的输出负端之间;
第四开关管,为一P沟增强型MOS管,其漏极与第六防反二极管的负端连接,其衬底与源极相连;
第七防反二极管,并联在第四开关管的源极和电能输出接口的输出负端之间;
第一电感,其一端与第四开关管的源极连接;
第九电容,并联在第一电感的另一端和电能输出接口的输出负端之间;
熔断器,其一端与第一电感的另一端连接,另一端与铅酸蓄电池的正极连接;
蓄电池电压检测设备,用于实时检测铅酸蓄电池的充电电压;
蓄电池电流检测设备,用于实时检测铅酸蓄电池的充电电流;
太阳能充电控制器,与电能输出接口、铅酸蓄电池、蓄电池电压检测设备和蓄电池电流检测设备分别连接,在检测到电能输出接口对铅酸蓄电池供电时,当接收到的充电电压小于预设蓄电池电压阈值时,采用恒流充电方式对铅酸蓄电池进行充电,当接收到的充电电压大于等于预设蓄电池电压阈值且接收到的充电电流大于等于预设蓄电池电流阈值时,采用恒压充电方式对铅酸蓄电池进行充电,当接收到的充电电压大于等于预设蓄电池电压阈值且接收到的充电电流小于预设蓄电池电流阈值时,采用浮充充电方式对铅酸蓄电池进行充电;
升力风机主结构,设置在灯架顶部,包括三个叶片、偏航设备、轮毂和传动设备;三个叶片在风通过时,由于每一个叶片的正反面的压力不等而产生升力,所述升力带动对应叶片旋转;偏航设备与三个叶片连接,用于提供三个叶片旋转的可靠性并解缆;轮毂与三个叶片连接,用于固定三个叶片,以在叶片受力后被带动进行顺时针旋转,将风能转化为低转速的动能;传动设备包括低速轴、齿轮箱、高速轴、支撑轴承、联轴器和盘式制动器,齿轮箱通过低速轴与轮毂连接,通过高速轴与风力发电机连接,用于将轮毂的低转速的动能转化为风力发电机所需要的高转速的动能,联轴器为一柔性轴,用于补偿齿轮箱输出轴和发电机转子的平行性偏差和角度误差,盘式制动器,为一液压动作的盘式制动器,用于机械刹车制动;
风力发电机,与升力风机主结构的齿轮箱连接,为一双馈异步发电机,用于将接收到的高转速的动能转化为风力电能,风力发电机包括定子绕组、转子绕组、双向背靠背IGBT电压源变流器和风力发电机输出接口,定子绕组直连风力发电机输出接口,转子绕组通过双向背靠背IGBT电压源变流器与风力发电机输出接口连接,风力发电机输出接口为三相交流输出接口,用于输出风力电能;
整流电路,与风力发电机输出接口连接,对风力发电机输出接口输出的三相交流电压进行整流以获得风力直流电压;
滤波稳压电路,与整流电路连接以对风力直流电压进行滤波稳压,以输出稳压直流电压;
第三电阻和第四电阻,串联后并联在滤波稳压电路的正负二端,第三电阻的一端连接滤波稳压电路的正端,第四电阻的一端连接滤波稳压电路的负端;
第一电容和第二电容,串联后并联在滤波稳压电路的正负二端,第一电容的一端连接滤波稳压电路的正端,第二电容的一端连接滤波稳压电路的负端,第一电容的另一端连接第一电阻的另一端,第二电容的另一端连接第二电阻的另一端;
第三电容,并联在滤波稳压电路的正负二端;
第五电阻,其一端连接滤波稳压电路的正端;
第一开关管,为一P沟增强型MOS管,其漏极与第三电阻的另一端连接,其衬底与源极相连,其源极与滤波稳压电路的负端连接;
手动卸荷电路,其两端分别与第一开关管的漏极和源极连接;
第一防反二极管,其正端与滤波稳压电路的正端连接,其负端与第一开关管的漏极连接;
第二开关管,为一P沟增强型MOS管,其漏极与滤波稳压电路的正端连接,其衬底与源极相连;
第二防反二极管,其正端与第二开关管的源极连接;
第四电容和第五电容,都并联在第二防反二极管的负端和滤波稳压电路的负端之间;
第三防反二极管,并联在第二防反二极管的负端和滤波稳压电路的负端之间;
第三开关管,为一P沟增强型MOS管,其漏极与第二防反二极管的负端连接,其衬底与源极相连;
第四防反二极管,并联在第三开关管的源极和滤波稳压电路的负端之间;
第二电感,其一端与第三开关管的源极连接;
第六电容和第七电容,都并联在第二电感的另一端和滤波稳压电路的负端之间;
第五防反二极管,并联在第二电感的另一端和滤波稳压电路的负端之间;
铅酸蓄电池,其正极与熔断器的另一端连接,其负极与电能输出接口的输出负端,同时其正极与第五防反二极管的负极连接,其负极与第五防反二极管的正极连接;
继电器,位于LED灯管和铅酸蓄电池之间,通过是否切断LED灯管和铅酸蓄电池之间的连接来控制LED灯管的打开和关闭;
光耦,位于继电器和DSP控制芯片之间,用于在DSP控制芯片的控制下,决定继电器的切断操作;
DSP控制芯片与第一开关管的栅极和第二开关管的栅极分别连接,通过在第一开关管的栅极上施加PWM控制信号,确定第一开关管的通断,以控制风力发电机输出接口对铅酸蓄电池的充电的通断,还通过在第二开关管的栅极上施加占空比可调的PWM控制信号,以控制风力发电机输出接口对铅酸蓄电池的充电电压;
其中,DSP控制芯片还与太阳能电池电压检测设备连接,当接收到黑夜判断信号,断开电能输出接口对铅酸蓄电池的充电,打通风力发电机输出接口对铅酸蓄电池的充电,当接收到白天判断信号,打通电能输出接口对铅酸蓄电池的充电,断开风力发电机输出接口对铅酸蓄电池的充电。
CN201510655558.8A 2015-10-03 2015-10-03 具有充电模式切换机制的led路灯系统 Expired - Fee Related CN105120587B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510999420.XA CN105515160A (zh) 2015-10-03 2015-10-03 具有充电模式切换机制的led路灯系统
CN201510655558.8A CN105120587B (zh) 2015-10-03 2015-10-03 具有充电模式切换机制的led路灯系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510655558.8A CN105120587B (zh) 2015-10-03 2015-10-03 具有充电模式切换机制的led路灯系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201510999420.XA Division CN105515160A (zh) 2015-10-03 2015-10-03 具有充电模式切换机制的led路灯系统

Publications (2)

Publication Number Publication Date
CN105120587A CN105120587A (zh) 2015-12-02
CN105120587B true CN105120587B (zh) 2016-06-01

Family

ID=54668406

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201510999420.XA Withdrawn CN105515160A (zh) 2015-10-03 2015-10-03 具有充电模式切换机制的led路灯系统
CN201510655558.8A Expired - Fee Related CN105120587B (zh) 2015-10-03 2015-10-03 具有充电模式切换机制的led路灯系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201510999420.XA Withdrawn CN105515160A (zh) 2015-10-03 2015-10-03 具有充电模式切换机制的led路灯系统

Country Status (1)

Country Link
CN (2) CN105515160A (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105375606A (zh) * 2015-12-08 2016-03-02 福建卓翼能源科技发展有限公司 一种风光互补供电方法和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101268423B1 (ko) * 2012-01-30 2013-07-04 한서대학교 산학협력단 태양광 가로등의 점등제어장치
CN103209522B (zh) * 2013-04-03 2016-06-01 陈青 太阳能路灯市电互补控制器及其控制方法
CN104735865A (zh) * 2015-01-27 2015-06-24 中山市索伦太阳能光电有限公司 一种线性调整太阳能路灯功率电路
CN104806962A (zh) * 2015-05-14 2015-07-29 许昌学院 一种太阳能led路灯装置及其控制方法

Also Published As

Publication number Publication date
CN105515160A (zh) 2016-04-20
CN105120587A (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
CN203352265U (zh) 风光互补发电系统
CN105090848B (zh) 自动化充电控制的太阳能led路灯
CN105120583B (zh) 昼夜充电的led杆式照明装置
CN105120587B (zh) 具有充电模式切换机制的led路灯系统
CN105114897A (zh) 一种不间断充电的led路灯的照明方法
CN105101590B (zh) 不间断充电的led路灯
CN105188227A (zh) 一种具有充电模式切换机制的led路灯系统的照明方法
CN105101588B (zh) 一种自动化充电控制的太阳能led路灯的照明方法
CN105163455A (zh) 一种智能化太阳能led路灯的照明方法
CN105228304A (zh) 一种基于环境检测进行充电的led路灯的照明方法
CN105263216A (zh) 智能型环境检测的led照明路灯
CN105163457A (zh) 一种昼夜充电的led杆式照明装置的照明方法
CN105276501B (zh) 基于环境检测进行充电的led路灯
CN105782869A (zh) 一种太阳能和风能充电的led杆式照明装置
CN105135336A (zh) 智能化太阳能led路灯
CN105162207A (zh) 基于环境检测进行充电的led立式发光装置
CN105627235A (zh) 多模式充电的led路灯
CN105716028A (zh) 兼容太阳能和风能供电模式的led杆式照明装置的工作方法
CN105517237A (zh) 无障碍充电的led路灯照明系统
CN116418016A (zh) 一种抽水蓄能耦合水力发电平抑光伏波动的山间温室系统
CN105305538A (zh) 基于环境检测进行充电的led立式发光装置的照明方法
CN105163462A (zh) 一种自动化杀虫的led太阳能路灯的照明方法
CN105226796A (zh) 一种多模式充电的led路灯的照明方法
CN105135343A (zh) 自动化杀虫的led太阳能路灯
CN105627229A (zh) 自动化充电控制的led太阳能路灯

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
CB03 Change of inventor or designer information

Inventor after: Tang Yong

Inventor before: Gao Ping

COR Change of bibliographic data
TA01 Transfer of patent application right

Effective date of registration: 20160504

Address after: 518107 Guangdong province Shenzhen Guangming New District Office of Gongming village community Guancheng Low Carbon Industrial Park building A floor area B

Applicant after: SHENZHEN WEIERSHENG PHOTOELECTRIC CO., LTD.

Address before: 255430, Qi Ling Road 6, Linzi District, Shandong, Zibo

Applicant before: Gao Ping

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160601

Termination date: 20201003

CF01 Termination of patent right due to non-payment of annual fee