CN105118692A - Method for preparing SnO2-MnO2-Fe3O4 ternary composite capacitive material - Google Patents

Method for preparing SnO2-MnO2-Fe3O4 ternary composite capacitive material Download PDF

Info

Publication number
CN105118692A
CN105118692A CN201510589123.8A CN201510589123A CN105118692A CN 105118692 A CN105118692 A CN 105118692A CN 201510589123 A CN201510589123 A CN 201510589123A CN 105118692 A CN105118692 A CN 105118692A
Authority
CN
China
Prior art keywords
mno
sno
mno2
fe3o4
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510589123.8A
Other languages
Chinese (zh)
Inventor
唐少春
朱健
王勇光
孟祥康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201510589123.8A priority Critical patent/CN105118692A/en
Publication of CN105118692A publication Critical patent/CN105118692A/en
Pending legal-status Critical Current

Links

Abstract

The invention discloses a method for preparing the spherical SnO2-MnO2-Fe3O4 ternary composite capacitive material, which solves the problem in the prior art that oxide materials are poor in electrical conductivity and low in specific surface area at the same time. According to the method, firstly, with the assistance of ultrasonic waves, Fe2+ are guided to grow at an accelerated speed to form the MnO2-Fe3O4 binary composite material of a spherical porous structure, wherein Fe3O4 nanoparticles are doped inside MnO2 microspheres. After that, an electrically conductive SnO2 nano layer grows on the surface of the MnO2-Fe3O4 binary composite material through the hydrothermal process. The electrical conductivity of the composite material is improved and the composite material is ensured to be higher in specific surface area at the same time through adjusting the cladding amount of the SnO2 nano layer. Finally, the SnO2-MnO2-Fe3O4 ternary composite capacitive material of excellent capacitive performance is prepared. In particular, the content ratio of three oxides in the composite material can be effectively controlled based on the concentrations of reactants. In addition, the method is simple in device, easy to operate, low in cost, good in reproducibility and easy in large-scale preparation.

Description

A kind of SnO 2-MnO 2-Fe 3o 4the preparation method of tri compound capacitance material
Technical field
The present invention relates to a kind of preparation method of electrode material for super capacitor, especially a kind of novel spherical SnO 2-MnO 2-Fe 3o 4the preparation method of tri compound capacitance material.MnO 2for the material of main part of whole composite balls, Fe 3o 4ball inside is entrained in, SnO with the form of nano particle 2nano particle coating layer is defined on ball surface.
Background technology
Ultracapacitor is regarded as very potential energy storage device owing to having the advantages such as fast charging and discharging, high power density and service life cycle length.The preparation of exploration excellent performance electrode material is study hotspot in recent years always.Wherein, transition metal oxide (as manganese oxide, cobalt oxide, nickel oxide, ruthenium-oxide and iron oxide etc.) is subject to extensive research because it has higher theoretical ratio capacitance.But the electric conductivity poor due to self and low specific surface area, oxide material ubiquity actual capacitance is all well below the problem of theoretical value.By in conjunction with multiple capacitance material advantage, design high-specific surface area structure and utilize the dimensional effect of nano unit and cooperative effect to be one of effective way addressed this problem.At present, the research about manganese dioxide as capacitance material is a lot, but the new electrode materials three kinds of transition metal oxides being carried out compound preparation unique seldom has report.
The present invention is with MnO 2for material of main part, carry out size, structural compound by adding other transition metal oxides with it, the dimensional effect of nanometer and micron is strengthened; There is in its superficial growth the nanometer layer of conductivity again.Under ultrasonic wave added, Fe2+ guides and accelerates growth rate thus generate the MnO of spherical porous structure 2-Fe 3o 4binary composite (Fe 3o 4mnO is entrained in the form of nano particle 2the inside of micron ball), recycling hydro thermal method, while guaranteeing spherical porous structure, carries out coated enhancing monolithic conductive at its superficial growth tin oxide nanoparticles, final obtained spherical SnO 2-MnO 2-Fe 3o 4tri compound capacitance material.Content particularly in composite material between three kinds of oxides is than controling effectively by reactant concentration.
Summary of the invention
Object of the present invention: propose a kind of novel spherical SnO 2-MnO 2-Fe 3o 4the preparation method of tri compound capacitance material.With MnO 2for material of main part, carry out size, structural compound by adding other transition metal oxides with it, the dimensional effect of nanometer and micron is strengthened; By having the nanometer layer of conductivity in its superficial growth, regulate and control while its covering amount reaches raising material conductivity and guarantee the specific area that composite material is higher.This technology solves oxide material poorly conductive and the little problem of specific surface simultaneously.This preparation method has the advantages such as reaction condition gentleness, cost be low and reproducible.
1, technical scheme of the present invention is: first prepare spherical porous Fe 3o 4-MnO 2binary composite, is dissolved into a certain amount of manganese sulfate, ammonium persulfate and ferrous sulfate successively in 50ml deionized water, in water bath with thermostatic control, carries out ultrasonic reaction, by freeze drying again after product centrifugation, repeatedly cleaning; Then SnO 2surface coating, by appropriate Fe 3o 4-MnO 2be made into suspension in ball ultrasonic disperse to deionized water, add a certain amount of butter of tin, magnetic agitation 10min, then add appropriate NaOH; Mixed liquor is proceeded in 50ml reactor, sustained response 6h at 180 DEG C; By suspended matter with the centrifugal 5min of the rotating speed of 8000r/min, repeatedly clean 3-5 time with absolute ethyl alcohol, freeze drying 12h, obtain final trielement composite material.
In sonochemistry reaction preparation process, solution system remains in 40 ~ 80 DEG C of waters bath with thermostatic control; The ultrasonic duration controls at 0.5 ~ 3h, and ultrasonic wave plays the spontaneous assembling that adds fast particle and avoids a large amount of gathering and homodisperse double action.
Preparation Fe 3o 4-MnO 2during binary composite suspension, need by ul-trasonic irradiation, make it be dispersed in water.
Optimum condition, for obtaining uniform SnO 2nanometer coating layer, gets 40ml mixed liquor and is transferred in 50ml reactor, sustained response 6h at 180 DEG C.
Product deionized water carries out cleaning-and the step of centrifugation redispersion carries out repeatedly wash cycles.
Porous Fe 3o 4-MnO 2with final SnO 2-MnO 2-Fe 3o 4tri compound product needs dry 12h in freeze drier.
Other method is compared, and the method that the present invention proposes can obtain porous, uniform trielement composite material, and component and size controlled; Without the need to any additive or template, the time is shorter, is conducive to saving preparation cost.In addition, the method device simply, easily operates, controllability is good, easily realize scale prepares fast.
Beneficial effect of the present invention:
(1) propose one and prepare SnO 2-MnO 2-Fe 3o 4the new method of tri compound capacitance material.
(2) preparation process relies on hyperacoustic double action to realize the control of spherical composite material pattern and component, simple to operate.
(3) in addition, compared with other method, this preparation method also has following particular advantages:
1. experimental provision, experiment condition and preparation process are very simple, easily operate;
2. controllability is good, by the generation and the size that regulate the concentration of reactant, reaction time and reaction temperature etc. to control product;
3. with low cost, there is good industrial applications prospect;
4. applicability is strong, extends to the controlled synthesis of other kind multi-element composite material.
Accompanying drawing explanation
Fig. 1 (a) embodiment 1 first step obtains Fe 3o 4-MnO 2the high power SEM figure of product; B () embodiment 1 obtains end product SnO 2-MnO 2-Fe 3o 4high power SEM and (c) low power SEM schemes; Each distribution diagram of element in (d) individual particle; (e) and (f) EDS collection of illustrative plates.
Fig. 2 (a) embodiment 1 first step obtains Fe 3o 4-MnO 2the TEM figure of product; B () embodiment 1 obtains end product SnO 2-MnO 2-Fe 3o 4high power TEM (c) low power TEM and (d) HRTEM picture.
The different Sn of Fig. 3 embodiment 2-5 4+(a) 0.1mM under concentration; (b) 1.0mM; C () 1.5mM obtains the energy spectrogram of product; (d) Sn 4+concentration and SnO 2-MnO 2-Fe 3o 4the graph of a relation of particle diameter; SnO in trielement composite material 2the contrast of mass fraction theory and practice value.
The ratio capacitance value of Fig. 4 (a) different Fe-Mn atomic ratio binary composite; B () embodiment 1 obtains SnO 2-MnO 2-Fe 3o 4product is scan round figure under different scanning rates; Charging and discharging curve under (c) different constant current charge-discharge; SnO in (d) trielement composite material 2mass fraction and capacitance variation graph of a relation.
Embodiment
The spherical SnO of one that the present invention proposes 2-MnO 2-Fe 3o 4the preparation method of trielement composite material, embodiment is as follows:
Embodiment 1
SnO 2-MnO 2-Fe 3o 4the preparation of trielement composite material: first prepare spherical porous Fe 3o 4-MnO 2binary composite, is dissolved into a certain amount of manganese sulfate, ammonium persulfate and ferrous sulfate successively in 50ml deionized water, in water bath with thermostatic control, carries out ultrasonic reaction, by product centrifugation, repeatedly cleaning after through freeze drying; Then SnO is carried out 2surface coating, by appropriate Fe 3o 4-MnO 2composite balls ultrasonic disperse, in deionized water, adds a certain amount of butter of tin, magnetic agitation 10min, then adds appropriate NaOH; Mixed liquor is proceeded in 50ml reactor, sustained response 6h at 180 DEG C; By suspended matter with the centrifugal 5min of the rotating speed of 8000r/min, repeatedly clean 3-5 time with absolute ethyl alcohol, freeze drying 12h, obtains end product.
Fig. 1 a is embodiment 1 first step gained Fe 3o n-MnO 2the SEM figure of binary combination product, can find out that binary composite is spherical porous structure, particle size is homogeneous.Fig. 1 b is embodiment 1 second step SnO 2product S EM figure after Surface coating, can see, binary Fe 3o 4-MnO 2porous nanometer structure by SnO 2coated.
Fig. 1 c is SnO 2-MnO 2-Fe 3o 4the low power SEM figure of trielement composite material.The pattern that product presents is spherical porous micron particles, and particle size size is homogeneous, and relatively independently between particle and particle does not reunite.
Fig. 1 d is the SnO that embodiment 1 second step obtains 2-MnO 2-Fe 3o 4the EDS energy spectrogram of trielement composite material, Mn, O element dominate, Fe, Sn element is detected equally, shows the existence of three kinds of metal oxides.In the line sweep figure of single micron ball (see Fig. 1 e), according to the linear distribution track situation of Mn, Fe, Sn tri-kinds of elements, can find out that Sn is positioned at the surface of micron ball.Fig. 1 f is the EDS-mapping figure of single micron ball, according to Mn, Fe, Sn tri-kinds of elements concrete distribution situation in spheroid, further demonstrates SnO 2be coated on the surface of micron ball.
Fig. 2 a is embodiment 1 first step gained Fe 3o 4-MnO 2binary combination product TEM schemes, and intuitively can find out that this binary composite is microns Particle size, its structure is porous spherical.Fig. 2 b-c is the SnO that embodiment 1 second step obtains 2-MnO 2-Fe 3o 4trielement composite material different amplification TEM schemes.Known SnO 2nano particle is coated on Fe 3o 4-MnO 2the surface of binary composite sphere.Fig. 2 d is the HRTEM figure of trielement composite material, according to interplanar distance size, confirms that product is by MnO 2, Fe 3o 4and SnO 2formed; Illustration is its selected area electron diffraction figure, proves that product is polycrystalline state.
Embodiment 2
Change Sn 4+concentration be 0.1mM, other conditions are identical with embodiment 1.
Embodiment 3
Change Sn 4+concentration be 1.0mM, other conditions are identical with embodiment 1.
Embodiment 4
Change Sn 4+concentration be 1.5mM, other conditions are identical with embodiment 1.
Embodiment 5
Change Sn 4+concentration be 2.0mM, other conditions are identical with embodiment 1.
Fig. 3 a-c is different Sn 4+obtained Fe under concentration 3o 4-MnO 2-SnO 2the EDS collection of illustrative plates of trielement composite material.Because nano-pore structure determines specific area, thus affect the chemical property of material, therefore SnO 2need thickness be controlled time coated, ensure porousness and the high-specific surface area of material.Fig. 3 d is Sn 4+concentration and SnO 2-MnO 2-Fe 3o 4particle diameter graph of a relation and SnO 2the comparison diagram of mass fraction theory and practice value.Can see, by changing Sn 4+concentration can control the content ratio between three kinds of oxides.
Embodiment 6
The ratio capacitance value of Fig. 4 a different Fe-Mn atomic ratio binary composite, as seen from the figure, when Fe-Mn atomic ratio is 0.075, the capacitive property of binary composite reaches and is up to 0.67F/cm 2.Select this binary composite, then by the SnO that embodiment 1 second step is obtained 2-MnO 2-Fe 3o 4the scan round figure of trielement composite material under different scanning rates (Fig. 4 b), under the sweep speed of 5mV/s, its capacitance reaches 1.12F/cm 2.Can be found out by the symmetry of trielement composite material charging and discharging curve (Fig. 4 c) under different constant current, resulting materials shows good discharge and recharge behavior.Along with SnO 2the change of content, ratio capacitance also there occurs the trend first increasing and reduce afterwards.Work as SnO 2when mass fraction is 5.3%, ternary SnO 2-MnO 2-Fe 3o 4the ratio capacitance of composite material reaches maximum, as shown in figure 4d.

Claims (6)

1. a SnO 2-MnO 2-Fe 3o 4the preparation method of tri compound capacitance material, is characterized in that, process in two steps (1) first prepares spherical porous Fe 3o 4-MnO 2: a certain amount of manganese sulfate, ammonium persulfate and ferrous sulfate are dissolved into successively in 50ml deionized water, in water bath with thermostatic control, carry out ultrasonic reaction, by product centrifugation, repeatedly clean postlyophilization; (2) SnO 2surface coating: by appropriate Fe 3o 4-MnO 2be made into suspension in composite balls ultrasonic disperse to deionized water, then add a certain amount of butter of tin, magnetic agitation 10min, then add appropriate NaOH; Mixed liquor is proceeded in 50ml reactor, sustained response 6h at 180 DEG C; By suspended matter with the centrifugal 5min of the rotating speed of 8000r/min, repeatedly clean 3-5 time with absolute ethyl alcohol, freeze drying 12h, obtains end product.
2. preparation method according to claim 1, is characterized in that, prepares spherical porous Fe 3o 4-MnO 2optimal parameter be: its concentration of the solution that manganese sulfate and ammonium persulfate are made into all controls between 0.05 ~ 0.25M, and the concentration of ferrous sulfate controls at 0.5 ~ 2.5mM, 40 ~ 80 DEG C of waters bath with thermostatic control, and ultrasonic time is 0.5 ~ 3h.
3. preparation method according to claim 1, is characterized in that, SnO 2surface coated optimal parameter is: Fe 3o 4-MnO 2the concentration range of suspended particulate is 0.2 ~ 1.5g/l's, and butter of tin concentration range is the concentration range of 0.1 ~ 1.5mM, NaOH is 0.5 ~ 5.0mM.
4. preparation method according to claim 1, is characterized in that, is transferred to by the mixed reaction solution of 40ml in 50ml hydrothermal reaction kettle, sustained response 6h at 180 DEG C.
5. preparation method according to claim 1, is characterized in that, porous Fe 3o 4-MnO 2with final SnO 2-MnO 2-Fe 3o 4tri compound product, all after centrifugation, is placed in the dry 12h of freeze drier.
6. preparation method according to claim 1, is characterized in that, obtained SnO 2-MnO 2-Fe 3o 4in trielement composite material, MnO 2for the material of main part of whole composite balls, Fe 3o 4ball inside is entrained in, SnO with the form of nano particle 2nano particle coating layer is defined on ball surface; Content between three kinds of oxides is than controling effectively by reactant concentration.
CN201510589123.8A 2015-09-14 2015-09-14 Method for preparing SnO2-MnO2-Fe3O4 ternary composite capacitive material Pending CN105118692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510589123.8A CN105118692A (en) 2015-09-14 2015-09-14 Method for preparing SnO2-MnO2-Fe3O4 ternary composite capacitive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510589123.8A CN105118692A (en) 2015-09-14 2015-09-14 Method for preparing SnO2-MnO2-Fe3O4 ternary composite capacitive material

Publications (1)

Publication Number Publication Date
CN105118692A true CN105118692A (en) 2015-12-02

Family

ID=54666647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510589123.8A Pending CN105118692A (en) 2015-09-14 2015-09-14 Method for preparing SnO2-MnO2-Fe3O4 ternary composite capacitive material

Country Status (1)

Country Link
CN (1) CN105118692A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914358A (en) * 2016-06-24 2016-08-31 扬州大学 Preparation method of yolk-eggshell structured nitrogen-doped carbon-coated Fe3O4@SnO2 magnetic nanometer box
CN106298272A (en) * 2016-10-28 2017-01-04 南京工程学院 A kind of electrochemical capacitance metal ion mixing flower-shaped MnO2 nanometer sheet and preparation method thereof
CN114639799A (en) * 2022-03-28 2022-06-17 广东技术师范大学 Composite electrode for all-solid-state metal lithium battery and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102646817A (en) * 2011-02-16 2012-08-22 中国科学院金属研究所 Graphene/metal oxide composite cathode material for lithium ion battery and preparation
CN103213966A (en) * 2013-04-17 2013-07-24 天津大学 Carbon nano tube freeze drying body/metal oxide compound
CN103270565A (en) * 2010-12-21 2013-08-28 国立大学法人东北大学 Nanoporous ceramic composite metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103270565A (en) * 2010-12-21 2013-08-28 国立大学法人东北大学 Nanoporous ceramic composite metal
CN102646817A (en) * 2011-02-16 2012-08-22 中国科学院金属研究所 Graphene/metal oxide composite cathode material for lithium ion battery and preparation
CN103213966A (en) * 2013-04-17 2013-07-24 天津大学 Carbon nano tube freeze drying body/metal oxide compound

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAO XIE等: "Hierarchically Porous MnO2 Microspheres Doped with Homogeneously Distributed Fe3O4 Nanoparticles for Supercapacitors", 《ACS APPLIED MATERIALS&INTERFACES》 *
SASCHA VONGEHR等: "Optimized spherical manganese oxideferroferric oxide-tin oxide ternary composites as advanced electrode materials for supercapacitors", 《NANOTECHNOLOGY》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914358A (en) * 2016-06-24 2016-08-31 扬州大学 Preparation method of yolk-eggshell structured nitrogen-doped carbon-coated Fe3O4@SnO2 magnetic nanometer box
CN106298272A (en) * 2016-10-28 2017-01-04 南京工程学院 A kind of electrochemical capacitance metal ion mixing flower-shaped MnO2 nanometer sheet and preparation method thereof
CN114639799A (en) * 2022-03-28 2022-06-17 广东技术师范大学 Composite electrode for all-solid-state metal lithium battery and preparation method thereof

Similar Documents

Publication Publication Date Title
Zhang et al. Influence of metallic oxide on the morphology and enhanced supercapacitive performance of NiMoO4 electrode material
CN104835654B (en) A kind of three-dimensional nitrogen-doped graphene/molybendum disulfide complexes and preparation method thereof
Liu et al. Porous oxygen-doped NiCoP nanoneedles for high performance hybrid supercapacitor
CN106340398A (en) Method for preparing composite nickel-cobalt hydroxide and molybdenum oxide material for supercapacitor electrode material
CN105118691B (en) Nickel foam supports ferrous sub-micron tube electrode material of cobalt acid and preparation method thereof
CN105185606A (en) Preparation method of novel cobaltous dihydroxycarbonate-nitrogen-doped graphene combined electrode material
CN105244192A (en) Magnesium cobaltite porous nanowire array/ nickel foam composite electrode material preparation method
CN106971855A (en) A kind of nickel ferrite based magnetic loaded nanoparticle electrode material and preparation method and purposes
CN105118692A (en) Method for preparing SnO2-MnO2-Fe3O4 ternary composite capacitive material
He et al. Binder-free MgCo2O4@ Ni3S2 core-shell-like composites as advanced battery materials for asymmetric supercapacitors
CN105321726B (en) High magnification active carbon/Activated Graphite alkene combination electrode material and preparation method thereof
CN105977501A (en) High-performance oxygen reduction MnO2-Mn3O4/carbon nanotube composite catalyst and preparation method and application thereof
CN105895387A (en) Spherical porous Fe3O4/MnO2 supercapacitor material and preparation method thereof
CN105449230A (en) LaCoO3/N-rGO compound and preparation method and application method therefor
Pan et al. Application of transition metal (Ni, Co and Zn) oxides based electrode materials for ion-batteries and supercapacitors
CN111268745A (en) NiMoO4@Co3O4Core-shell nano composite material, preparation method and application
CN110079846A (en) Nickelous selenide with different-shape/nickel base electrode material electro-deposition preparation method
KR101772755B1 (en) Reduced graphene oxide/carbon nanotube/manganese dioxide composite for supercapacitor electrode materials, and preparation method thereof
CN106683896A (en) Preparation method and application of core-shell-structured nickel molybdate/manganese dioxide composite material
CN108389733B (en) Preparation method of cobalt molybdate/foamed nickel composite film
CN109712816A (en) A kind of nickel cobalt hydroxide/molybdenum trioxide core-shell nano rod array material and its preparation method and application
Zhou et al. Hierarchically porous core-shell microspheres assembled from Mn2O3/TiO2 nanoparticles for enhanced lithium storage
CN107068415A (en) The preparation and application of a kind of sour nickel composite material of core shell structure nickel molybdate@cobalts
CN106449139A (en) Co3O4@PEDOT porous nanorod material with core-shell structure and preparation method of Co3O4@PEDOT porous nanorod material
CN106423177A (en) Surface-graphitized micro-diamond loaded perovskite composite and preparation method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151202

RJ01 Rejection of invention patent application after publication