CN105095551A - 面向soi工艺的供电电源电压的系统级优化方法 - Google Patents

面向soi工艺的供电电源电压的系统级优化方法 Download PDF

Info

Publication number
CN105095551A
CN105095551A CN201410216649.7A CN201410216649A CN105095551A CN 105095551 A CN105095551 A CN 105095551A CN 201410216649 A CN201410216649 A CN 201410216649A CN 105095551 A CN105095551 A CN 105095551A
Authority
CN
China
Prior art keywords
supply voltage
power consumption
optimization method
power supply
soi technology
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410216649.7A
Other languages
English (en)
Inventor
张炯
蒋乐乐
徐帆
程玉华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Research Institute of Microelectronics of Peking University
Original Assignee
Shanghai Research Institute of Microelectronics of Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Research Institute of Microelectronics of Peking University filed Critical Shanghai Research Institute of Microelectronics of Peking University
Priority to CN201410216649.7A priority Critical patent/CN105095551A/zh
Publication of CN105095551A publication Critical patent/CN105095551A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明提出了一种面向SOI工艺的供电电源电压的系统级优化方法,对基于SOI工艺的电路芯片在早期设计阶段进行考虑热效应的供电电源电压的优化设计,其主要步骤包括:芯片热模型的建立;芯片总功耗模型的建立;功耗关于和温度作为自变量的函数表达式;经由热模型建立与的自相关方程;建立温度意识的时延模型;定义有关时延与功耗的优化函数FOM;通过计算FOM的最小值从而求得的最优值。本发明的有益成果是,考虑了温度对SOI工艺下的芯片的功耗和电路性能的影响,在此基础上,对电源供电电压进行系统级的优化以最大化电路性能及最小化电路功耗。该优化方法的价值是尽可能早地以定量方式看到优化结果,以助于设计者的初期架构。

Description

面向SOI工艺的供电电源电压的系统级优化方法
技术领域
本发明涉及集成电路计算机辅助设计技术领域,具体为SOI工艺下供电电源电压的系统级优化方法。
背景技术
随着超大规模集成电路特征尺寸逐步缩小到先进纳米工艺节点,体硅技术在材料、器件结构以及制造工艺等方面出现了一系列新问题。为了克服体硅CMOS工艺的不足,SOI技术被提出,并逐渐成为制造高速、低功耗和高集成度的超大规模集成电路的主流技术。
尽管SOI技术有着许多体硅技术不可比拟的优越性,但由于SOI技术的主要特点来自于全介质隔离(SOICMOS器件在衬底和有源区间还包含一层以SiO2为材料的绝缘氧化埋层),而这种介质的热传导率通常比硅小两个数量级,直接阻挡了热量向衬底的传导,顶层有源区内产生的热量不能及时有效地传递出去,因而会导致SOI器件产生严重的直流自加热效应,升高了芯片的温度。
温度的升高会导致元器件(器件和互连)特性的变化,削弱电路性能(时延)并产生可靠性问题。由于温度来自于功耗,降低SOI器件自热温度的有效方法是减少器件的功耗。功耗包括静态功耗和动态功耗两部分。对于SOI工艺,其静态功耗很小,主要的功耗来自于动态功耗。由于动态功耗和电源供电电压的平方成正比,因此降低能明显减小功耗,缓解自热效应。此外,由于整个芯片将近40%的功耗来自于时钟线路插入的缓冲器(反相器)功耗,的降低也能减少缓冲器的最佳插入数目,从而减少器件功耗,降低芯片的温度。
然而,的降低会直接导致电路性能地减弱。但由于降低能导致芯片温度的下降,间接地改善电路性能,能一定程度地补偿其对电路性能产生的直接负作用。因此,如何确定电源电压的最优值,以致对于SOI工艺下的芯片能够尽量降低温度,从而降低功耗,同时又能最大化电路性能,是电路设计者需要考虑的关键问题。
电源电压乃至功耗,时延的估算可在设计流程的各个阶段进行,系统级的优化方法在设计早期进行,其价值是尽可能早地以定量方式看到优化结果,以助于设计者的初期架构。
基于以上背景,本发明提出一种面向SOI工艺的电源电压系统级优化方法。
发明内容
为了降低SOI工艺下芯片的温度同时最大化芯片的电路性能,本发明提出了面向SOI工艺的电源电压系统级优化方法,具体技术方案如下:
一种SOI工艺下电源电压系统级优化方法,其特征在于,包括如下步骤:
(1)建立芯片热模型:(公式1);
(2)建立芯片温度与总功耗的函数关系
(公式2),
其中是封装热系数,是氧化埋层热系数,为总功耗。对于确定的封装和SOI工艺为可预估的定值。
(3)预估总功耗的某一比例(%)为连线插入缓冲器所消耗的功率,通常,缓冲器功耗能占到总功耗的40%甚至更高。
(4)确立为了最小化一根互连线的时延所需的最优缓冲器间距和尺寸的解析模型,该模型应为最小尺寸器件输出电阻,互连线单位长度电阻和电容的函数(公式4)
(5)确立与电源电压的函数关系:
(6)给出互连线的温度模型
(7)建立一个缓冲器的动态功耗模型
(公式5),
将步骤(5)(6)中的数学模型代入。
(8)给出总的缓冲器功耗模型(公式6),并根据步骤(3)的假定,确立芯片总功耗的解析表达式
(9)将代入公式2所示的温度方程。建立的自相关方程。
(10)结合步骤(4)-(6),确立有最优缓冲器插入的考虑温度影响的时延的解析模型
(11)定义,计算FOM的最小值,以此求得最优的
本发明的有益成果是,考虑了温度对SOI工艺下的芯片的功耗和电路性能的影响,在此基础上,对电源供电电压进行系统级的优化以最大化电路性能及最小化电路功耗。该优化方法的价值是尽可能早地以定量方式看到优化结果,以助于设计者的初期架构。
附图说明
图1是本发明实施例提出的方法流程图;
图2是本发明实施例的一个SOI芯片热模型示意图;
图3是本发明实施例的一个5阶环形振荡器电路示意图。
具体实施方式
下面结合附图与具体实施方式对本发明的技术方案做进一步的说明。
图1为本发明实施例提出的面向SOI工艺的供电电源电压系统级优化方法的流程图,结合该图,本发明实施例具体的步骤如下:
(1)建立如图2所示的芯片热模型:
可由采用同样封装的具体芯片的衬底温度和总功耗估计。
,其中为氧化埋层的厚度,是氧化埋层的热传导率,A是晶体管产生功耗的面积。
(2)定义
(3)定义的解析模型
(4)用SPICE不同的的偏置条件下,模拟一个如图3所示的5阶环形振荡器的时延。改变两个反相器之间的连线长度和反相器的大小以获得最小的时延。再通过反推出
(5)利用Matlab软件的拟合工具通过曲线拟合给出:
(6)定义互连线电阻的温度方程是线厚度,
(7)将步骤(4)(5)中的数学模型代入到缓冲器动态功耗模型,给出,其中,其中L是芯片的边长,W,S是互连线线宽与间距,G是互连层数。
(8)由此得到总功耗关于的函数表达式:
(9)将代入温度方程。建立的自相关方程,并利用Matlab数值求解
(10)定义有最优缓冲器插入方式下的每单位长度时延
(11)定义,采用Matlab软件计算FOM的最小值,以此求得最优的
上述实施例只为对本发明的内容做一个详细的说明,其目的在于让本领域的技术人员熟悉本发明的具体内容并据以实施。凡未脱离本发明的精神实质所做的任何等效变化或修饰,都应属于本发明的保护范围之内。

Claims (10)

1.面向SOI工艺的供电电源电压的系统级优化方法,其特征在于,包括以下步骤:
(1)建立芯片热模型(公式1);
(2)建立芯片温度与总功耗的函数关系(公式2),其中是封装热系数,是氧化埋层热系数,为总功耗;
(3)预估总功耗的的某一比例(%)为连线插入缓冲器所消耗的功率
(4)确立为了最小化一根互连线的时延所需的最优缓冲器间距和尺寸的解析模型,该模型应为最小尺寸器件输出电阻,互连线单位长度电阻和电容的函数(公式4)
(5)确立与电源电压的函数关系
(6)给出互连线的温度模型
(7)建立一个缓冲器的动态功耗模型(公式5),并将步骤(5)(6)中的数学模型代入;
(8)给出总的缓冲器功耗模型(公式6),并根据步骤(3)的假定,确立芯片总功耗的解析表达式
(9)将代入公式2所示的温度方程;
建立与的自相关方程;
(10)结合步骤(4)-(6),确立有最优缓冲器插入的考虑温度影响的时延的解析模型
(11)定义,计算FOM的最小值,以此求得最优的。
2.如权利要求1所述的SOI工艺下供电电源电压的系统级优化方法,其特征在于,步骤(1)中的热模型包含由于SOI工艺独有的氧化埋层所产生的自热温度
3.如权利要求1所述的SOI工艺下供电电源电压的系统级优化方法,其特征在于,步骤(2)中的,对于确定的封装和SOI工艺为可预估的定值。
4.如权利要求3所述的SOI工艺下供电电源电压的系统级优化方法,其特征在于,的值与SOI工艺无关,可由不考虑自热温度时的芯片温度和总功耗计算;可由(公式3)估算,其中,为氧化埋层的厚度,是氧化埋层的热传导率,A是晶体管产生功耗的面积。
5.如权利要求1所述的SOI工艺下供电电源电压的系统级优化方法,其特征在于,步骤(3)中的缓冲器功耗占总功耗的比率被事先给定,并在之后保持不变。
6.如权利要求1所述的SOI工艺下供电电源电压的系统级优化方法,其特征在于,步骤(5)中公式(3)的建立可采用SPICE仿真和曲线拟合技术。
7.如权利要求6所述的SOI工艺下供电电源电压的系统级优化方法,其特征在于,用SPICE仿真提取器件是通过SPICE在不同的和T的偏置条件下,模拟一个多门的环形振荡器的时延;改变两个反相器之间的连线长度和反相器的大小以获得最小的时延;再通过公式(4)反推出
8.如权利要求1所述的SOI工艺下供电电源电压的系统级优化方法,其特征在于,步骤(7)中建立起功耗和电源电压与温度的函数解析表达式。
9.如权利要求1所述的SOI工艺下供电电源电压的系统级优化方法,其特征在于,步骤(9)需采用数值迭代算法计算温度有关的非线性方程。
10.如权利要求1所述的SOI工艺下供电电源电压的系统级优化方法,其特征在于,步骤(9)中对于一个给定的,可以计算出相应的T。
CN201410216649.7A 2014-05-22 2014-05-22 面向soi工艺的供电电源电压的系统级优化方法 Pending CN105095551A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410216649.7A CN105095551A (zh) 2014-05-22 2014-05-22 面向soi工艺的供电电源电压的系统级优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410216649.7A CN105095551A (zh) 2014-05-22 2014-05-22 面向soi工艺的供电电源电压的系统级优化方法

Publications (1)

Publication Number Publication Date
CN105095551A true CN105095551A (zh) 2015-11-25

Family

ID=54575983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410216649.7A Pending CN105095551A (zh) 2014-05-22 2014-05-22 面向soi工艺的供电电源电压的系统级优化方法

Country Status (1)

Country Link
CN (1) CN105095551A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1450649A (zh) * 2002-03-26 2003-10-22 夏普公司 半导体器件及其制法、soi衬底及其制法和其显示器件
CN101241523A (zh) * 2008-03-10 2008-08-13 清华大学 全芯片互连线功耗最优的布局阶段缓冲器规划方法
CN102243675A (zh) * 2011-07-08 2011-11-16 西安电子科技大学 解析计算耦合互连功耗的方法
CN102262213A (zh) * 2011-04-22 2011-11-30 上海北京大学微电子研究院 测试高压环境对标准单元库影响的方法
CN102708219A (zh) * 2011-12-13 2012-10-03 西安交通大学 预测深亚微米集成电路互连线全开路缺陷电压值的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1450649A (zh) * 2002-03-26 2003-10-22 夏普公司 半导体器件及其制法、soi衬底及其制法和其显示器件
CN101241523A (zh) * 2008-03-10 2008-08-13 清华大学 全芯片互连线功耗最优的布局阶段缓冲器规划方法
CN102262213A (zh) * 2011-04-22 2011-11-30 上海北京大学微电子研究院 测试高压环境对标准单元库影响的方法
CN102243675A (zh) * 2011-07-08 2011-11-16 西安电子科技大学 解析计算耦合互连功耗的方法
CN102708219A (zh) * 2011-12-13 2012-10-03 西安交通大学 预测深亚微米集成电路互连线全开路缺陷电压值的方法

Similar Documents

Publication Publication Date Title
CN102314525B (zh) 一种低功耗电路设计优化方法
US8977998B1 (en) Timing analysis with end-of-life pessimism removal
Seomun et al. Synthesis of active-mode power-gating circuits
Sarangi et al. Lightsim: A leakage aware ultrafast temperature simulator
Verma et al. More precise FPGA power estimation and validation tool (FPEV_Tool) for low power applications
Košel et al. FEM simulation approach to investigate electro-thermal behavior of power transistors in 3-D
CN105069258A (zh) 一种芯片设计可靠性的评估方法及装置
Sassone et al. Investigating the effects of inverted temperature dependence (ITD) on clock distribution networks
Khaleghi et al. Thermal-aware design and flow for fpga performance improvement
CN105046014B (zh) 一种基于ams的异步时序电路设计方法
CN105095551A (zh) 面向soi工艺的供电电源电压的系统级优化方法
Gillon et al. Practical chip-centric electro-thermal simulations
Wang et al. Decoupling capacitor topologies for TSV-based 3-D ICs with power gating
Siozios et al. A novel methodology for temperature-aware placement and routing of fpgas
Hänninen et al. Design and fabrication of a microprocessor using adiabatic CMOS and Bennett clocking
Abbas et al. Sizing and optimization of low power process variation aware standard cells
Azoui et al. Dynamic compact thermal model for electrothermal modeling and design optimization of automotive power devices
Tripathi et al. Performance evaluation of low power carry save adder for vlsi applications
Fan et al. An algorithm for reducing leakage power based on dual-threshold voltage technique
Li Critical path analysis considering temperature, power supply variations and temperature induced leakage
Feng et al. Fast thermal simulation of integrated systems using alternating-direction-implicit method
Kim et al. Wakeup scheduling and its buffered tree synthesis for power gating circuits
Veirano et al. Optimal asymmetrical back plane biasing for energy efficient digital circuits in 28 nm UTBB FD-SOI
Ghasemazar et al. A mathematical solution to power optimal pipeline design by utilizing soft edge flip-flops
Goyal Characterizing processors for time and energy optimization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151125

WD01 Invention patent application deemed withdrawn after publication