CN105094135A - 一种分布式多机器人地图融合系统及融合方法 - Google Patents

一种分布式多机器人地图融合系统及融合方法 Download PDF

Info

Publication number
CN105094135A
CN105094135A CN201510559668.4A CN201510559668A CN105094135A CN 105094135 A CN105094135 A CN 105094135A CN 201510559668 A CN201510559668 A CN 201510559668A CN 105094135 A CN105094135 A CN 105094135A
Authority
CN
China
Prior art keywords
map
robot
distributed
straight line
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510559668.4A
Other languages
English (en)
Inventor
张漠鑫
陈年生
姜梦晓
黄桢宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Dianji University
Original Assignee
Shanghai Dianji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Dianji University filed Critical Shanghai Dianji University
Priority to CN201510559668.4A priority Critical patent/CN105094135A/zh
Publication of CN105094135A publication Critical patent/CN105094135A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明提供一种分布式多机器人地图融合方法,括:机器人遇到障碍物,通过其安装的红外线探测器扫描出障碍物得到离散的点,通过所述离散的点获得由离散的点组成的直线;根据所述由离散的点组成的直线判断多条直线情况;将所述多条直线进行集中式融合;机器人之间根据分布式融合策略,转化地图,统一坐标并通过一显示界面来显示地图融合的结果。本发明将现有的无线传感技术与多机器人协同控制技术相结合,通过多机器人地图构建系统,针对于无全局定位和无初始位置信息的应用场景,利用数据融合的方式实现地图的转化与拼接,为系统外部的用户提供确完整的地图信息。

Description

一种分布式多机器人地图融合系统及融合方法
技术领域
本发明涉及机械技术领域,特别涉及一种分布式多机器人地图融合系统及融合方法。
背景技术
分布式人工智能是人工智能领域中一个重要的研究方向,而多Agent系统(multi-Agentsystem,MAS)则是其一个主要的分支。20世纪90年代,随着计算机技术、网络技术、通信技术的飞速发展,Agent及MAS的相关研究已经成为控制领域的一个新兴的研究方向。由于Agent体现了人类的社会智能,具有很强的自治性和适应性,因此,越来越多的研究人员开始关注对其理论及应用方面的研究。目前,人们已经将MAS的相关技术应用到交通控制电子商务、多机器人系统、军事等诸多领域。而在MAS中,Agent之间如何在复杂环境中相互协调,共同完成任务则成为这些应用的重要前提。近年来,从控制的角度对MAS进行分析与研究已经成为国内外众多学术机构的关注热点,人们在MAS协同控制问题上做了大量的研究工作,特别是在MAS群集运动控制和协同控制一致性问题方面取得了很大的进展。
现有的分布式多机器人协同技术是将多个机器人通过一个上位机终端进行监视操作,一旦作为监视器的上位机发生故障或传输介质发生故障,机器人将失去行动能力,只能原地等待上位机发出命令。这样的机制将会使得机器人的工作效率变低,一旦发生险情上位机无法控制机器人做有效的规避动作。
此外,现有的技术是对已知的环境进行检测,事先对即将探索的环境进行划分,将各个机器人划分如已确定的位置,从而达到对环境的检测,此种做法无法对位置环境经行有效的探索。
发明内容
为解决上述技术问题,本发明提供一种分布式多机器人地图融合系统,其特征在于,包括:多个机器人,所述多个机器人均具有红外线探测器和无线通讯模块;机器人间通过无线通讯模块进行数据传输。
进一步的,在所述的分布式多机器人地图融合系统中,所述无线通讯模块是Zigbee传输模块。
进一步的,在所述的分布式多机器人地图融合系统中,所述多个机器人还均具有光传感器和温度传感器。
相应的,本发明还提供一种分布式多机器人地图融合方法,使用所述的分布式多机器人地图融合系统,包括:
机器人遇到障碍物,通过其安装的红外线探测器扫描出障碍物得到离散的点,通过所述离散的点获得由离散的点组成的直线;
根据所述由离散的点组成的直线判断多条直线情况;
将所述多条直线进行集中式融合;
机器人之间根据分布式融合策略,转化地图,统一坐标并通过一显示界面来显示地图融合的结果。
进一步的,在所述的分布式多机器人地图融合方法中,根据所述离散的点通过最小二乘法获得由离散的点组成的直线。
进一步的,在所述的分布式多机器人地图融合方法中,所述多条直线情况包括平行直线情况和/或交叉直线情况。
进一步的,在所述的分布式多机器人地图融合方法中,多条直线间的夹角范围∈(0,π)。
进一步的,在所述的分布式多机器人地图融合方法中,在将所述多条直线进行集中式融合的步骤中,采用顺序结构的融合模式将所述多条直线进行集中式融合。
本发明提供的分布式多机器人地图融合系统及融合方法,具有以下有益效果:本发明将现有的无线传感技术与多机器人协同控制技术相结合,通过多机器人地图构建系统,针对于无全局定位和无初始位置信息的应用场景,利用数据融合的方式实现地图的转化与拼接,为系统外部的用户提供确完整的地图信息。
附图说明
图1是本发明实施例的分布式多机器人地图融合方法构成直线路径示意图;
图2是本发明实施例的分布式多机器人地图融合方法的假想探索图;
图3是本发明实施例的分布式多机器人地图融合方法的多种直线情况图;
图4-5是本发明实施例的分布式多机器人地图融合方法的直线夹角示意图;
图6是本发明实施例的分布式多机器人地图融合方法的融合示意图;
图7是本发明实施例的分布式多机器人地图融合系统功能结构示意图。
具体实施方式
以下结合附图和具体实施例对本发明提出的分布式多机器人地图融合系统及融合方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明提供一种分布式多机器人地图融合系统,包括:多个机器人,所述多个机器人均具有红外线探测器和无线通讯模块;机器人间通过无线通讯模块进行数据传输。在本实施例中,所述无线通讯模块是Zigbee传输模块。进一步的,所述多个机器人还均具有光传感器和温度传感器。
相应的,本发明还提供一种分布式多机器人地图融合方法,采用上述的分布式多机器人地图融合系统,具体包括以下步骤:
步骤一:
本发明实现采用几何匹配机制,在机器人遇到障碍物时,通过其安装的红外线可以直接扫描出周围的障碍物,并用线段描绘在自身维护的局部地图上。而安装红外等传统传感器的机器人,首先得到的是点阵图,需要通过一些技术转化为几何地图。
如图1所示,机器人将所探测到的离散的点,利用最小二乘法(y=ax+b)获得直线环境,即可描绘出图1所示直线。
步骤二:
由于无全局坐标系的机器人探索系统总会出现或多或少的探索区域重叠现象,而利用图形匹配的方式实现地图融合,关键就在于寻找公共区域内的相同障碍物特征值信息。
如图2所示,图2为假想探索图。如图3所示,图3位多种直线情况图。其中,图3A是第一平行直线情况,图3B是第一交叉直线情况,图3C是第二平行直线情况,图3D是第二交叉直线情况。
如图4和图5所示,线的相交或平行式两条直线之间角度的变化,一个夹角α由两条边和一个交点组成,为了便于融合计算,我们定义α∈(0,π)而且若一条边l1逆时针旋转π以内的角度就能与另一条边l2重合。凡是符合上面两个条件的夹角都可以作为参照物的候选角。
步骤三:
本发明采用顺序结构的融合模式。如图6所示,后续的局部地图P3将会和P(2,1)融合为P(1,2,3),这一过程一直持续到P(1,2,3……n)形成。为了融合n个子地图,顺序结构需要进行n-1次地图合并。
步骤四:
当机器人拥有分配给它的地图后,利用半径R来模拟Zigbee通讯距离,机器人之间根据分布式融合策略,转化地图,统一坐标。最后通过一个虚拟的显示界面来显示地图融合的结果,机器人群体内坐标统一的情况。
如图7所示,系统由一个控制单元调度各功能模块,当系统启动后,软件分两种方式加载原地图,也就是待探索的结构化环境。一种方式是用户手绘新地图:通过调用Qt自带的绘图函数,拖拽鼠标生成点、线、面等几何图形,用户可以根据实验需求搭建不同种类的地图。另一种方式是从文件中调出已有的地图,目的是为了在同一环境下多次测量数据。不管是哪种操作,产生的修改都将保存到文件中,作为历史数据供以后参考使用。原地图被分割后,控制单元用单链表存储各个子地图中的线段信息,并这些线段信息传送给不同的机器人对象,各机器人对象调用随机函数对线段信息进行旋转、平移。这一过程模拟了机器人在以自身为坐标原点建立的坐标系下探索环境得到的局部地图。
在原地图的切割过程中,鼠标点击地图,Qt截获鼠标坐标点作为机器人在子地图中的坐标点。这一过程模拟了机器人利用测程法,记录步长,监控自身在子地图中的位置。最后通过分布式地图融合实现地图的拼接,坐标的统一,冗余信息的裁剪,最后显示在结果地图显示区域内。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (8)

1.一种分布式多机器人地图融合系统,其特征在于,包括:多个机器人,所述多个机器人均具有红外线探测器和无线通讯模块;机器人间通过无线通讯模块进行数据传输。
2.如权利要求1所述的分布式多机器人地图融合系统,其特征在于,所述无线通讯模块是Zigbee传输模块。
3.如权利要求1所述的分布式多机器人地图融合系统,其特征在于,所述多个机器人还均具有光传感器和温度传感器。
4.一种分布式多机器人地图融合方法,使用如权利要求1-3中任一所述的分布式多机器人地图融合系统,其特征在于,包括:
机器人遇到障碍物,通过其安装的红外线探测器扫描出障碍物得到离散的点,通过所述离散的点获得由离散的点组成的直线;
根据所述由离散的点组成的直线判断多条直线情况;
将所述多条直线进行集中式融合;
机器人之间根据分布式融合策略,转化地图,统一坐标并通过一显示界面来显示地图融合的结果。
5.如权利要求4所述的分布式多机器人地图融合方法,其特征在于,根据所述离散的点通过最小二乘法获得由离散的点组成的直线。
6.如权利要求4所述的分布式多机器人地图融合方法,其特征在于,所述多条直线情况包括平行直线情况和/或交叉直线情况。
7.如权利要求6述的分布式多机器人地图融合方法,其特征在于,多条直线间的夹角范围∈(0,π)。
8.如权利要求4所述的分布式多机器人地图融合方法,其特征在于,在将所述多条直线进行集中式融合的步骤中,采用顺序结构的融合模式将所述多条直线进行集中式融合。
CN201510559668.4A 2015-09-03 2015-09-03 一种分布式多机器人地图融合系统及融合方法 Pending CN105094135A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510559668.4A CN105094135A (zh) 2015-09-03 2015-09-03 一种分布式多机器人地图融合系统及融合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510559668.4A CN105094135A (zh) 2015-09-03 2015-09-03 一种分布式多机器人地图融合系统及融合方法

Publications (1)

Publication Number Publication Date
CN105094135A true CN105094135A (zh) 2015-11-25

Family

ID=54574808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510559668.4A Pending CN105094135A (zh) 2015-09-03 2015-09-03 一种分布式多机器人地图融合系统及融合方法

Country Status (1)

Country Link
CN (1) CN105094135A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553017A (zh) * 2015-12-31 2016-05-04 小米科技有限责任公司 机器人充电系统
CN108398945A (zh) * 2018-01-17 2018-08-14 上海思岚科技有限公司 一种用于移动机器人执行任务的方法及设备
CN110398967A (zh) * 2019-07-24 2019-11-01 西安电子科技大学 一种采用离散化方法的多机器人协同轨迹信息处理方法
CN111080703A (zh) * 2019-12-31 2020-04-28 芜湖哈特机器人产业技术研究院有限公司 基于直线匹配的移动机器人重定位方法
CN111813102A (zh) * 2020-06-06 2020-10-23 浙江中力机械有限公司 一种分布式自主机器人环境地图构建方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944240A (zh) * 2010-08-20 2011-01-12 浙江大学 多机器人三维几何地图的融合方法
EP2410395A2 (en) * 2010-07-21 2012-01-25 Palo Alto Research Center Incorporated System and method for real-time mapping of an indoor environment using mobile robots with limited sensing
KR20130134986A (ko) * 2012-05-30 2013-12-10 서울대학교산학협력단 사용자로부터 환경에 대한 사진 입력을 받는 이동로봇의 slam 시스템 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2410395A2 (en) * 2010-07-21 2012-01-25 Palo Alto Research Center Incorporated System and method for real-time mapping of an indoor environment using mobile robots with limited sensing
CN101944240A (zh) * 2010-08-20 2011-01-12 浙江大学 多机器人三维几何地图的融合方法
KR20130134986A (ko) * 2012-05-30 2013-12-10 서울대학교산학협력단 사용자로부터 환경에 대한 사진 입력을 받는 이동로봇의 slam 시스템 및 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
喻焰: ""多机器人探索环境下的分布式地图融合研究"", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553017A (zh) * 2015-12-31 2016-05-04 小米科技有限责任公司 机器人充电系统
CN108398945A (zh) * 2018-01-17 2018-08-14 上海思岚科技有限公司 一种用于移动机器人执行任务的方法及设备
CN110398967A (zh) * 2019-07-24 2019-11-01 西安电子科技大学 一种采用离散化方法的多机器人协同轨迹信息处理方法
CN110398967B (zh) * 2019-07-24 2021-07-16 西安电子科技大学 一种采用离散化方法的多机器人协同轨迹信息处理方法
CN111080703A (zh) * 2019-12-31 2020-04-28 芜湖哈特机器人产业技术研究院有限公司 基于直线匹配的移动机器人重定位方法
CN111080703B (zh) * 2019-12-31 2022-05-27 芜湖哈特机器人产业技术研究院有限公司 基于直线匹配的移动机器人重定位方法
CN111813102A (zh) * 2020-06-06 2020-10-23 浙江中力机械有限公司 一种分布式自主机器人环境地图构建方法
CN111813102B (zh) * 2020-06-06 2023-11-21 浙江中力机械股份有限公司 一种分布式自主机器人环境地图构建方法

Similar Documents

Publication Publication Date Title
CN105094135A (zh) 一种分布式多机器人地图融合系统及融合方法
Jiang et al. Cyber physical system for safety management in smart construction site
Wang et al. Application of Dijkstra algorithm in robot path-planning
Nagatani et al. Multirobot exploration for search and rescue missions: A report on map building in RoboCupRescue 2009
CN109765901A (zh) 基于线激光与双目视觉的动态代价地图导航方法
Liu et al. Motion navigation for arc welding robots based on feature mapping in a simulation environment
Rashid et al. Multi-robot localization and orientation estimation using robotic cluster matching algorithm
CN109725327A (zh) 一种多机构建地图的方法及系统
Mitchell et al. Symbiotic system of systems design for safe and resilient autonomous robotics in offshore wind farms
CN109658432A (zh) 一种移动机器人的边界生成方法及系统
Ioannidis et al. A path planning method based on cellular automata for cooperative robots
WO2014141928A1 (ja) 搬入経路計画システム
CN104375713A (zh) 数据处理方法和移动设备
Zhang et al. Distributed coverage optimization for deployment of directional sensor networks
Naranjo et al. Intelligent oil field approach using virtual reality and mobile anthropomorphic robots
Smirnov et al. Smart M3-based robot interaction scenario for coalition work
CN105955272B (zh) 服务机器人多飞行时间传感器的融合方法
Qiu et al. Dangerous exploration robot based on ROS system
Kadavasal et al. Sensor augmented virtual reality based teleoperation using mixed autonomy
Shade et al. Discovering and mapping complete surfaces with stereo
Ibrahim et al. Largest coverage network in a robot swarm using reinforcement learning
Zheng et al. 5‐2: Unveiling Privacy Challenges: Big Data‐Driven Digital Twins in Smart City Applications
Su et al. Design of the Autonomous Path Planning System for Mining Robots Based on Stereo Vision
Song A path planning method for environmental robot based on intelligent algorithm
CN111781936B (zh) 机器人路径规划方法、装置、机器人及计算机可读存储介质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151125

RJ01 Rejection of invention patent application after publication