CN105093927A - Reversing substitution compensation method for EMA (electromechanical actuator) dead zone - Google Patents

Reversing substitution compensation method for EMA (electromechanical actuator) dead zone Download PDF

Info

Publication number
CN105093927A
CN105093927A CN 201510449762 CN201510449762A CN105093927A CN 105093927 A CN105093927 A CN 105093927A CN 201510449762 CN201510449762 CN 201510449762 CN 201510449762 A CN201510449762 A CN 201510449762A CN 105093927 A CN105093927 A CN 105093927A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
gt
lt
servo
uv
controller
Prior art date
Application number
CN 201510449762
Other languages
Chinese (zh)
Other versions
CN105093927B (en )
Inventor
周满
张驰
张明月
Original Assignee
中国科学院长春光学精密机械与物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention discloses a reversing substitution compensation method for an EMA (electromechanical actuator) dead zone, and belongs to the technical field of EMA servo control. The method comprises the steps: adding a compensation controller to an EMA servo system controller, enabling the position deflection error e of an EMA, a PWM value and a direction signal of the EMA under the normal working condition to be inputted into the compensation controller, and outputting delta m; substituting the output uv<k-1> of a speed PI controller at the last moment when e is greater than theta<0>, the position of the EMA changes and delta m is equal to uv<0>, and obtaining the current output uv<k> of an EMA speed ring, wherein the uv<k> is equal to (uv<0>+(k<pv>+k<iv>)*e<v>*(k)-k<pv>*e<v>(k-1); substituting the output uv<k-1> of the speed PI controller at the last moment when e is less than -theta<0>, the position of the EMA changes and delta m is equal to uv<1>, and obtaining the current output uv<k> of the EMA speed ring, wherein the uv<k> is equal to (uv<1>+(k<pv>+k<iv>)*e<v>*(k)-k<pv>*e<v>(k-1). The method does not need a precise compensation value delta m, can quickly start the EMA through several iteration operations, eliminates the impact from the dead zone, and also avoids a problem of stable state jitter caused by frequent compensation.

Description

电动舵机死区换向替代补偿方法 Electric servo dead zone change to alternative compensation methods

技术领域 FIELD

[0001] 本发明属于电动舵机伺服控制技术领域,具体涉及一种电动舵机死区换向替代补偿方法。 [0001] The present invention belongs to the servo motor servo control technology, and in particular relates to an electric servo dead zone compensating change to alternative methods.

背景技术 Background technique

[0002] 电动舵机(EMA)因其体积小、成本低、易于控制等优点,在国内外飞行器上得到较为广泛的应用。 [0002] Electromechanical Actuator (EMA) because of its small size, low cost, easy to control, etc., are more widely used in the domestic aircraft. 但舵机系统不可避免的存在死区(摩擦、间隙等),在死区不太严重且控制指标要求不严格的情况下,可以忽略。 But inevitably there is the dead zone servo system (friction, backlash, etc.), in the dead zone is not too serious and the control index requirements are not stringent, can be ignored. 但是,在做高精度、高带宽的位置跟踪时,忽略死区效应将产生严重的"平顶"问题,严重影响舵机系统的跟踪精度及带宽,甚至造成飞行器的航迹抖动,破坏飞行器的稳定性。 However, when doing high-precision, high-bandwidth track position, ignoring the dead would have serious effects "flat top", which seriously affect the tracking accuracy and bandwidth servo system, and even cause jitter track aircraft, destroy aircraft stability. 因此,针对死区的补偿和控制方法必不可少。 Therefore, it is essential for the control and compensation method of dead zone.

[0003]目前,不少学者采用变结构控制、神经网络控制、粒子算法等先进控制理论取得较好的成果,较好的解决了舵机死区带来的"平顶"问题。 [0003] At present, many scholars use of advanced control theory, variable structure control, neural network control, particle algorithm for better results, better solution to bring the servo dead zone "flat top" problem. 但其缺点是:算法较为复杂、运算周期较长,不易工程化实现,对微处理芯片要求较高;传统的补偿控制器对补偿量的精度要求较高,导致工程化后补偿效果大大降低;克服死区问题的同时又引入了新的问题。 But the disadvantages are: a more complex algorithm, a longer operation period, to achieve easy engineering of demanding microprocessor chip; conventional high precision compensation controller compensation amount, the compensation effect results in greatly reduced engineering; overcome the problem of the dead zone at the same time introducing new problems.

发明内容 SUMMARY

[0004] 为了解决现有技术对存在死区的舵机位置跟踪系统,做小角度位置正弦跟踪时, 舵机系统存在较大的"平顶"问题,造成较大的位置跟踪误差,进而引发飞行器航迹剧烈抖动的技术问题,本发明提供了一种简单可靠、易于工程化实现、提高控制精度及速度的电动舵机死区换向替代补偿方法。 [0004] In order to solve the prior art steering gear position tracking system has a dead zone, doing small sinusoidal angular position tracking, there is a big "flat top" problem steering system, resulting in a greater position tracking error, and thus lead aircraft trajectory significant jitter problem, the present invention provides a simple, reliable, easy to implement engineering, improved electric steering control accuracy and deadband speed change to an alternative method of compensation. 该方法在伺服系统控制器中加入死区换向替代补偿控制器, 有效的改善位置跟踪"平顶"问题,提高跟踪精度;由于补偿方式、补偿位置及补偿精度,将直接影响"平顶"削弱效果和舵机系统的其他性能指标,在设计死区换向补偿控制算法时, 结合舵机旋转方向及偏转误差,在速度环采用换向替代补偿的方式。 The method of adding the dead zone compensation controller commutation Alternatively, effectively improve the position tracking "flat top" problems and improve the accuracy in the tracking servo system controller; as compensation, and the compensation accuracy of the compensation position, will directly affect the "flat top" other effects and impair performance of steering systems, in the design of the dead zone compensating change to the control algorithm, in conjunction with the rotation direction and deflecting the servo error using the change in the speed loop to alternative way of compensation.

[0005] 本发明解决技术问题所采取的技术方案如下: [0005] The present invention solves the technical problem adopted technical solution is as follows:

[0006] 电动舵机死区换向替代补偿方法,其包括如下步骤:在电动舵机伺服系统控制器中加入补偿控制器,将电动舵机位置偏转误差e、舵机正常工作下的PffM值、舵机方向信号输入补偿控制器,其输出为▽ m ;当舵机位置偏转误差e > Θ。 [0006] Electromechanical Actuator dead commutation alternative compensation method, comprising the steps of: adding the compensation controller in an electric servo steering system controller, the position of the deflection electric servo error e, PffM value under normal operating servo , the direction of the signal input compensation servo controller output ▽ m; deflection when the servo position error e> Θ. ( Θ。是一个大于零极小值,可根据稳态精度要求进行调整),且舵机位置发生换向时,▽ m = uv。 (Θ. Is a minimum value greater than zero, can be adjusted according to the steady-state accuracy), and a servo position commutation occurs, ▽ m = uv. (uv。为舵机正常运转下的正向PffM码值),代替电动舵机伺服系统控制器中速度PI控制器上一时刻的输出U v (k-Ι), 得出舵机速度环当前输出为uv(k) = uvQ+(kpv+kiv)ev(k)-k pvev(kl);当舵机位置偏转误差e < -Θ。 (Uv. PffM code value in the forward direction of normal servo operation), instead of the electric servo controller servo system speed PI controller output U v a time point (k-Ι), derived velocity servo loop current output uv (k) = uvQ + (kpv + kiv) ev (k) -k pvev (kl); deflected position when the servo error e <-Θ. ,且舵机位置发生换向时,▽ m = uvl (uvl为舵机正常运转下的负向PffM码值),代替速度PI控制器上一时刻的输出Uv(k-1),得出舵机速度环当前输出为uv(k) = uvl+(kpv+kiv) ev(k)-kpvev(kl);在|e|彡I 0。 And when the servo position commutation occurs, ▽ m = uvl (uvl negative under normal operation to PffM servo code value), a timing controller instead of the output speed PI Uv (k-1), obtained rudder machine speed loop current output uv (k) = uvl + (kpv + kiv) ev (k) -kpvev (kl); in | e | San I 0. |或者舵机位置未发生换向时,补偿控制器输出Vm为速度PI控制器上一时刻的输出uv(kl)。 | Servo position or not when the commutation compensation controller output Vm of the speed PI controller output timing of a uv (kl to) occurs.

[0007] 本发明的有益效果如下: [0007] Advantageous effects of the present invention are as follows:

[0008] 1、本发明通过对舵机死区进行补偿,有效地改善了小角度位置正弦跟踪存在的"平顶"现象,解决了因"平顶"问题而引发的飞行器指令高频颤抖问题。 [0008] 1, according to the present invention, by compensating the servo dead zone, effectively improved the "plateau" phenomenon sinusoidal tracking position of a small angle is present, to solve the aircraft instruction for "flat top" dither problems caused problems .

[0009] 2、本发明采用换向替代补偿的方式,每次换向仅做一次补偿,有效地避免了传统补偿算法因控制器的频繁补偿而影响舵机系统其他性能指标的问题。 [0009] 2, the present invention uses an alternative way of compensation commutation, the commutation done only once each time compensation, effectively avoids the problem of the conventional compensation algorithms due to frequent impact compensation controller Actuator other performance indicators.

[0010] 3、本发明采用的替换补偿方法对补偿量的精度要求低,可以直接使用舵机正常运行时PffM值作为补偿值,算法简单、可靠、工程量小,且易于工程化实现,具有较广的适用范围。 [0010] 3, the present invention employs alternative method of compensating a low accuracy of compensation may be used directly PffM servo normal operation value as the compensation value, the algorithm is simple, reliable, small quantities, and easy to implement engineering, having a wide range of applications.

附图说明 BRIEF DESCRIPTION

[0011] 图1是本发明的电动舵机系统结构框图。 [0011] FIG. 1 is a block diagram of an electric steering system of the present invention.

[0012] 图2是本发明的舵机伺服系统控制器工作原理图。 [0012] FIG. 2 is a steering servo system controller operating principle of the present invention.

[0013] 图3是本发明的舵机伺服系统控制器计算流程图。 [0013] FIG. 3 is a flowchart illustrating calculation of steering servo system controller according to the present invention.

[0014] 图4是本发明的换向替代补偿控制器流程图。 [0014] FIG. 4 is a flowchart of changing to alternative compensation controller of the invention.

[0015] 图5是引入舵机死区换向替代补偿控制器前后0. Γ、4Hz小角度正弦跟踪的对比图。 [0015] FIG. 5 is introduced into the servo dead zone before and after the commutation 0. Γ compensation controller Alternatively, 4Hz sine of a small angle comparison chart tracing.

具体实施方式 detailed description

[0016] 下面结合附图和实施例对本发明做进一步说明。 Drawings and embodiments of the present invention will be further described [0016] below in conjunction.

[0017] 如图1所示,本发明的电动舵机系统包括舵机伺服系统控制器、PffM功率模块、无刷直流电机、减速器、速度传感器和位置传感器;舵机伺服系统控制器接收舵机偏转指令, 同时通过速度传感器和位置传感器实时采集舵机的速度和位置信号,并经舵机伺服系统控制器的处理后,输出PWM码值至PWM功率模块,驱动无刷直流电机,进而带动舵面偏转,实现舵机系统的高精度位置跟踪。 [0017] As shown, the electric steering system of the present invention comprises a steering servo system controller, PffM power module, a brushless DC motor, speed reducer, a speed and position sensors; servo rudder servo system controller receives deflecting machine instructions, while real-time acquisition of the servo position signal and the speed by the speed and position sensors, and after treatment steering servo system controller, the code value to the PWM output PWM power module driving a brushless DC motor, in order to stimulate rudder surface deflection, to achieve high precision position tracking servo system.

[0018] 如图1和图2所示,本发明的舵机伺服系统控制器主要包括位置环控制器、速度环控制器和补偿控制器三部分;位置环为外环,采用PI控制器,输入量为舵机偏转指令、位置反馈信号,输出量为速度环的速度指令;速度环为内环,采用PI控制器,输入量为速度指令、速度反馈信号、补偿控制器的补偿值,输出量为PWM码值,通过脉宽调制实现速度大小及方向的控制;补偿控制器的输入量为当前舵机位置偏转误差、舵机正常工作下的PWM 码值、舵机旋转方向,补偿控制器的输出量为Vm,用于替代速度环控制器上一时刻的输出PffM(k-Ι)。 [0018] FIGS. 1 and 2, the servo system of the servo controller of the present invention mainly includes three parts position loop control, speed controller and a compensation controller; for the outer position loop, a PI controller, an amount of steering deflection command input, the position feedback signal, output of the speed loop speed command; the speed of the inner ring, a PI controller, input speed command, a speed feedback signal, the compensation value compensation controller output PWM code amount value, the speed control is realized by the size and direction of the pulse width modulation; input compensation servo controller for the current position of the deflection error, servo PWM code value under normal operation, the rotational direction of the servo, the compensation controller the output of Vm, a substitute speed of the output timing of a ring PffM controller (k-Ι). 舵机伺服系统控制器的工作过程,当位置环控制器接收到舵机偏转指令Θ和舵偏角反馈值Θ '后,输出速度偏转指令v,同时向补偿控制器输出位置跟踪误差e ;补偿控制器接收舵机位置偏转误差e,同时根据电动舵机的旋转方向及其正常工作下的PffM值,输出粗略的补偿值▽ m,来替代PffM (k-Ι);速度环控制器根据接收到的速度指令V、速度反馈ν' 和补偿值Vm,计算出新的PffM(k)值。 Steering servo system controller working process, when the position of the servo loop controller receives the instruction deflection angle [Theta] and rudder feedback value Θ ', the command output deflection velocity v, while the tracking error e to the output position compensation controller; compensation deflected position servo controller receives the error E, according PffM value while the rotational direction of the servo motor and normal operation, the output of coarse compensation value ▽ m, instead PffM (k-Ι); speed controller according to the received the speed command V, speed feedback ν 'and the compensation value Vm, calculates a new PffM (k) value. 此方法不需要精确的补偿值Vm,经控制器几次迭代运算后便能快速启动舵机,消除死区的影响,同时也避免因频繁补偿而导致的稳态抖动问题。 This method does not require precise compensation value Vm, the controller after a few iterations will be able to quickly start steering operation to eliminate the influence of the dead, but also to avoid problems due to frequent steady jitter compensation due.

[0019] 如图3所示,其为本发明的舵机伺服系统控制器计算流程。 [0019] 3, steering servo system which calculates the flow controller of the present invention. 舵机位置换向时,由于离散控制器的迭代计算和静摩擦等作用,致使舵机速度换向在时间上滞后于舵机换向,同时在静摩擦作用范围内出现位置"平顶"现象,严重影响跟踪精度。 When the servo reversing position, due to the iterative calculation of the discrete controller and static friction, resulting in the servo speed commutation on the commutation time lag in the steering gear, while in quiet location "flat top" phenomenon of internal friction scope, serious affect tracking accuracy.

[0020] 位置环PI离散控制器如下: [0020] Discrete positions loop PI controller as follows:

[0021] 、工. . [0021], the workers.

Figure CN105093927AD00051

[0022] 其中,Ivk1S位置环PI控制器参数,可根据系统性能指标求得。 [0022] wherein, Ivk1S position loop PI controller parameters, can be obtained according to the system performance. Θ (k)为当前位置指令,θ'(k)为当前位置反馈,ep(k)为当前位置偏转误差,ep(k_l)为上一时刻位置偏转误差,up(k)为当前时刻位置PI控制器输出。 Θ (k) is the current position command, θ '(k) is the current position feedback, ep (k) is the current position of the deflection error, ep (k_l) to the previous time position deflection error, up (k) for the current time position PI controller output.

[0023] 将舵机偏转指令Θ (k)及舵机位置反馈Θ '(k)输入位置环控制器,经位置环控制器运算输出速度指令up(k)至速度环控制器。 [0023] The command steering deflection Θ (k) and the position feedback servo Θ '(k) input position loop controller, the loop position controller outputs a speed command computation up (k) to the speed controller.

[0024] 速度环PI离散控制器如下: [0024] Discrete speed loop PI controller as follows:

[0025] [0025]

Figure CN105093927AD00052

[0026] 其中,kpv、klv为速度环PI控制器参数,可根据系统性能指标求得。 [0026] wherein, kpv, klv loop PI controller parameters, the speed may be determined according to system performance. up(k)为当前速度指令,ν'(k)为当前速度反馈,ev(k)为当前速度误差,ev(k_l)为上一时刻速度误差, uv(k)为当前时刻位置PI控制器输出,Uv (k-Ι)为上一时刻位置PI控制器输出。 up (k) for the current speed command, ν '(k) of the feedback current speed, ev (k) for the current speed error, ev (k_l) of speed error at the previous time, uv (k) for the current time position PI controller output, Uv (k-Ι) a time position of the PI controller output.

[0027] 速度PI控制器接收速度指令up(k)、速度反馈值ν'(k)、补偿控制器的补偿值,通过速度PI控制器计算输出PWM,实现脉宽调制。 [0027] PI speed controller receives a speed command up (k), velocity feedback value ν '(k), the controller of the compensation value calculated by the speed PI controller outputs a PWM, pulse width modulation to achieve. 因速度、位置离散控制器迭代项U v (k-Ι)和Up(k-Ι)的影响,位置换向即ep(k)方向发生变化时,uv(k)符号方向不能及时发生改变,存在较大的延迟,导致位置发生换向时速度环不能及时换向,同时由于静摩擦影响,使得系统速度环存在死区,为此加入死区补偿控制器。 Due to the speed, the position of the controller iteration discrete items U v (k-Ι) and impact Up (k-Ι), the position of the commutation i.e. ep (k) changes direction, uv (k) symbol direction can not be changed in time, there is a large delay, resulting in the occurrence of commutation position can not be timely commutation speed loop, while the influence due to the static friction, so that the system speed loop dead zone, the dead zone is added to compensate for this controller.

[0028] 图4为本发明所设计的换向替代补偿控制器流程图。 [0028] FIG 4 is a flowchart of the invention designed for changing to alternative compensation controller. 将电动舵机位置偏转误差e、 控制器输出的PWM值、舵机方向信号输入舵机死区补偿控制器,其输出为▽ m。 The electric servo position error of the deflection E, the controller outputs a PWM value, servo direction signal input dead time compensation servo controller output ▽ m. 当舵机位置偏转误差e > Θ。 When the position of the deflection servo error e> Θ. ( Θ。为一个大于零的极小值,可根据稳态精度的要求进行调整),且舵机位置发生换向时,▽ m = UvJuv。 (Θ. A minimum value greater than zero, can be adjusted according to the requirements of steady-state accuracy), and a servo position commutation occurs, ▽ m = UvJuv. 为舵机正常运转下的正向PffM码值),代替速度PI控制器上一时刻的输出uv (k-1),即得出舵机速度环当前输出为uv (k) = uv。 Forward PffM code value under servo normal operation), the output of one time instead of the speed PI controller uv (k-1), i.e. the current loop velocity servo output obtained as uv (k) = uv. +(kpv+kiv) ev (k)-kpvev (k-1); 当舵机位置偏转误差e < - Θ。 + (Kpv + kiv) ev (k) -kpvev (k-1); deflected position when the servo error e <- Θ. ,且舵机位置发生换向时,▽ m = Uvl (Uvl为舵机正常运转下的负向PffM码值),代替速度PI控制器上一时刻的输出Uv (k-Ι),即得出舵机速度环当前输出为\ (k) = uvl+ (kpv+klv) ev (k) _kpvev (k-Ι);在舵机位置跟踪误差较小及舵机位置未发生换向情况下,死区换向替代补偿控制器则不起作用。 And when the servo position commutation occurs, ▽ m = Uvl (Uvl the negative direction in the servo code value PffM normal operation), instead of the PI speed controller output Uv a time (k-Ι), i.e., derived the current output of the speed servo loop \ (k) = uvl + (kpv + klv) ev (k) _kpvev (k-Ι); the smaller servo position error and the tracking servo position change does not occur to the case, the dead zone changing to alternative compensation controller is inoperative. 这样,既可以有效补偿舵机死区消除位置跟踪"平顶"问题,又可以避免因频繁补偿控制参数而引发控制的不连续性。 In this way, it can effectively compensate for the elimination of the position tracking servo dead zone "flat top" issue, and also avoid the compensation due to frequent control parameters caused discontinuity control.

[0029] 图5为引入舵机死区替换补偿控制器前后,电动舵机做0. Γ、4Hz小角度正弦位置跟踪对比图。 Before and [0029] FIG 5 is introduced into the servo controller alternative compensation deadband, do Electromechanical Actuator 0. Γ, 4Hz sine of the angle position of tracking small comparison chart. 可以看出,引入替换补偿控制器之前,由于控制器迭代的延迟、静摩擦等因素影响,做小角度正弦跟踪时,存在50ms的速度死区,位置出现较严重"平顶"现象,平顶时间约为62ms,跟踪误差为0. 12° ;引入替换补偿控制器之后,速度死区为8ms,位置平顶时间为18ms,跟踪误差为0.05°,跟踪精度及响应速度得到较大的提高。 As can be seen, prior to the introduction of replacement compensation controller, due to the delay controller iteration, static friction and other factors, a small angle sine track, there is the dead zone speed of 50ms, there was a serious position "flat top" phenomenon, flat top time about 62ms, the tracking error is 0. 12 °; after introducing the compensation controller Alternatively, the speed deadband of 8ms, 18ms time flattened position, the tracking error of 0.05 °, the tracking precision and the response speed is greatly improved. 本发明的电动舵机死区换向替代补偿方法,在克服舵机死区影响的同时不影响其他指标,并且不需要精确的补偿量、算法简单易于工程实现。 Electromechanical Actuator dead invention commutator alternative compensation method, does not affect other metrics at the same time overcome the effects of the servo dead zone, and does not require precise compensation amount, the algorithm is simple and easy to implement.

Claims (1)

  1. 1.电动舵机死区换向替代补偿方法,其特征在于,该方法包括如下步骤:在电动舵机伺服系统控制器中加入补偿控制器,将电动舵机位置偏转误差e、舵机正常工作下的PWM值、舵机方向信号输入补偿控制器,其输出为;当舵机位置偏转误差e> 0。 1. Electric servo compensating dead commutation alternative method, characterized in that the method comprising the steps of: compensating controller is added in an electric servo steering system controller, the electric servo position error of the deflection E, servos work PWM value, the direction signal input compensation servo controller output; deflection when the servo position error e> 0. ( 0。 为一个大于零的极小值,可根据稳态精度的要求进行调整),且舵机位置发生换向时, = (uv。为舵机正常运转下的正向PWM码值),代替电动舵机伺服系统控制器中速度PI控制器上一时刻的输出uv(kl),得出舵机速度环当前输出为uv(k) =uvQ+(kpv+kiv)ev(k)-kpvev(kl);当舵机位置偏转误差e< - 0。 (0. greater than a minimum value of zero, can be adjusted according to the requirements of steady-state accuracy), and a servo position commutation occurs, = (uv. Forward PWM code value for the normal operation of the steering gear), Instead of the electric steering servo system speed PI controller uv a timing controller output (kl), obtain the speed servo loop current output uv (k) = uvQ + (kpv + kiv) ev (k) -kpvev ( kl to); deflected position when the servo error e <- 0. ,且舵机位置发生换向时,▽州=uH (~为舵机正常运转下的负向PWM码值),代替速度PI控制器上一时刻的输出uv (k-1),得出舵机速度环当前输出为uv(k) =uvl+(kpv+kiv)ev(k)-kpvev(kl);在|e|彡| 0。 And servo position commutation occurs, ▽ to state = uH (~ negative under normal operation to the PWM servo code value), a timing controller instead of the output speed PI uv (k-1), obtained rudder machine speed loop current output uv (k) = uvl + (kpv + kiv) ev (k) -kpvev (kl); in | e | San | 0. |或者舵机位置未发生换向时,补偿控制器输出为速度PI控制器上一时刻的输出uv (k-1)。 | Commutation compensation controller outputs a speed PI controller output timing uv (k-1) or the servo position does not occur.
CN 201510449762 2015-07-28 2015-07-28 Electric servo dead zone change to alternative compensation methods CN105093927B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201510449762 CN105093927B (en) 2015-07-28 2015-07-28 Electric servo dead zone change to alternative compensation methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201510449762 CN105093927B (en) 2015-07-28 2015-07-28 Electric servo dead zone change to alternative compensation methods

Publications (2)

Publication Number Publication Date
CN105093927A true true CN105093927A (en) 2015-11-25
CN105093927B CN105093927B (en) 2017-07-25

Family

ID=54574633

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201510449762 CN105093927B (en) 2015-07-28 2015-07-28 Electric servo dead zone change to alternative compensation methods

Country Status (1)

Country Link
CN (1) CN105093927B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106341065A (en) * 2016-10-12 2017-01-18 闽江学院 Ultrasonic motor servo control system speed dead zone compensation control apparatus and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301101A (en) * 1990-06-21 1994-04-05 Honeywell Inc. Receding horizon based adaptive control having means for minimizing operating costs
CN1800781A (en) * 2004-12-30 2006-07-12 中国科学院自动化研究所 Track autopilot control system and method thereof
CN101488010A (en) * 2009-03-06 2009-07-22 北京理工大学 Essentially nonlinear compensation controller of servo system
CN202379084U (en) * 2011-11-25 2012-08-15 北京自动化控制设备研究所 Multi-loop control and high-power driving circuit for quick-response electric steering engine
CN103207568A (en) * 2013-03-18 2013-07-17 哈尔滨工程大学 Steering engine saturation resistant self-adaptive control method for ship courses

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301101A (en) * 1990-06-21 1994-04-05 Honeywell Inc. Receding horizon based adaptive control having means for minimizing operating costs
CN1800781A (en) * 2004-12-30 2006-07-12 中国科学院自动化研究所 Track autopilot control system and method thereof
CN101488010A (en) * 2009-03-06 2009-07-22 北京理工大学 Essentially nonlinear compensation controller of servo system
CN202379084U (en) * 2011-11-25 2012-08-15 北京自动化控制设备研究所 Multi-loop control and high-power driving circuit for quick-response electric steering engine
CN103207568A (en) * 2013-03-18 2013-07-17 哈尔滨工程大学 Steering engine saturation resistant self-adaptive control method for ship courses

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
张明月,等: "改进自抗扰控制谐波式电动舵机伺服系统", 《光学精密工程》 *
张明月,等: "电动舵机速度环改进自抗扰控制研究", 《计算机测量与控制》 *
朱钰: "船舶变频液压舵机控制策略研究", 《船舶工程》 *
肖亮,等: "基于高效率SVPWM控制的电动舵机", 《电力电子》 *
肖前进,等: "电动舵机伺服系统非线性辨识及补偿", 《光学精密工程》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106341065A (en) * 2016-10-12 2017-01-18 闽江学院 Ultrasonic motor servo control system speed dead zone compensation control apparatus and method

Also Published As

Publication number Publication date Type
CN105093927B (en) 2017-07-25 grant

Similar Documents

Publication Publication Date Title
CN101582677A (en) Motor non-speed sensor control method for smoothly switching composite rotating speed identification
JP2004280772A (en) Servo motor drive control device
CN102158168A (en) Permanent magnet synchronous motor drive control system
CN101793275A (en) High-precision hydraulic servo control system
CN103281026A (en) Control method of open winding permanent magnet synchronous motor system of hybrid inverter
CN201705553U (en) Intelligent variable propeller pitch control system for megawatt wind generating set
CN1945919A (en) Method for realizing composite power system stabilizer
CN101917159A (en) System and method for controlling running speed and displacement of linear motor
CN103312244A (en) Direct torque control method based on sectional sliding mode variable structure for brushless direct current motor
CN103043546A (en) Rotation control system and method for tower crane
CN1522487A (en) Method and device for controlling currents of synchronous motor
CN103414419A (en) Double-linear-motor contour compensation device and method based on fuzzy RBF network sliding mode
CN103236814A (en) Fractional integral sliding mode-based speed control method and device for permanent magnet synchronous motor
CN101989080A (en) Method for realizing contour machining by using variable gain zero phase error tracking and disturbance observation
CN102743803A (en) Peristaltic pump control system for purifying blood and method thereof
CN102497141A (en) High torque starting method for high power alternating current (AC) servo driver
CN102624315A (en) High-precision permanent magnetic servo motor three-closed-loop control system and method
CN102769426A (en) On-line fault-tolerance electric vehicle alternating current induction motor driving control system
CN103560735A (en) Control method for electro-magnetic synchronous motor
CN103715962A (en) Permanent magnet synchronous motor sliding-mode speed observer driven by two-stage matrix converter
CN104852661A (en) Permanent-magnet synchronous motor torque ripple suppression method based on coordinate transformation harmonic compensation
CN101834554A (en) Method for improving processing precision by using load disturbance compensator and optimizing setting of load disturbance compensator
CN102299672A (en) A DC brushless direct voltage sine wave drive motor
CN102566494A (en) Five-axis numerical control interpolation method based on smooth compression of tool vectors
US20120059506A1 (en) Servo control system capable of improving processing accuracy

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
GR01