CN105093114A - Battery online modeling and state of charge combined estimating method and system - Google Patents

Battery online modeling and state of charge combined estimating method and system Download PDF

Info

Publication number
CN105093114A
CN105093114A CN201510093761.0A CN201510093761A CN105093114A CN 105093114 A CN105093114 A CN 105093114A CN 201510093761 A CN201510093761 A CN 201510093761A CN 105093114 A CN105093114 A CN 105093114A
Authority
CN
China
Prior art keywords
state
battery
model
charge
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510093761.0A
Other languages
Chinese (zh)
Other versions
CN105093114B (en
Inventor
张志�
姜久春
时玮
王占国
张彩萍
龚敏明
孙丙香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Shore Power Technology Co Ltd
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Priority to CN201510093761.0A priority Critical patent/CN105093114B/en
Publication of CN105093114A publication Critical patent/CN105093114A/en
Application granted granted Critical
Publication of CN105093114B publication Critical patent/CN105093114B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Secondary Cells (AREA)

Abstract

本发明涉及一种电池在线建模与荷电状态的联合估计方法及系统,其中方法包括,利用阈值模型将电池模型中所包含的开路电压OCV与荷电状态SOC的非线性关系进行分段线性化,并可映射为电池端电压与荷电状态SOC的分段线性化关系;仅利用在线测量得到的电池端电压和电流数据,在每一个分段区间建立自回归移动平均模型;将得到的自回归移动平均模型转化为对应的状态空间描述的电池模型,构造状态观测器,对作为状态变量的荷电状态进行估计。滑动时间窗口,采集下一组电池端电压和电流数据参与计算。本发明提供的方法,可在线对任意时刻锂离子电池的模型参数和荷电状态都具有较高的精度,且易于实现。

The invention relates to a method and system for jointly estimating battery on-line modeling and state of charge, wherein the method includes: using a threshold model to perform piecewise linearization of the nonlinear relationship between the open circuit voltage OCV and the state of charge SOC contained in the battery model and can be mapped to the segmental linearization relationship between the battery terminal voltage and the state of charge SOC; only using the battery terminal voltage and current data obtained from online measurement, an autoregressive moving average model is established in each segmental interval; the obtained The autoregressive moving average model is transformed into the battery model described by the corresponding state space, and a state observer is constructed to estimate the state of charge as a state variable. Sliding time window, collect the next set of battery terminal voltage and current data to participate in the calculation. The method provided by the invention can perform online calculation of the model parameters and state of charge of the lithium-ion battery at any time with high accuracy and is easy to implement.

Description

一种电池在线建模与荷电状态的联合估计方法及系统A method and system for joint estimation of battery online modeling and state of charge

技术领域technical field

本发明涉及一种电池在线建模与荷电状态的联合估计方法及系统,属于锂离子电池管理技术领域。The invention relates to a method and system for jointly estimating battery online modeling and state of charge, and belongs to the technical field of lithium-ion battery management.

背景技术Background technique

为解决能源安全和环境污染问题,近年来,电动汽车在各国政府和汽车制造商的推动下取得了快速的发展。作为电动汽车的主要能量载体和动力来源,电池及其管理系统是电动汽车最核心的技术之一。其中,锂离子电池以其高能量比、低自放电率、无记忆效应、高工作电压平台、长使用寿命和制造成本低等优点得到广泛应用。而与之配套的,锂离子动力电池管理系统(BMS)也得到广泛重视和研究应用。In order to solve the problems of energy security and environmental pollution, in recent years, electric vehicles have achieved rapid development under the promotion of governments and automobile manufacturers. As the main energy carrier and power source of electric vehicles, batteries and their management systems are one of the core technologies of electric vehicles. Among them, lithium-ion batteries are widely used due to their high energy ratio, low self-discharge rate, no memory effect, high operating voltage platform, long service life and low manufacturing cost. And supporting it, lithium-ion power battery management system (BMS) has also been widely valued and researched and applied.

BMS的核心功能是通过精确地跟踪电池的动态行为,对电池工作运行状态进行有效地管理和控制,这就要求必须建立精确描述电池动态行为的数学模型。出于对电动汽车经济、安全和合理使用动力电池的角度出发,利用电池模型参数对动力电池的荷电状态(SOC)进行估计显得更为关键。近年来,伴随着电池发展的电池模型辨识方法层出不穷。The core function of BMS is to effectively manage and control the working state of the battery by accurately tracking the dynamic behavior of the battery, which requires the establishment of a mathematical model that accurately describes the dynamic behavior of the battery. From the perspective of economical, safe and rational use of power batteries for electric vehicles, it is more critical to use battery model parameters to estimate the state of charge (SOC) of power batteries. In recent years, with the development of batteries, battery model identification methods emerge in an endless stream.

在电动汽车的商业应用过程中,电池价格过高是阻碍其快速推广的主要原因,人们通过寻找更好的电池成组方式,充分利用电池电量,降低电池成本。电池的成组方式主要与电池的一致性有关,这主要依赖于电池参数的辨识效率和SOC估计精度的提高,这样有助于电池的合理利用并延长电池的实用寿命。因此,有必要寻找一种精确、快速、在线得到电池参数及SOC的方法。本发明提供了一种锂离子动力电池建模及SOC联合估计方法,正是满足上述要求的方法。In the commercial application of electric vehicles, the high price of batteries is the main reason hindering its rapid promotion. People are looking for better battery packs to make full use of battery power and reduce battery costs. The grouping of batteries is mainly related to the consistency of batteries, which mainly depends on the identification efficiency of battery parameters and the improvement of SOC estimation accuracy, which will help the rational use of batteries and prolong the practical life of batteries. Therefore, it is necessary to find an accurate, fast and online method to obtain battery parameters and SOC. The present invention provides a lithium-ion power battery modeling and SOC joint estimation method, which just meets the above requirements.

发明内容Contents of the invention

本发明所要解决的技术问题是,针对现有技术的不足,提供一种电池在线建模与荷电状态的联合估计方法及系统,用于同时获取电池参数和SOC,并实现电池参数的精确、快速、在线辨识以及SOC的准确估计。The technical problem to be solved by the present invention is to provide a method and system for joint estimation of battery online modeling and state of charge, which is used to obtain battery parameters and SOC at the same time, and to achieve accurate and accurate battery parameters. Fast, online identification and accurate estimation of SOC.

本发明解决上述技术问题的技术方案如下:一种电池在线建模与荷电状态的联合估计方法,具体包括以下步骤:The technical solution of the present invention to solve the above-mentioned technical problems is as follows: a method for joint estimation of battery online modeling and state of charge, specifically comprising the following steps:

步骤1:采集当前时间窗口内的电池端电压值数据和电池端电流值数据;Step 1: Collect battery terminal voltage value data and battery terminal current value data within the current time window;

步骤2:根据不同的电压值数据进行值域划分,得到多个分段区间,对每一个分段区间建立自回归移动平均模型,将自回归移动平均模型转换为电池模型,并辨识电池模型参数;Step 2: Divide the value range according to different voltage value data to obtain multiple segment intervals, establish an autoregressive moving average model for each segment interval, convert the autoregressive moving average model into a battery model, and identify battery model parameters ;

步骤3:构造状态观测器,对作为状态变量的荷电状态SOC进行估计,得到荷电状态SOC的估计值;Step 3: Construct a state observer, estimate the state of charge SOC as a state variable, and obtain the estimated value of the state of charge SOC;

步骤4:判断是否存在未采集数据的时间窗口,如果是,滑动获取下一个时间窗口,将得到的时间窗口作为当前时间窗口,执行步骤1;否则,执行步骤5;Step 4: Determine whether there is a time window that has not collected data, if yes, slide to obtain the next time window, use the obtained time window as the current time window, and perform step 1; otherwise, perform step 5;

步骤5:完成锂离子电池的电池模型的在线建模和荷电状态估计。Step 5: Complete the online modeling and state-of-charge estimation of the lithium-ion battery battery model.

本发明中所使用的时间窗口是固定时间窗口,以1秒钟采集1次数据为例,500个数据采集点作为该时间窗口的宽度,但在保证所建模型有效性的情况下不局限于此。The time window used in the present invention is a fixed time window. Taking data collected once per second as an example, 500 data collection points are used as the width of the time window, but it is not limited to this.

本发明的有益效果是:本发明用于同时获取电池参数和SOC,并实现电池参数的精确、快速、在线辨识以及SOC的准确估计;可在线对任意时刻锂离子电池的模型参数和荷电状态都具有较高的精度,且易于实现。The beneficial effect of the present invention is: the present invention is used for obtaining battery parameter and SOC simultaneously, and realizes the accurate, quick, on-line identification of battery parameter and the accurate estimation of SOC; The model parameter and state of charge of lithium-ion battery can be checked online at any time Both have high precision and are easy to implement.

在上述技术方案的基础上,本发明还可以做如下改进。On the basis of the above technical solutions, the present invention can also be improved as follows.

进一步,所述步骤2具体包括以下步骤:Further, the step 2 specifically includes the following steps:

步骤2.1:根据不同的电压值数据进行值域划分,得到多个分段区间,对每一个分段区间利用在线测量得到的电池端电压值数据和电池端电流值数据建立自回归移动平均模型;Step 2.1: Carry out value range division according to different voltage value data to obtain multiple segment intervals, and establish an autoregressive moving average model for each segment interval using the battery terminal voltage value data and battery terminal current value data obtained by online measurement;

步骤2.2:将自回归移动平均模型转化为对应的状态空间描述的电池模型,并辨识电池模型参数。Step 2.2: Transform the autoregressive moving average model into the battery model described by the corresponding state space, and identify the battery model parameters.

进一步,所述步骤3具体包括以下步骤:Further, the step 3 specifically includes the following steps:

步骤3.1:利用阈值模型将电池模型中所包含的开路电压OCV与荷电状态SOC的非线性关系进行分段线性化,并可映射为电池端电压与荷电状态SOC的分段线性化关系;Step 3.1: Use the threshold model to perform piecewise linearization of the nonlinear relationship between the open circuit voltage OCV and the state of charge SOC contained in the battery model, and map it to the piecewise linearization relationship between the battery terminal voltage and the state of charge SOC;

步骤3.2:根据电池模型中的线性关系构造状态观测器,对作为状态变量的荷电状态SOC进行估计,得到荷电状态SOC的估计值。Step 3.2: Construct a state observer according to the linear relationship in the battery model, estimate the state of charge SOC as a state variable, and obtain the estimated value of the state of charge SOC.

进一步,所述利用阈值模型将电池模型中所包含的开路电压OCV与荷电状态SOC的非线性关系进行分段线性化的关键是,根据开路电压OCV和锂离子电池荷电状态SOC的线性化模型参数,确定电池模型参数。Further, the key to segmentally linearize the nonlinear relationship between the open circuit voltage OCV and the state of charge SOC contained in the battery model by using the threshold model is to linearize the open circuit voltage OCV and the state of charge SOC of the lithium-ion battery Model parameters, to determine the battery model parameters.

进一步,所述下一个时间窗口的确定可以根据非线性强弱程度,对时间窗口的长短进行缩放。Further, the determination of the next time window may scale the length of the time window according to the degree of nonlinearity.

本发明解决上述技术问题的技术方案如下:一种电池在线建模与荷电状态的联合估计系统,包括采集模块、电池模型模块、状态变量估计模块和判断模块;The technical solution of the present invention to solve the above-mentioned technical problems is as follows: a battery online modeling and charge state joint estimation system, including an acquisition module, a battery model module, a state variable estimation module and a judgment module;

所述采集模块用于采集当前时间窗口内的电池端电压值数据和电池端电流值数据;The collection module is used to collect battery terminal voltage value data and battery terminal current value data within the current time window;

所述电池模型模块用于根据不同的电压值数据进行值域划分,得到多个分段区间,对每一个分段区间建立自回归移动平均模型,将自回归移动平均模型转换为电池模型,并辨识电池模型参数;The battery model module is used to divide the value range according to different voltage value data to obtain multiple segment intervals, establish an autoregressive moving average model for each segment interval, convert the autoregressive moving average model into a battery model, and Identify battery model parameters;

所述估计模块用于构造状态观测器,对作为状态变量的荷电状态SOC进行估计,得到荷电状态SOC的估计值;The estimation module is used for constructing a state observer, estimating the state of charge SOC as a state variable, and obtaining an estimated value of the state of charge SOC;

所述判断模块用于判断是否存在未采集数据的时间窗口,如果是,滑动获取下一个时间窗口,将得到的时间窗口作为当前时间窗口,采集下一组电池端电压和电流数据参与计算;否则,完成锂离子电池的电池模型的在线建模和荷电状态估计。The judging module is used to judge whether there is a time window for which data has not been collected, and if so, slide to obtain the next time window, use the obtained time window as the current time window, and collect the next set of battery terminal voltage and current data to participate in the calculation; otherwise , to complete the online modeling and state of charge estimation of the lithium-ion battery battery model.

本发明的有益效果是:本发明用于同时获取电池参数和SOC,并实现电池参数的精确、快速、在线辨识以及SOC的准确估计;可在线对任意时刻锂离子电池的模型参数和荷电状态都具有较高的精度,且易于实现。The beneficial effect of the present invention is: the present invention is used for obtaining battery parameter and SOC simultaneously, and realizes the accurate, quick, on-line identification of battery parameter and the accurate estimation of SOC; The model parameter and state of charge of lithium-ion battery can be checked online at any time Both have high precision and are easy to implement.

在上述技术方案的基础上,本发明还可以做如下改进。On the basis of the above technical solutions, the present invention can also be improved as follows.

进一步,所述电池模型模块包括建模模块和模型转换模块;Further, the battery model module includes a modeling module and a model conversion module;

所述建模模块用于根据不同的电压值数据进行值域划分,得到多个分段区间,对每一个分段区间利用在线测量得到的电池端电压值数据和电池端电流值数据建立自回归移动平均模型;The modeling module is used to divide the value range according to different voltage value data to obtain a plurality of segmented intervals, and to establish an auto-regression for each segmented interval using the battery terminal voltage value data and battery terminal current value data obtained by online measurement moving average model;

所述模型转换模块将自回归移动平均模型转化为对应的状态空间描述的电池模型,并辨识电池模型参数。The model conversion module converts the autoregressive moving average model into a battery model described by the corresponding state space, and identifies battery model parameters.

进一步,所述状态变量估计模块包括线性化模块和估计值模块;Further, the state variable estimation module includes a linearization module and an estimated value module;

所述线性化模块用于利用阈值模型将电池模型中所包含的开路电压OCV与荷电状态SOC的非线性关系进行分段线性化,并可映射为电池端电压与荷电状态SOC的分段线性化关系;The linearization module is used to linearize the nonlinear relationship between the open circuit voltage OCV and the state of charge SOC contained in the battery model by using the threshold model, and can be mapped to a segmented relationship between the battery terminal voltage and the state of charge SOC Linearization relationship;

所述估计值模块用于根据电池模型中的线性关系构造状态观测器,对作为状态变量的荷电状态SOC进行估计,得到荷电状态SOC的估计值。The estimated value module is used to construct a state observer according to the linear relationship in the battery model, estimate the state of charge SOC as a state variable, and obtain an estimated value of the state of charge SOC.

进一步,所述利用阈值模型将电池模型中所包含的开路电压OCV与荷电状态SOC的非线性关系进行分段线性化的关键是,根据开路电压OCV和锂离子电池荷电状态SOC的线性化模型参数,确定电池模型参数。Further, the key to segmentally linearize the nonlinear relationship between the open circuit voltage OCV and the state of charge SOC contained in the battery model by using the threshold model is to linearize the open circuit voltage OCV and the state of charge SOC of the lithium-ion battery Model parameters, to determine the battery model parameters.

进一步,所述下一个时间窗口的确定可以根据非线性强弱程度,对时间窗口的长短进行缩放。Further, the determination of the next time window may scale the length of the time window according to the degree of nonlinearity.

附图说明Description of drawings

图1为本发明所述的一种电池在线建模与荷电状态的联合估计方法流程图;Fig. 1 is a flow chart of a joint estimation method for battery online modeling and state of charge according to the present invention;

图2为本发明锂离子动力电池建模及SOC联合估计方法的原理图;Fig. 2 is a schematic diagram of the lithium ion power battery modeling and SOC joint estimation method of the present invention;

图3为本发明所述的电池模型等效电路图;Fig. 3 is the battery model equivalent circuit diagram of the present invention;

图4为本发明所述FUDS工况下SOC估计结果;Fig. 4 is the SOC estimation result under the FUDS working condition of the present invention;

图5为本发明所述FUDS工况下SOC估计误差;Fig. 5 is the SOC estimation error under the FUDS working condition of the present invention;

图6为本发明所述的一种电池在线建模与荷电状态的联合估计系统结构框图。Fig. 6 is a structural block diagram of a battery online modeling and state of charge joint estimation system according to the present invention.

附图中,各标号所代表的部件列表如下:In the accompanying drawings, the list of parts represented by each label is as follows:

1、采集模块,2、电池模型模块,3、状态变量估计模块,4、判断模块,21、建模模块,22、模型转换模块,31、线性化模块,32、估计值模块。1. Acquisition module, 2. Battery model module, 3. State variable estimation module, 4. Judgment module, 21. Modeling module, 22. Model conversion module, 31. Linearization module, 32. Estimated value module.

具体实施方式Detailed ways

以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。The principles and features of the present invention are described below in conjunction with the accompanying drawings, and the examples given are only used to explain the present invention, and are not intended to limit the scope of the present invention.

如图1所示,为本发明所述的一种电池在线建模与荷电状态的联合估计方法,具体包括以下步骤:As shown in Figure 1, it is a method for joint estimation of battery online modeling and state of charge according to the present invention, which specifically includes the following steps:

步骤1:采集当前时间窗口内的电池端电压值数据和电池端电流值数据;Step 1: Collect battery terminal voltage value data and battery terminal current value data within the current time window;

步骤2:根据不同的电压值数据进行值域划分,得到多个分段区间,对每一个分段区间建立自回归移动平均模型,将自回归移动平均模型转换为电池模型,并辨识电池模型参数;Step 2: Divide the value range according to different voltage value data to obtain multiple segment intervals, establish an autoregressive moving average model for each segment interval, convert the autoregressive moving average model into a battery model, and identify battery model parameters ;

步骤3:构造状态观测器,对作为状态变量的荷电状态SOC进行估计,得到荷电状态SOC的估计值;Step 3: Construct a state observer, estimate the state of charge SOC as a state variable, and obtain the estimated value of the state of charge SOC;

步骤4:判断是否存在未采集数据的时间窗口,如果是,滑动获取下一个时间窗口,将得到的时间窗口作为当前时间窗口,执行步骤1;否则,执行步骤5;Step 4: Determine whether there is a time window that has not collected data, if yes, slide to obtain the next time window, use the obtained time window as the current time window, and perform step 1; otherwise, perform step 5;

步骤5:完成锂离子电池的电池模型的在线建模和荷电状态估计。Step 5: Complete the online modeling and state-of-charge estimation of the lithium-ion battery battery model.

图2是锂离子动力电池建模及SOC联合估计方法的原理图。如图2所示,本发明所述的一种电池在线建模与荷电状态的联合估计方法,具体包括以下步骤:Figure 2 is a schematic diagram of the joint estimation method of lithium-ion power battery modeling and SOC. As shown in Figure 2, a method for jointly estimating battery online modeling and state of charge according to the present invention specifically includes the following steps:

步骤1:利用阈值模型将电池模型中所包含的开路电压OCV与荷电状态SOC的非线性关系进行分段线性化,并可映射为电池端电压与荷电状态SOC的分段线性化关系。锂离子动力电池的开路电压(OCV)和锂离子电池荷电状态SOC关系函数为:Voc=f(SOC),f(·)为开路电压OCV与电池荷电状态SOC之间的非线性关系。它可以由一阈值模型进行分段线性逼近,即,Step 1: Use the threshold model to perform piecewise linearization of the nonlinear relationship between the open circuit voltage OCV and the state of charge SOC contained in the battery model, and map it to the piecewise linearization relationship between the battery terminal voltage and the state of charge SOC. The relationship between the open circuit voltage (OCV) of the lithium-ion power battery and the SOC of the lithium-ion battery state of charge is: V oc = f(SOC), f(·) is the nonlinear relationship between the open circuit voltage OCV and the SOC of the battery state of charge . It can be approximated piecewise linearly by a threshold model, namely,

λ1,…,λk为常系数,r1,…,rk-1为常数表示阈值,k为分段区域数。所映射的电池端电压与荷电状态SOC的分段线性化关系可表示为,λ 1 ,...,λ k are constant coefficients, r 1 ,...,r k-1 are constants representing thresholds, and k is the number of segmented regions. The piecewise linear relationship between the mapped battery terminal voltage and the state of charge SOC can be expressed as,

V和I分别表示测量得到的电池端电压和电流数据,Vp1为锂离子电池内第一组极化电压,Vp2为锂离子电池内第二组极化电压,R0为锂离子电池内响应电流变化的负载电阻。V and I represent the measured battery terminal voltage and current data respectively, V p1 is the first polarization voltage in the lithium-ion battery, V p2 is the second polarization voltage in the lithium-ion battery, and R 0 is the polarization voltage in the lithium-ion battery A load resistance that responds to changes in current.

步骤2:在选定的时间窗口内,对在线测量得到的电池端电压进行值域上的划分,仅利用在线测量得到的电池端电压和电流数据,在每一个分段区间建立ARMA模型。可表示为,Step 2: In the selected time window, divide the battery terminal voltage obtained by online measurement into the value range, and only use the battery terminal voltage and current data obtained by online measurement to establish an ARMA model in each subsection. can be expressed as,

Vt和It分别表示测量得到的电池端电压和电流数据时间序列;φj,i和θl,i分别表示在第i个分段区域内所建ARMA模型的系数,其中j和l分别表示为模型的阶数,且i=1,…k;φ0,1,…,φ0,k为所建ARMA模型的常数项;et,k表示预测误差。 V t and I t represent the time series of measured battery terminal voltage and current data respectively; Expressed as the order of the model, and i=1,...k; φ 0,1 ,...,φ 0,k are the constant items of the built ARMA model; e t,k represent the prediction error.

步骤3:将ARMA模型转化为对应的状态空间描述的电池模型,辨识电池模型参数。本实施例利用如图3所示的电池模型等效电路。所述建立可与各分段区域ARMA模型等价的状态空间方程,并建立系数求解方程,对于第i个分段区域,可建立电池的电气电路模型的状态空间表达式表示为Step 3: Transform the ARMA model into a battery model described by the corresponding state space, and identify the battery model parameters. This embodiment utilizes the battery model equivalent circuit shown in FIG. 3 . The establishment of state space equations that can be equivalent to the ARMA models of each segmented area, and the establishment of coefficient solution equations, for the ith segmented area, the state space expression of the electrical circuit model of the battery can be established as

X · = AX + BI V = CX + DI , 其中, x &Center Dot; = AX + BI V = CX + DI , in,

AA == -- 11 // RR sdsd CC cc 00 00 00 -- 11 // RR pp 11 CC pp 11 00 00 00 -- 11 // RR pp 22 CC pp 22 ,, BB == 11 // CC cc 11 // CC pp 11 11 // CC pp 22 TT ,, CC == λSOCλSOC 11 11 ,, DD. == RR 00 ,,

锂离子电池的状态X=[SOCVp1Vp2]T。它与ARMA模型在连续系统下存在以下求解方程 n 0 , i = 1 R p 1 R p 2 R sd C p 1 C p 2 C c , n 1 , i = 1 R p 1 R sd C p 1 C c + 1 R p 2 R sd C p 2 C c + 1 R p 1 R p 2 C p 1 C p 2 , n 2 , i = 1 R sd C c + 1 R p 1 C p 1 + 1 R p 2 C p 2 , The state X of the lithium-ion battery = [SOCV p1 V p2 ] T . It and the ARMA model have the following solution equations under the continuous system no 0 , i = 1 R p 1 R p 2 R sd C p 1 C p 2 C c , no 1 , i = 1 R p 1 R sd C p 1 C c + 1 R p 2 R sd C p 2 C c + 1 R p 1 R p 2 C p 1 C p 2 , no 2 , i = 1 R sd C c + 1 R p 1 C p 1 + 1 R p 2 C p 2 ,

mm 00 ,, ii == RR 00 RR pp 11 RR pp 22 RR sdsd CC pp 11 CC pp 22 CC cc ++ λλ RR pp 11 RR pp 22 CC pp 11 CC pp 22 CC cc ++ 11 RR pp 22 RR sdsd CC pp 11 CC pp 22 CC cc ++ 11 RR pp 11 ++ RR sdsd CC pp 11 CC pp 22 CC cc ,, mm 11 ,, ii == RR 00 RR pp 11 RR sdsd CC pp 11 CC cc ++ RR 00 RR pp 22 RR sdsd CC pp 22 CC cc ++ RR 00 RR pp 11 RR pp 22 CC pp 11 CC pp 22 ++ λλ RR pp 11 CC pp 11 CC cc ++ λλ RR pp 22 CC pp 22 CC cc ,, ++ 11 RR pp 22 CC pp 11 CC pp 22 ++ 11 RR sdsd CC pp 11 CC cc ++ 11 RR pp 11 CC pp 11 CC pp 22 ++ 11 RR sdsd CC pp 22 CC cc

m 2 , i = R 0 R sd C c + R 0 R p 1 C p 1 + R 0 R p 2 C p 2 + λ C c + 1 C p 1 + 1 C p 2 , m3,i=R0。其中,Rsd为锂离子电池自放电能量损失电阻,Cc为锂离子电池满容量电容,Rp1为锂离子电池内第一组极化电阻,Rp2为锂离子电池内第二组极化电阻,Cp1为锂离子电池内第一组极化电容,Cp2为锂离子电池内第二组极化电容。第i个分段区域的ARMA模型形式为:利用相应的变换方法,如双线性变换等,可将连续系统转换为离散系统,进而可建立φj,i和θl,i与锂离子电池内部各参数建立求解方程。利用相应的数值分析方法,如牛顿迭代法等,可以将需要辨识的电池参数R0、Rsd、Rp1、Rp2、Cp1、Cp2求解得到。 m 2 , i = R 0 R sd C c + R 0 R p 1 C p 1 + R 0 R p 2 C p 2 + λ C c + 1 C p 1 + 1 C p 2 , m 3,i =R 0 . Among them, R sd is the self-discharge energy loss resistance of the lithium-ion battery, C c is the full-capacity capacitance of the lithium-ion battery, R p1 is the first polarization resistance in the lithium-ion battery, and R p2 is the second polarization in the lithium-ion battery Resistance, C p1 is the first set of polarized capacitors in the lithium-ion battery, and C p2 is the second set of polarized capacitors in the lithium-ion battery. The form of the ARMA model for the i-th segmented region is: Using the corresponding transformation method, such as bilinear transformation etc., the continuous system can be converted into a discrete system, and then φ j,i and θ l,i can be established to solve equations with various internal parameters of the lithium-ion battery. The battery parameters R 0 , R sd , R p1 , R p2 , C p1 , and C p2 to be identified can be obtained by using corresponding numerical analysis methods, such as the Newton iterative method.

步骤4:构造状态观测器,对作为状态变量的荷电状态进行估计。锂离子的状态方程采用Step 4: Construct a state observer to estimate the state of charge as a state variable. The equation of state for lithium ions uses

Xx ^^ ·&Center Dot; == AA Xx ^^ ++ BIBI ++ LL (( VV -- VV ^^ )) VV ^^ == CC Xx ^^ ++ DIDI ,,

其中,L=[L1L2L3]T,L1为对锂离子电池荷电状态一阶导数的误差反馈量的增益系数;L2为对锂离子电池第一组极化电压一阶导数的误差反馈量的增益系数;L3为对锂离子电池第二组极化电压一阶导数的误差反馈量的增益系数;V为锂离子电池的端电压实际值;为锂离子电池的端电压估算值。可利用极点配置法或线性二次型法对增益系数进行求解。Among them, L=[ L1L2L3 ] T , L 1 is the gain coefficient of the error feedback of the first derivative of the state of charge of the lithium-ion battery; L 2 is the error feedback of the first derivative of the polarization voltage of the lithium-ion battery The gain factor of; L 3 is the gain factor of the error feedback amount to the first derivative of the second group of polarization voltage of the lithium-ion battery; V is the actual value of the terminal voltage of the lithium-ion battery; Estimated value for the terminal voltage of a Li-ion battery. The gain coefficient can be solved using the pole placement method or the linear quadratic method.

步骤5:滑动时间窗口,采集下一组电池端电压和电流数据参与计算。Step 5: Sliding the time window, collecting the next set of battery terminal voltage and current data to participate in the calculation.

选取1节LiMn2O4电池,单体电池的标称电压为3.6V,标称容量为15Ah。在FUDS工况下,利用所述方法得到电池模型参数,进而得到SOC估计结果如图4所示,估计误差如图5所示。Choose one LiMn 2 O 4 battery, the nominal voltage of the single cell is 3.6V, and the nominal capacity is 15Ah. Under the FUDS working condition, the battery model parameters are obtained by using the method, and then the SOC estimation result is shown in Figure 4, and the estimation error is shown in Figure 5.

如图6所示,为本发明所述的一种电池在线建模与荷电状态的联合估计系统,包括采集模块1、电池模型模块2、状态变量估计模块3和判断模块4;As shown in Figure 6, it is a battery online modeling and charge state joint estimation system according to the present invention, including an acquisition module 1, a battery model module 2, a state variable estimation module 3 and a judgment module 4;

所述采集模块1用于采集当前时间窗口内的电池端电压值数据和电池端电流值数据;The collection module 1 is used to collect battery terminal voltage value data and battery terminal current value data within the current time window;

所述电池模型模块2用于根据不同的电压值数据进行值域划分,得到多个分段区间,对每一个分段区间建立自回归移动平均模型,将自回归移动平均模型转换为电池模型,并辨识电池模型参数;The battery model module 2 is used to divide the value range according to different voltage value data to obtain multiple segment intervals, establish an autoregressive moving average model for each segment interval, and convert the autoregressive moving average model into a battery model, And identify the battery model parameters;

所述估计模块3用于构造状态观测器,对作为状态变量的荷电状态SOC进行估计,得到荷电状态SOC的估计值;The estimation module 3 is used to construct a state observer, estimate the state of charge SOC as a state variable, and obtain an estimated value of the state of charge SOC;

所述判断模块4用于判断是否存在未采集数据的时间窗口,如果是,滑动获取下一个时间窗口,将得到的时间窗口作为当前时间窗口,采集下一组电池端电压和电流数据参与计算;否则,完成锂离子电池的电池模型的在线建模和荷电状态估计。The judging module 4 is used to judge whether there is a time window for which data has not been collected, and if so, slide to obtain the next time window, use the obtained time window as the current time window, and collect the next group of battery terminal voltage and current data to participate in the calculation; Otherwise, complete the online modeling and state of charge estimation of the battery model of the lithium-ion battery.

所述电池模型模块2包括建模模块21和模型转换模块22;The battery model module 2 includes a modeling module 21 and a model conversion module 22;

所述建模模块21用于根据不同的电压值数据进行值域划分,得到多个分段区间,对每一个分段区间利用在线测量得到的电池端电压值数据和电池端电流值数据建立自回归移动平均模型;The modeling module 21 is used to divide the value range according to different voltage value data to obtain a plurality of segmented intervals, and for each segmented interval, the battery terminal voltage value data and battery terminal current value data obtained by online measurement are used to establish regression moving average model;

所述模型转换模块22将自回归移动平均模型转化为对应的状态空间描述的电池模型,并辨识电池模型参数。The model conversion module 22 converts the autoregressive moving average model into a battery model described by the corresponding state space, and identifies battery model parameters.

所述状态变量估计模块3包括线性化模块31和估计值模块32;The state variable estimation module 3 includes a linearization module 31 and an estimated value module 32;

所述线性化模块31用于利用阈值模型将电池模型中所包含的开路电压OCV与荷电状态SOC的非线性关系进行分段线性化,并可映射为电池端电压与荷电状态SOC的分段线性化关系;The linearization module 31 is used to linearize the non-linear relationship between the open circuit voltage OCV and the state of charge SOC contained in the battery model by using the threshold model, and can be mapped to a breakdown of the battery terminal voltage and the state of charge SOC. Segment linearization relationship;

所述估计值模块32用于根据电池模型中的线性关系构造状态观测器,对作为状态变量的荷电状态SOC进行估计,得到荷电状态SOC的估计值。The estimated value module 32 is used to construct a state observer according to the linear relationship in the battery model, estimate the state of charge SOC as a state variable, and obtain an estimated value of the state of charge SOC.

所述利用阈值模型将电池模型中所包含的开路电压OCV与荷电状态SOC的非线性关系进行分段线性化的关键是,根据开路电压OCV和锂离子电池荷电状态SOC的线性化模型参数,确定电池模型参数。The key to performing piecewise linearization of the nonlinear relationship between the open circuit voltage OCV and the state of charge SOC contained in the battery model by using the threshold model is to use the linearization model parameters of the open circuit voltage OCV and the state of charge SOC of the lithium-ion battery , to determine the battery model parameters.

所述下一个时间窗口的确定可以根据非线性强弱程度,对时间窗口的长短进行缩放。The determination of the next time window may scale the length of the time window according to the strength of the nonlinearity.

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.

Claims (10)

1.一种电池在线建模与荷电状态的联合估计方法,其特征在于,具体包括以下步骤:1. A method for jointly estimating battery online modeling and state of charge, characterized in that, specifically comprising the following steps: 步骤1:采集当前时间窗口内的电池端电压值数据和电池端电流值数据;Step 1: Collect battery terminal voltage value data and battery terminal current value data within the current time window; 步骤2:根据不同的电压值数据进行值域划分,得到多个分段区间,对每一个分段区间建立自回归移动平均模型,将自回归移动平均模型转换为电池模型,并辨识电池模型参数;Step 2: Divide the value range according to different voltage value data to obtain multiple segment intervals, establish an autoregressive moving average model for each segment interval, convert the autoregressive moving average model into a battery model, and identify battery model parameters ; 步骤3:构造状态观测器,对作为状态变量的荷电状态SOC进行估计,得到荷电状态SOC的估计值;Step 3: Construct a state observer, estimate the state of charge SOC as a state variable, and obtain the estimated value of the state of charge SOC; 步骤4:判断是否存在未采集数据的时间窗口,如果是,滑动获取下一个时间窗口,将得到的时间窗口作为当前时间窗口,执行步骤1;否则,执行步骤5;Step 4: Determine whether there is a time window that has not collected data, if yes, slide to obtain the next time window, use the obtained time window as the current time window, and perform step 1; otherwise, perform step 5; 步骤5:完成锂离子电池的电池模型的在线建模和荷电状态估计。Step 5: Complete the online modeling and state-of-charge estimation of the lithium-ion battery battery model. 2.根据权利要求1所述的一种电池在线建模与荷电状态的联合估计方法,其特征在于,所述步骤2具体包括以下步骤:2. A method for jointly estimating battery online modeling and state of charge according to claim 1, wherein said step 2 specifically comprises the following steps: 步骤2.1:根据不同的电压值数据进行值域划分,得到多个分段区间,对每一个分段区间利用在线测量得到的电池端电压值数据和电池端电流值数据建立自回归移动平均模型;Step 2.1: Carry out value range division according to different voltage value data to obtain multiple subsection intervals, and establish an autoregressive moving average model for each subsection interval using the battery terminal voltage value data and battery terminal current value data obtained by online measurement; 步骤2.2:将自回归移动平均模型转化为对应的状态空间描述的电池模型,并辨识电池模型参数。Step 2.2: Transform the autoregressive moving average model into the battery model described by the corresponding state space, and identify the battery model parameters. 3.根据权利要求1或2所述的一种电池在线建模与荷电状态的联合估计方法,其特征在于,所述步骤3具体包括以下步骤:3. A method for jointly estimating battery online modeling and state of charge according to claim 1 or 2, wherein the step 3 specifically includes the following steps: 步骤3.1:利用阈值模型将电池模型中所包含的开路电压OCV与荷电状态SOC的非线性关系进行分段线性化,并可映射为电池端电压与荷电状态SOC的分段线性化关系;Step 3.1: Use the threshold model to perform piecewise linearization of the nonlinear relationship between the open circuit voltage OCV and the state of charge SOC contained in the battery model, and map it to the piecewise linearization relationship between the battery terminal voltage and the state of charge SOC; 步骤3.2:根据电池模型中的线性关系构造状态观测器,对作为状态变量的荷电状态SOC进行估计,得到荷电状态SOC的估计值。Step 3.2: Construct a state observer according to the linear relationship in the battery model, estimate the state of charge SOC as a state variable, and obtain the estimated value of the state of charge SOC. 4.根据权利要求3所述的一种电池在线建模与荷电状态的联合估计方法,其特征在于,所述利用阈值模型将电池模型中所包含的开路电压OCV与荷电状态SOC的非线性关系进行分段线性化的关键是,根据开路电压OCV和锂离子电池荷电状态SOC的线性化模型参数,确定电池模型参数。4. A method for jointly estimating battery online modeling and state of charge according to claim 3, characterized in that the threshold model is used to compare the difference between the open circuit voltage OCV contained in the battery model and the state of charge SOC The key to the piecewise linearization of the linear relationship is to determine the battery model parameters according to the linearization model parameters of the open circuit voltage OCV and the state of charge SOC of the lithium-ion battery. 5.根据权利要求1所述的一种电池在线建模与荷电状态的联合估计方法,其特征在于,所述下一个时间窗口的确定可以根据非线性强弱程度,对时间窗口的长短进行缩放。5. A method for jointly estimating battery online modeling and state of charge according to claim 1, characterized in that the determination of the next time window can be carried out according to the degree of nonlinear strength, the length of the time window zoom. 6.一种电池在线建模与荷电状态的联合估计系统,其特征在于,包括采集模块、电池模型模块、状态变量估计模块和判断模块;6. A joint estimation system for battery online modeling and state of charge, comprising an acquisition module, a battery model module, a state variable estimation module and a judgment module; 所述采集模块用于采集当前时间窗口内的电池端电压值数据和电池端电流值数据;The collection module is used to collect battery terminal voltage value data and battery terminal current value data within the current time window; 所述电池模型模块用于根据不同的电压值数据进行值域划分,得到多个分段区间,对每一个分段区间建立自回归移动平均模型,将自回归移动平均模型转换为电池模型,并辨识电池模型参数;The battery model module is used to divide the value range according to different voltage value data to obtain multiple segment intervals, establish an autoregressive moving average model for each segment interval, convert the autoregressive moving average model into a battery model, and Identify battery model parameters; 所述估计模块用于构造状态观测器,对作为状态变量的荷电状态SOC进行估计,得到荷电状态SOC的估计值;The estimation module is used for constructing a state observer, estimating the state of charge SOC as a state variable, and obtaining an estimated value of the state of charge SOC; 所述判断模块用于判断是否存在未采集数据的时间窗口,如果是,滑动获取下一个时间窗口,将得到的时间窗口作为当前时间窗口,采集下一组电池端电压和电流数据参与计算;否则,完成锂离子电池的电池模型的在线建模和荷电状态估计。The judging module is used to judge whether there is a time window for which data has not been collected, and if so, slide to obtain the next time window, use the obtained time window as the current time window, and collect the next set of battery terminal voltage and current data to participate in the calculation; otherwise , to complete the online modeling and state of charge estimation of the lithium-ion battery battery model. 7.根据权利要求6所述的一种电池在线建模与荷电状态的联合估计系统,其特征在于,所述电池模型模块包括建模模块和模型转换模块;7. A system for jointly estimating battery online modeling and state of charge according to claim 6, wherein the battery model module includes a modeling module and a model conversion module; 所述建模模块用于根据不同的电压值数据进行值域划分,得到多个分段区间,对每一个分段区间利用在线测量得到的电池端电压值数据和电池端电流值数据建立自回归移动平均模型;The modeling module is used to divide the value range according to different voltage value data to obtain a plurality of segmented intervals, and to establish an auto-regression for each segmented interval using the battery terminal voltage value data and battery terminal current value data obtained by online measurement moving average model; 所述模型转换模块将自回归移动平均模型转化为对应的状态空间描述的电池模型,并辨识电池模型参数。The model conversion module converts the autoregressive moving average model into a battery model described by the corresponding state space, and identifies battery model parameters. 8.根据权利要求6或7所述的一种电池在线建模与荷电状态的联合估计系统,其特征在于,所述状态变量估计模块包括线性化模块和估计值模块;8. A system for jointly estimating battery online modeling and state of charge according to claim 6 or 7, wherein the state variable estimation module includes a linearization module and an estimated value module; 所述线性化模块用于利用阈值模型将电池模型中所包含的开路电压OCV与荷电状态SOC的非线性关系进行分段线性化,并可映射为电池端电压与荷电状态SOC的分段线性化关系;The linearization module is used to linearize the nonlinear relationship between the open circuit voltage OCV and the state of charge SOC contained in the battery model by using the threshold model, and can be mapped to a segmented relationship between the battery terminal voltage and the state of charge SOC Linearization relationship; 所述估计值模块用于根据电池模型中的线性关系构造状态观测器,对作为状态变量的荷电状态SOC进行估计,得到荷电状态SOC的估计值。The estimated value module is used to construct a state observer according to the linear relationship in the battery model, estimate the state of charge SOC as a state variable, and obtain an estimated value of the state of charge SOC. 9.根据权利要求8所述的一种电池在线建模与荷电状态的联合估计系统,其特征在于,所述利用阈值模型将电池模型中所包含的开路电压OCV与荷电状态SOC的非线性关系进行分段线性化的关键是,根据开路电压OCV和锂离子电池荷电状态SOC的线性化模型参数,确定电池模型参数。9. A system for jointly estimating battery online modeling and state of charge according to claim 8, wherein the threshold model is used to compare the difference between the open circuit voltage OCV contained in the battery model and the state of charge SOC The key to the piecewise linearization of the linear relationship is to determine the battery model parameters according to the linearization model parameters of the open circuit voltage OCV and the state of charge SOC of the lithium-ion battery. 10.根据权利要求6所述的一种电池在线建模与荷电状态的联合估计系统,其特征在于,所述下一个时间窗口的确定可以根据非线性强弱程度,对时间窗口的长短进行缩放。10. A joint battery online modeling and state of charge estimation system according to claim 6, characterized in that the determination of the next time window can be performed on the length of the time window according to the degree of nonlinear strength zoom.
CN201510093761.0A 2015-03-02 2015-03-02 The combined estimation method and system of a kind of battery line modeling and state-of-charge Active CN105093114B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510093761.0A CN105093114B (en) 2015-03-02 2015-03-02 The combined estimation method and system of a kind of battery line modeling and state-of-charge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510093761.0A CN105093114B (en) 2015-03-02 2015-03-02 The combined estimation method and system of a kind of battery line modeling and state-of-charge

Publications (2)

Publication Number Publication Date
CN105093114A true CN105093114A (en) 2015-11-25
CN105093114B CN105093114B (en) 2017-12-08

Family

ID=54573993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510093761.0A Active CN105093114B (en) 2015-03-02 2015-03-02 The combined estimation method and system of a kind of battery line modeling and state-of-charge

Country Status (1)

Country Link
CN (1) CN105093114B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717460A (en) * 2016-02-19 2016-06-29 深圳大学 Power battery SOC estimation method and system based on nonlinear observer
CN106553551A (en) * 2016-11-18 2017-04-05 北京车和家信息技术有限责任公司 A kind of battery remaining power acquisition methods, battery management system and electric automobile
CN107037374A (en) * 2017-05-04 2017-08-11 广东电网有限责任公司电力科学研究院 A kind of SOC and SOH combined estimation methods of lithium ion battery
CN107422272A (en) * 2017-07-07 2017-12-01 淮阴工学院 A kind of electric automobile power battery SOC intellectualized detection devices
CN107436409A (en) * 2017-07-07 2017-12-05 淮阴工学院 A kind of electric automobile power battery SOC intelligent predicting devices
CN107817451A (en) * 2017-11-24 2018-03-20 北京机械设备研究所 Discrimination method, system and the storage medium of electrokinetic cell model on-line parameter
CN107991628A (en) * 2018-01-15 2018-05-04 厦门大学 A kind of battery model modeling method based on correlation and regression analysis
CN108051756A (en) * 2017-12-14 2018-05-18 株洲广锐电气科技有限公司 Evaluation method, system and the storage medium of accumulator SOC
CN108732504A (en) * 2018-03-29 2018-11-02 上海理工大学 The identification of lithium battery equivalent circuit model parameter and optimization method in full charge area
CN109800446A (en) * 2018-12-05 2019-05-24 国联汽车动力电池研究院有限责任公司 A kind of lithium ion battery discharge process voltage inconsistency estimation method and device
CN110414117A (en) * 2019-07-23 2019-11-05 北京航空航天大学 A method for predicting the sealing reliability of soft-pack lithium-ion batteries
CN111257764A (en) * 2020-02-24 2020-06-09 上海蔚来汽车有限公司 Method, system and device for monitoring battery short circuit
CN111537906A (en) * 2020-05-29 2020-08-14 厦门金龙联合汽车工业有限公司 Method for evaluating multiple health parameters of lithium iron phosphate battery system
CN112379270A (en) * 2020-11-13 2021-02-19 哈尔滨工业大学 Electric vehicle power battery state of charge rolling time domain estimation method
CN112379272A (en) * 2020-11-16 2021-02-19 北京理工大学 Lithium ion battery system SOC estimation method based on artificial intelligence
CN115015766A (en) * 2022-07-20 2022-09-06 常州工业职业技术学院 Quick response method for estimating state of charge of lithium battery
US11592490B2 (en) * 2016-06-28 2023-02-28 Bayerische Motoren Werke Aktiengesellschaft Method and device for estimating a voltage of a battery
CN116540125A (en) * 2023-07-05 2023-08-04 中国华能集团清洁能源技术研究院有限公司 Diagnosis method and system for battery state-of-charge estimation fault

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347517A (en) * 2011-06-29 2012-02-08 重庆长安汽车股份有限公司 Adaptive SOC (state of charge) estimation method and system of service life state
JP2013044598A (en) * 2011-08-23 2013-03-04 Toyota Motor Corp System for managing deterioration of secondary battery
CN103294848A (en) * 2013-05-03 2013-09-11 中国航天标准化研究所 Satellite solar cell array life forecast method based on mixed auto-regressive and moving average (ARMA) model
CN103293485A (en) * 2013-06-10 2013-09-11 北京工业大学 Model-based storage battery SOC (state of charge) estimating method
CN103852727A (en) * 2014-02-14 2014-06-11 清华大学深圳研究生院 Method and device for estimating power battery charge state on line
CN103901351A (en) * 2014-03-18 2014-07-02 浙江大学城市学院 Single lithium ion battery SOC estimation method based on sliding window filtering
US20140210418A1 (en) * 2013-01-29 2014-07-31 Mitsubishi Electric Research Laboratories, Inc. Method for Estimating State of Charge for Lithium-Ion Batteries
CN104360282A (en) * 2014-11-19 2015-02-18 奇瑞汽车股份有限公司 State of charge (SOC) estimation method of variable length sliding window by identifying battery parameters

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347517A (en) * 2011-06-29 2012-02-08 重庆长安汽车股份有限公司 Adaptive SOC (state of charge) estimation method and system of service life state
JP2013044598A (en) * 2011-08-23 2013-03-04 Toyota Motor Corp System for managing deterioration of secondary battery
US20140210418A1 (en) * 2013-01-29 2014-07-31 Mitsubishi Electric Research Laboratories, Inc. Method for Estimating State of Charge for Lithium-Ion Batteries
CN103294848A (en) * 2013-05-03 2013-09-11 中国航天标准化研究所 Satellite solar cell array life forecast method based on mixed auto-regressive and moving average (ARMA) model
CN103293485A (en) * 2013-06-10 2013-09-11 北京工业大学 Model-based storage battery SOC (state of charge) estimating method
CN103852727A (en) * 2014-02-14 2014-06-11 清华大学深圳研究生院 Method and device for estimating power battery charge state on line
CN103901351A (en) * 2014-03-18 2014-07-02 浙江大学城市学院 Single lithium ion battery SOC estimation method based on sliding window filtering
CN104360282A (en) * 2014-11-19 2015-02-18 奇瑞汽车股份有限公司 State of charge (SOC) estimation method of variable length sliding window by identifying battery parameters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高明煜: "动力电池组SOC在线估计模型与方法研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717460B (en) * 2016-02-19 2018-05-22 深圳大学 A kind of power battery SOC methods of estimation and system based on nonlinear observer
CN105717460A (en) * 2016-02-19 2016-06-29 深圳大学 Power battery SOC estimation method and system based on nonlinear observer
US11592490B2 (en) * 2016-06-28 2023-02-28 Bayerische Motoren Werke Aktiengesellschaft Method and device for estimating a voltage of a battery
CN106553551A (en) * 2016-11-18 2017-04-05 北京车和家信息技术有限责任公司 A kind of battery remaining power acquisition methods, battery management system and electric automobile
CN106553551B (en) * 2016-11-18 2019-03-01 北京车和家信息技术有限公司 A kind of battery remaining power acquisition methods, battery management system and electric car
CN107037374A (en) * 2017-05-04 2017-08-11 广东电网有限责任公司电力科学研究院 A kind of SOC and SOH combined estimation methods of lithium ion battery
CN107037374B (en) * 2017-05-04 2019-10-08 广东电网有限责任公司电力科学研究院 A kind of SOC and SOH combined estimation method of lithium ion battery
CN107422272A (en) * 2017-07-07 2017-12-01 淮阴工学院 A kind of electric automobile power battery SOC intellectualized detection devices
WO2019006995A1 (en) * 2017-07-07 2019-01-10 淮阴工学院 Intelligent prediction system for power battery soc of electric vehicle
CN107436409A (en) * 2017-07-07 2017-12-05 淮阴工学院 A kind of electric automobile power battery SOC intelligent predicting devices
CN107817451B (en) * 2017-11-24 2020-06-16 北京机械设备研究所 Method and system for identifying online parameters of power battery model and storage medium
CN107817451A (en) * 2017-11-24 2018-03-20 北京机械设备研究所 Discrimination method, system and the storage medium of electrokinetic cell model on-line parameter
CN108051756A (en) * 2017-12-14 2018-05-18 株洲广锐电气科技有限公司 Evaluation method, system and the storage medium of accumulator SOC
CN107991628B (en) * 2018-01-15 2019-10-22 厦门大学 A Modeling Method of Battery Model Based on Correlation and Regression Analysis
CN107991628A (en) * 2018-01-15 2018-05-04 厦门大学 A kind of battery model modeling method based on correlation and regression analysis
CN108732504A (en) * 2018-03-29 2018-11-02 上海理工大学 The identification of lithium battery equivalent circuit model parameter and optimization method in full charge area
CN109800446A (en) * 2018-12-05 2019-05-24 国联汽车动力电池研究院有限责任公司 A kind of lithium ion battery discharge process voltage inconsistency estimation method and device
CN110414117A (en) * 2019-07-23 2019-11-05 北京航空航天大学 A method for predicting the sealing reliability of soft-pack lithium-ion batteries
CN110414117B (en) * 2019-07-23 2020-11-06 北京航空航天大学 A method for predicting sealing reliability of soft-pack lithium-ion battery
CN111257764A (en) * 2020-02-24 2020-06-09 上海蔚来汽车有限公司 Method, system and device for monitoring battery short circuit
CN111537906B (en) * 2020-05-29 2022-06-03 厦门金龙联合汽车工业有限公司 Method for evaluating multiple health parameters of lithium iron phosphate battery system
CN111537906A (en) * 2020-05-29 2020-08-14 厦门金龙联合汽车工业有限公司 Method for evaluating multiple health parameters of lithium iron phosphate battery system
CN112379270A (en) * 2020-11-13 2021-02-19 哈尔滨工业大学 Electric vehicle power battery state of charge rolling time domain estimation method
CN112379270B (en) * 2020-11-13 2024-01-30 哈尔滨工业大学 Rolling time domain estimation method for state of charge of power battery of electric automobile
CN112379272A (en) * 2020-11-16 2021-02-19 北京理工大学 Lithium ion battery system SOC estimation method based on artificial intelligence
CN115015766A (en) * 2022-07-20 2022-09-06 常州工业职业技术学院 Quick response method for estimating state of charge of lithium battery
CN116540125A (en) * 2023-07-05 2023-08-04 中国华能集团清洁能源技术研究院有限公司 Diagnosis method and system for battery state-of-charge estimation fault
CN116540125B (en) * 2023-07-05 2023-10-03 中国华能集团清洁能源技术研究院有限公司 A diagnostic method and system for battery state-of-charge estimation fault

Also Published As

Publication number Publication date
CN105093114B (en) 2017-12-08

Similar Documents

Publication Publication Date Title
CN105093114A (en) Battery online modeling and state of charge combined estimating method and system
Meng et al. Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles
Liu et al. A new method of modeling and state of charge estimation of the battery
Kang et al. A new neural network model for the state-of-charge estimation in the battery degradation process
Sun et al. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles
Pei et al. Relaxation model of the open‐circuit voltage for state‐of‐charge estimation in lithium‐ion batteries
Hu et al. Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries
Wang et al. A method for state-of-charge estimation of LiFePO4 batteries at dynamic currents and temperatures using particle filter
CN102937704B (en) An identification method for RC equivalent model of power battery
Prasad et al. Model based identification of aging parameters in lithium ion batteries
CN103197251B (en) An identification method for the second-order RC equivalent model of power lithium battery
He et al. An improved coulomb counting approach based on numerical iteration for SOC estimation with real-time error correction ability
Li et al. A comparative study of state of charge estimation algorithms for LiFePO4 batteries used in electric vehicles
Xiong et al. A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles
Ye et al. State-of-charge estimation with adaptive extended Kalman filter and extended stochastic gradient algorithm for lithium-ion batteries
CN102680795B (en) Real-time on-line estimation method for internal resistance of secondary battery
CN103439666A (en) Geometric method for evaluating capacity recession of lithium ion battery
Wang et al. Battery available power prediction of hybrid electric vehicle based on improved Dynamic Matrix Control algorithms
CN112710955B (en) An Algorithm for Improving the Accuracy of Battery Capacity Estimation
KR20120028000A (en) A method for the soc estimation of li-ion battery and a system for its implementation
Xiong et al. Data-driven state-of-charge estimator for electric vehicles battery using robust extended Kalman filter
CN104297578B (en) Ultracapacitor group state-of-charge method of estimation based on sliding mode observer
CN103675703B (en) A kind of for battery charge state method of estimation
Qiuting et al. State of health estimation for lithium-ion battery based on D-UKF
Chen et al. State of charge and state of health estimation for lithium-ion battery through dual sliding mode observer based on AMESim-Simulink co-simulation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20171115

Address after: 212200 Jiangsu city of Zhenjiang province Yangzhong City three Street No. 666 North Road, Mao bamboo

Applicant after: Jiangsu Shore Power Technology Co., Ltd.

Address before: 100044 Beijing city Haidian District Xizhimen Shangyuan Village No. 3

Applicant before: Beijing Jiaotong University

GR01 Patent grant
GR01 Patent grant