CN105092158A - 用于检测涡轮机中流体泄露的方法和用于分配流体的系统 - Google Patents

用于检测涡轮机中流体泄露的方法和用于分配流体的系统 Download PDF

Info

Publication number
CN105092158A
CN105092158A CN201510257835.XA CN201510257835A CN105092158A CN 105092158 A CN105092158 A CN 105092158A CN 201510257835 A CN201510257835 A CN 201510257835A CN 105092158 A CN105092158 A CN 105092158A
Authority
CN
China
Prior art keywords
temperature
gaseous fluid
pipeline
compartment
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510257835.XA
Other languages
English (en)
Other versions
CN105092158B (zh
Inventor
亚历山大·帕特里克·雅克·罗杰·伊夫林
阿诺·罗丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of CN105092158A publication Critical patent/CN105092158A/zh
Application granted granted Critical
Publication of CN105092158B publication Critical patent/CN105092158B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • F01D17/085Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure to temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/12Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • F02C6/08Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas the gas being bled from the gas-turbine compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/047Heating to prevent icing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/002Investigating fluid-tightness of structures by using thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/025Details with respect to the testing of engines or engine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/309Rate of change of parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

本发明涉及用于检测涡轮机(10)中流体泄露的方法。涡轮机(10)包括高温流体源;至少一个流体分配管线(14,15),其用于将所述流体分配至涡轮机(10)和/或飞行器(20)(其装备有所述涡轮机(10))的不同部件;涡轮机区室,其中至少部分地容置有分配管线(14,15),所述区室在运行中相对于流体源所供应的流体的高的温度具有较低的温度。该方法包括下述步骤:测量区室中在两个时刻之间的温度变化,以获得温度梯度;并且如果温度梯度大于或等于阈值温度梯度,则检测出流体泄露。本发明还涉及对用于涡轮机的高温流体进行分配的系统以及包括该用于分配流体的系统的涡轮机(10)。

Description

用于检测涡轮机中流体泄露的方法和用于分配流体的系统
技术领域
本发明涉及涡轮机领域,并且尤其涉及装备有这种涡轮机的用于分配流体的系统的领域。
背景技术
尤其用于在涡轮机中分配加压气态流体的系统通常包含数量庞大的管线,这些管线中的一些可被至少部分地布置在涡轮机的敏感区室中。
因此,由于这些加压气体流体通常具有高的温度,所以涡轮机的这些敏感区室中的一个中的管线的最轻微的泄露就能造成问题并且损坏该涡轮机。对于启动器的短舱防冰(NacelleAnti-Icing,NAI)回路和加压空气供应回路而言尤其是这种情况,短舱防冰回路和加压空气供应回路被部分地容置在风扇区室的一区域中,所述区域径向地位于涡轮机风扇壳体之外并且位于短舱之内。
实际上,涡轮机风扇(并且尤其是风扇区室)可包括低耐温性的复合材料元件。然而,进入NAI回路的加压空气在风扇区室中的泄露可在这一区室中导致强烈的温度升高(可能超过350℃)。在这些温度下,所述复合材料元件仅能够在相对较短的一段时间内(通常大约15s)保持其完整性。
出于这些原因,因此需要建立用于检测(无论管线处或装配有所述管线的阀处的)气体流体泄露的方法。
这种用于检测泄露的方法从文件US2013226395和US2013340442中可知。这两种方法在于:尤其通过监控管线和/或敏感区室中的压力来控制用于分配流体的系统的管线的一个或多个阀的状态。
然而,这两种方法仅部分地解决了监控涡轮机的敏感区室中的高温气体流体泄露的问题。实际上,通过这些方法能够例如检测将保持打开的阀,并且通过这种持续的连通可能会潜在地造成敏感区室中的温度升高,这些方法不适于检测与来自管线的管道的碎裂或松脱相关联的泄露。此外,当系统具有多个管线时,这些方法必须对进入所述敏感区室的管线中的每个都应用。
还从现有技术得知的是,将温度传感器安装在敏感区室中。这些温度传感器能够通过检测任何反常的温度升高来在这些敏感区室中建立流体监控方法。这种温度监控因此实现对高温流体在敏感区室中的非正常地流入的检测,所述高温流体在敏感区室中的非正常地流入仅可由高温流体泄露引起。
因此,这种用于检测泄露的方法能够检测高温流体泄露而不论泄露的起因和可能发生泄露的管线的数量。但是,如图1所示,所使用的温度传感器具有一定的惯性(inertia)。实际上,图1中的曲线图示出区室中在模拟气体流体泄露期间的真实温度901,以及与其对比的通过温度传感器测得的温度902。因此,虽然气体流体泄露导致区室中的几乎立即地温度升高(总的温度增加时间小于5s),但是温度传感器显示出更加缓慢的温度升高(大约130-140s),因为作为低通滤波器作用于环境温度的传感器具有高的时间常数。例如,对于120℃的阈值温度被认为是低耐温性的复合材料元件的极限,鉴于所述元件在小于1秒的时间内达到该极限,有必要在大约15s内检测到这一点。如果我们在这一时期上再加上通常为8s的潜在期(latencyperiod)用以处理信息以及使涡轮机的处理单元关闭流体分配系统的管线的阀,将导致复合材料元件在大约23s的时间期间经受这一极限温度。因为这一时间理论上不应超过15s(以便维持复合材料元件的完整性),如果潜在期为8s的话,则有必要将检测时间减少至例如小于7s。
这一问题尤其存在于用于分配流体(尤其是气体流体)的系统中,所述分配流体的系统包括飞行器和涡轮机的启动器的高温加压空气供应管线以及NAI回路的空气供应管线。实际上,这些管线具有尤其被容置在涡轮机的风扇区室中的管道,特别是用以向启动器和空气进气斗的防冰回路供应加压空气。然而,正如已经指出的,风扇区室由于其所包含的复合材料元件而尤其敏感。因此,重要的是,这种用于分配高温加压空气的系统应当能够检测风扇区室中的高温空气泄露。
发明内容
本发明的目标是克服这一缺陷,并且因此,本发明的目的是提供一种用于检测涡轮机中的高温流体泄露的方法,该方法能够检测涡轮机区室中的高温流体泄露(无论泄露的起因如何),并且与现有技术相比所用的检测时间减少了。
为此,本发明涉及一种用于检测飞行器涡轮机中的气体流体泄露的方法,所述涡轮机包括:
-高温气体流体源,
-至少一个气体流体分配管线,所述至少一个气体流体分配管线适于将所述气体流体分配至涡轮机的和/或飞行器的不同部件,
-涡轮机区室,分配管线被至少部分地容置在所述涡轮机区室中,
所述区室含有在运行中具有温度和压力比所述气体流体的温度和压力更低的空气,
所述方法包括下述步骤:
-在所述区室中的至少一个位置处测量空气在两个时刻之间的温度变化,以获得温度梯度,
-如果所述温度梯度大于或等于阈值温度梯度,则检测到所述区室中的气体流体泄露。这种方法使得能够在比利用温度阈值的简单检测短得多的时间内检测区室中的高温气体流体泄露。实际上,如图1所示,在泄露期间流入到区室中的气体流体通常造成区室中的温度升高,区室中的温度升高几乎是立即发生的并且对测得的温度具有直接影响。测得的温度变化以及测得的温度梯度对于发现气体流体的泄露的第一时刻这个方面来说是重要的。
因此,这一检测方法使得能够对区室中的高温气体流体泄露的出现进行检测,并且其检测时间比能够检测气体流体泄露的现有技术方法的检测时间大约短十倍(无论泄露的起因如何)。
在本文件的上文和其它部分中,相对于高温而言的低温表示由气体流体源所供应的高温气体流体与区室中的普遍温度之间的温差大于50℃,并且优选地大于100℃。因此,区室中的空气的温度低于气体流体的温度,所述区室中的空气的温度可被看作相对气体流体的高温而言的低温。
相似地,检测泄露的步骤优选地为在温度梯度严格大于(strictlygreater)阈值温度梯度的情况下用于检测到气体流体泄露的步骤。
所述方法可进一步包括下述步骤:
-在所述区室中的一个位置处测量空气的温度,
-如果测得的温度大于或等于阈值温度,则检测到所述区室中的气体流体泄露。
这种补充检测步骤尤其适用于检测导致容纳空间的温度升高的低强度高温气体流体泄露。
可在区室的至少两个位置处执行对温度变化的测量,以获得至少两个温度梯度,如果两个温度梯度中的至少一个大于阈值温度梯度,则检测到流体泄露。
利用冗余传感器(redundantsensors)所提供的这种检测能够实现可靠的检测而不论区室中的气体流体泄露的位置在哪。
所述方法可包括另一步骤:
-当涡轮机处于温度梯度大于或等于阈值温度梯度的预定状态时,使对泄露进行检测的步骤被禁止。
所述方法可包括另一步骤:
-根据涡轮机的状态修改阈值温度梯度。
禁止的步骤和修改阈值梯度的步骤能够避免对流体泄露进行错误的检测,所述错误的检测可能是由于涡轮机的某些极端的运行配置(例如,启动)所引起。
所述方法可包括另一步骤:
-如果检测到泄露,则将所述区室上游的气体流体管线关闭。
所述区室可被径向地安置在风扇壳体和涡轮机短舱之间。
对空气温度梯度进行测量的至少一个位置可以为设置在距至少气体流体管线一距离处的位置,所述距离介于气体流体管线的外径的一半和气体流体管线的外径的四倍之间。
应理解的是,通过位置相对地相距一距离,在空气温度变化测量位置和至少一个气体流体分配管线的外表面之间设置有一定的距离,以便允许提供在正常运转(即,不发生气体流体泄露)时不大被至少一个管网干扰的温度变化测量。特别地,如果温度传感器处于与传感器位置一致的测量位置,则传感器壳体将被设置成不与至少一个气体流体管线的外表面接触。在正常运转时,至少一个流体管线中的可能的气体流体温度波动并不意味着测量位置处的空气温度的显著变化。
然而,在区室中气体流体泄露的情况下,测量位置处的空气温度变化显著至足以使温度梯度超过温度梯度阈值。相对于被设置在气体流体管线的外表面上的测量位置,这种布置允许检测的响应更灵敏,在被设置在气体流体管线的外表面上的测量位置的情况下,温度梯度阈值明显更高并且导致检测的响应性差。
换言之,空气温度变化测量位置被优选地设置成:当管线中没有泄露时,提供不存在由管线引起的真实热扰动的空气温度变化测量。
更精确地,空气变化测量位置被设置在距管线的外表面一距离处,所述距离介于管线的外径的一半和管线的外径的四倍之间。优选地,至少一个温度变化测量位置被设置在距管线的距离超过或等于管线的外径的两倍处。
更优选地,空气温度变化测量位置可以直接面朝管线的方式被设置,即,在空气温度变化测量位置和管线之间不存在阻挡物。因此,在测量位置附近的管线破裂的情况下,对反常的空气温度变化的检测足够的快(即使泄露速度很慢)。
可被测量的空气温度变化测量位置位于布置在至少一个气体流体管线上的隔热层的表面处。
用于空气温度变化测量位置的温度传感器被安装在管线上,并且同时在管线上不存在泄露时相对地不具有由管线引起的真实热扰动。隔热层在管线上的延伸足以在隔热层下方的管线碎裂的情况下减少致使传感器位置处的空气温度快速升高的高温气体流体泄露。
空气温度梯度测量结果可利用变阻式的温度传感器而获得。
所述涡轮机可包括第一气体流体管线和第二气体流体管线,所述高温气体流体源为供应高温空气(其作为气体流体)的涡轮机压缩机,所述第一气体流体管线为能够将所述高温空气分配至飞行器和所述涡轮机的启动器的管线,所述第二气体流体管线为能够在所述涡轮机的空气进气斗处分配所述高温空气的管线,所述第一气体流体管线和第二气体流体管线被至少部分地容置在所述区室中。
根据本发明的方法尤其适用于对包括有多个气体流体管线的区室中的流体泄露进行检测。
本发明还涉及一种对用于飞行器涡轮机的高温流体进行分配的系统,所述系统包括:
-高温气体流体源,
-至少一个流体分配管线,所述至少一个流体分配管线适于将所述气体流体分配至涡轮机和/或飞行器的不同部件,
-涡轮机区室,分配管线被至少部分地容置在所述涡轮机区室中,所述区室含有在运行中温度和压力比所述气体流体的温度和压力更低的空气,
-涡轮机区室的至少一个温度传感器,
处理单元,所述处理单元布置成对所述至少一个温度传感器进行控制,并且所述处理单元被设置成检测所述区室中流体泄露,
所述处理单元被配置成:通过至少一个温度传感器来提供区室中至少一个位置在两个时刻之间的温度变化的测量结果,以便由该温度变化的测量结果推导出温度梯度,并且如果所述温度梯度大于和/或等于阈值温度梯度则检测到气体流体泄露。
这种系统能够实施根据本发明的方法并且因此能够受益于与根据本发明的方法相关的优点。
涡轮机区室可被径向地安置在风扇壳体和涡轮机的短舱之间。
用于分配流体的系统可包括第一气体流体管线和第二气体流体管线,所述高温气体流体源为供应作为气体流体的高温空气的涡轮机压缩机,所述第一气体流体管线为能够将所述高温空气分配至飞行器和所述涡轮机的启动器的管线,所述第二气体流体管线为能够在所述涡轮机的空气进气斗处分配所述高温空气的管线,所述第一气体流体管线和第二气体流体管线被至少部分地容置在所述区室中。
第一温度传感器和第二温度传感器能够以位于涡轮机风扇壳体的两侧的方式被安装在涡轮机区室中。
优选地,第一温度传感器被设置在距第一管线的距离超过或等于第一管线的外径的一半的位置处,并且第二温度传感器被设置在距第二管线的距离超过或等于第二管线的外径的一半的位置处。更优选地,第一温度传感器和第一气体流体管线之间的距离小于或等于所述第一气体流体管线的外径的四倍,并且其中,第二温度传感器和第二气体流体管线之间的距离小于或等于所述第二气体流体管线的外径的四倍。
第一传感器和第二传感器的这种位置有利于减少对可能发生在第一管线和第二管线中的一者上的气体泄露进行检测的时间。
本发明进一步涉及一种飞行器涡轮机,所述飞行器涡轮机包括根据本发明的用于分配流体的系统。
这种涡轮机受益于与根据本发明的方法相关的优点。
附图说明
通过参照附图阅读对示例性实施例的说明,将更好地理解本发明,所述示例性实施例仅出于说明的目的而给出并且决非意在进行限制,在附图中:
图1的曲线图示出高温加压空气泄露期间涡轮机的风扇中的温度变化和同一风扇的温度传感器测得的温度的对比;
图2示意性地示出涡轮机气体流体分配回路;
图3示出的曲线图分别描绘了高温加压气体流体泄露期间涡轮机的风扇中的温度梯度变化以及同一风扇的温度传感器在同一泄露期间测得的温度梯度变化。
附图中示出的不同部分不一定按相同比例绘制,以便使附图更加易读。
不同的可能性(替代物和实施例)必须被理解为不互相排斥并且能够彼此组合。
具体实施方式
图2示意性地示出了装备有涡轮机10的根据本发明的用于分配流体(更确切的说,加压空气)的示例性系统。
所述用于分配流体的系统包括:
-高压压缩机11,所述高压压缩机11形成高温加压空气源;
-风扇12,所述风扇12具有壳体,该壳体在外部限定出次级流动流(secondaryflowstream),并且第一温度传感器和第二温度传感器121被安装在所述壳体的外面以测量风扇区室(fancompartment)中的温度;
-涡轮机短舱13,所述涡轮机短舱13包括涡轮机的进气斗131,进气斗用于将空气吸入到涡轮机中;
-第一高压管线14,所述第一高压管线14用于将高温加压空气从高压压缩机中抽出至飞行器,所述第一管线包括次级分支(secondarybranch)14a,以向涡轮机启动器122供应加压空气;
-用于短舱防冰13和涡轮机10进气斗131的第二管线15;
-发动机计算机(未示出)。
涡轮机风扇12通常包括复合材料制成的高温敏感元件。风扇12因此为涡轮机的敏感区室,其中,重要的是要检测可能的高温气体流体泄露,所述高温气体例如为由高压压缩机11供应的加压空气。
高压压缩机11使得第一管线和第二管线14,15能够被供以通常能够达到500℃的高温加压空气。
第一管线14被布置成将加压空气从高压压缩机抽出,以便向飞行器(尤其是飞行器空调21和机翼防冰22系统)供应加压空气。
上游的热交换器141使得加压空气被冷却,该加压空气来自于从风扇中抽出的空气(从图2中的标记123指示的管线抽出),所述第一管线14包括朝向启动器122的次级管线14a。因此,第一管线14使得位于风扇12中的启动器122能够被供以温度通常为大约360℃的加压空气。
第一管线14包括通常被称为ECS(EnvironmentalControlSystem,环境控制系统)阀的第一阀142,用以调节从高压压缩机11抽出的空气流。
第二管线15使得短舱13的空气进气斗131防冰回路能够被供气。第二管线15包括第二阀151,用以调节从高压压缩机11抽出的空气流。通常,第二管线15使得空气进气斗131防冰回路能够被供以温度为大约500℃的加压空气。
不论是第一管线14还是第二管线15都进入风扇12,它们各自管道的一部分被容置在风扇区室中。因此,在风扇区室中的这些管道中的一个泄露的情况下,将产生高温加压空气的流入并进而使所述区室中的温度升高。这种温度升高对能够位于风扇区室中的某些复合材料元件造成不利影响。
为了实现对这种泄露的检测,风扇区室包括布置在所述区室的两侧的第一温度传感器和第二温度传感器121(例如相对于风扇壳体12沿直径方向对置),以便检测由于风扇区室中的热空气泄露引起的任何温度升高。第一温度传感器和第二温度传感器121与发动机计算机通信。这些第一温度传感器和第二温度传感器121可以是例如变阻式传感器(或变阻式换能器,VRT(VariableResistanceTransducer))。有利地,由每个传感器测得的温度被导出(derived),并且随后使用二级低通滤波器过滤,以便消除由于导出操作而导致的温度梯度测量的噪声而不使同一梯度测量过多地衰减。
第一温度传感器和第二温度传感器121以下述方式被分别设置在距第一管线和第二管线14,15一定距离处:使得允许空气温度测量,并且进而允许测量距第一管网14和第二管网15一定距离处的区室的位置处的空气温度变化。
这样,空气温度变化测量利用第一温度传感器和第二温度传感器121而提供,在管线不存在泄露时尽可能地不具有由管线引起的真实热扰动(realthermaldisturbance)。
为了能够在风扇12中检测加压空气泄露,发动机计算机被配置成实施包括下述步骤的方法:
-通过第一温度传感器和第二温度传感器测量风扇区室中的第一温度和第二温度,将测量结果与之前时刻的测量结果进行比较,以便针对每个温度确定两个时刻之间的温度变化并且获得针对每个温度的温度梯度;
-如果两个温度梯度中的至少一个大于或等于阈值温度梯度或如果区室中的两个温度中的一个大于或等于阈值温度,则检测到流体泄露。
通过这种配置,根据两种不同的原理来检测气体流体泄露。图1中所示的第一原理与之前描述的现有技术发动机计算机的配置相似,并且在于直接检测温度升高和超出阈值温度(通常为120℃)。在本发明的范围内,所述第一测量原理主要用于导致较缓慢的温度增大的较小程度的加压空气泄露。
第二检测原理在图3中示出。其在于检测温度梯度的强烈的增大,所述温度梯度的强烈的增大与由于第一管线14和第二管线15的管道的突然泄露所致的高温加压空气的大量流入有关,所述管道的突然泄露通常由这两个管线中的一个的突然碎裂或松脱造成。因此,图3中并列地示出风扇区室中的真实温度梯度的变化911和温度传感器121中的一个测得的温度梯度变化912。因此,可以看出,当管道开始泄露时,真实的温度梯度和测得的温度梯度都呈现几乎立即地增大,这只有通过该增大的强度来区分。对于真实温度梯度而言,强烈的增大之后紧随着与之前的增大一样陡峭的下降,然而对于测得的温度梯度而言,下降非常缓慢。因此,第二检测原理在于检查以突然的温度增大为特征的温度梯度不超过阈值梯度,所述突然的温度增大直接紧随在加压空气管道的碎裂或松脱之后发生。
对于风扇中的快速温度增大(通常为第一管线14和第二管线15中的一个的碎裂或松脱期间的情况),所述第二原理因此能够使检测时间远小于根据第一原理和现有技术的配置所必须的15s。
发动机计算器还被配置成:当加压空气泄漏被检测到时,关闭可能需要对该泄露负责的管线。除了关闭第一阀和第二阀之外,发动机计算机还能够被配置成将错误代码发送给飞行器,以便对刚刚发生的故障进行指示。
根据本发明的另一可能的实施例,发动机计算机能够被配置成:在涡轮机处于温度梯度可能大于或等于阈值温度的预定状态时使检测泄露的步骤被禁止。所述预定状态可以例如是启动发动机的阶段。
根据本发明的这种可能的实施例的替代方案,发动机计算机可被配置成:修改阈值温度梯度的值,以便使阈值温度梯度被调整成与发动机状态相适应。因此,举例而言,发动机计算机可被配置成:在发动机的所述状态期间增大阈值温度梯度的值。
通过这种配置,发动机计算机形成一处理单元,所述处理单元被配置成:通过温度传感器121来提供风扇12中在两个时刻之间的温度变化测量结果,以便由该温度变化测量结果推导出温度梯度,以及在温度梯度大于和/或等于阈值温度梯度的情况下检测到气体流体泄露。根据本发明的优选的替代性实施例,发动机计算机可被配置成:如果温度梯度严格大于(strictlygreaterthan)阈值温度梯度,则检测到气体流体泄露。
应注意的是,在以上实施例中,计算机适于实施上述的两种检测原理,但是也可配置成执行根据所述第二原理的泄露检测,即,在温度梯度大于或等于阈值温度梯度的情况下进行检测而不执行根据第一原理的检测。根据同一可能实施例,发动机计算机还可被配置成:另外根据还未描述的第三原理(例如在文件US2013226395和US2013340442中描述的那些原理)检测加压空气泄露。
应注意的是,尽管在上述实施例中,用于检测泄露的方法能够实现对涡轮机风扇区室中的加压空气泄露的检测,但是该方法还能够适用于检测涡轮机的另一敏感区室中的泄露。
还应注意的是,尽管在上述实施例中,分配系统是用于在涡轮机中分配加压空气的系统,但是本发明还能够适用于检测除了加压空气泄露之外的高温流体泄露并且不背离本发明的范围。因此,本发明应用于检测由于高温油料分配回路的抽出管道的破裂而引起的气体流体泄露并且不背离本发明的范围。

Claims (15)

1.一种用于检测飞行器涡轮机(10)中流体泄露的方法,所述涡轮机包括:
高温气体流体源,
至少一个气体流体分配管线(14,15),所述至少一个气体流体分配管线(14,15)适于将所述气体流体分配至涡轮机(10)和/或飞行器(20)的不同部件,
涡轮机区室(10),所述分配管线(14,15)被至少部分地容置在所述涡轮机区室(10)中,所述区室含有在运行中温度和压力比所述气体流体的温度和压力更低的空气,
所述方法包括下述步骤:
在所述区室中的至少一个位置处测量空气在两个时刻之间的温度变化,以获得温度梯度,
如果所述温度梯度大于或等于阈值温度梯度,则检测到所述区室中的气体流体泄露。
2.根据权利要求1所述的用于检测泄露的方法,进一步包括下述步骤:
在所述区室中的至少一个位置处测量空气的温度,
如果测得的温度大于或等于阈值温度,则检测到所述区室中的气体流体泄露。
3.根据权利要求1所述的用于检测泄露的方法,其中,对所述温度变化的测量在所述区室中的至少两个位置处执行,以便获得至少两个温度梯度,
如果两个温度梯度中的至少一个大于所述阈值温度梯度,则因此检测到发生了气体流体泄露。
4.根据权利要求1所述的用于检测泄露的方法,包括另一步骤:
当涡轮机处于温度梯度大于或等于所述阈值温度梯度的预定状态时,禁止对气体流体泄露进行检测的步骤。
5.根据权利要求1所述的用于检测泄露的方法,包括另一步骤:
根据涡轮机的状态修改所述阈值温度梯度。
6.根据权利要求1所述的用于检测泄露的方法,包括另一步骤:
如果检测到泄露,则将所述区室上游的至少一个气体流体管线关闭。
7.根据权利要求1所述的用于检测泄露的方法,其中,对空气温度梯度进行测量的至少一个位置为设置在距至少一个气体流体管线一距离处的位置,该距离介于所述至少一个气体流体管线的外径的一半和所述至少一个气体流体管线的外径的四倍之间。
8.根据权利要求1所述的用于检测泄露的方法,其中,对空气温度梯度进行测量的至少一个位置位于布置在至少一个气体流体管线上的隔热层的表面处。
9.根据权利要求1所述的用于检测泄露的方法,其中,空气的温度变化的测量结果利用变阻式的温度传感器而获得。
10.根据权利要求1所述的用于检测泄露的方法,其中,所述涡轮机包括第一气体流体管线和第二气体流体管线(14,15),所述高温气体流体源为供应作为气体流体的高温空气的涡轮机压缩机,所述第一气体流体管线(14)为能够将所述高温空气分配至飞行器和所述涡轮机(10)的启动器(122)的管线,所述第二气体流体管线(15)为能够在所述涡轮机(10)的空气进气斗(131)处分配所述高温空气的管线,所述第一气体流体管线和第二气体流体管线被至少部分地容置在所述区室中。
11.根据权利要求10所述的用于检测泄露的方法,其中,第一空气温度变化测量位置被设置在距所述第一气体流体管线的距离大于或等于所述第一气体流体管线(14)的外径的一半的位置处,并且第二空气温度变化测量位置被设置在距所述第二气体流体管线的距离大于或等于所述第二气体流体管线(15)的外径的一半的位置处。
12.根据权利要求11所述的用于检测泄露的方法,其中,所述第一空气温度变化测量位置和所述第一气体流体管线(14)之间的距离小于或等于所述第一气体流体管线(14)的外径的四倍,并且其中,所述第二空气温度变化测量位置和所述第二气体流体管线(15)之间的距离小于或等于所述第二气体流体管线(15)的外径的四倍。
13.一种用于分配用于飞行器涡轮机的高温气体流体的系统,包括:
高温气体流体源,
至少一个流体分配管线(14,15),所述至少一个流体分配管线(14,15)适于将所述气体流体分配至涡轮机和/或飞行器的不同部件,
涡轮机区室,所述分配管线被至少部分地容置在所述涡轮机区室中,所述区室含有在运行中温度和压力比所述气体流体的温度和压力更低的空气,
涡轮机区室的至少一个温度传感器(121),
处理单元,所述处理单元布置成对所述至少一个温度传感器进行控制,并且所述处理单元被设置成检测所述区室中流体泄露,
其中,所述处理单元被配置成:通过至少温度传感器(121)来提供所述区室中至少一个位置处在两个时刻之间的温度变化的测量结果,以便由该温度变化的测量结果推导出温度梯度,并且如果所述温度梯度大于和/或等于阈值温度梯度,则检测到气体流体泄露。
14.根据权利要求13所述的用于分配流体的系统,其中,所述涡轮机区室径向地安置在风扇壳体(12)和涡轮机(10)的短舱(13)之间。
15.根据权利要求14所述的用于分配流体的系统,其中,两个温度传感器(121)以位于所述涡轮机的风扇壳体(12)的两侧的方式被安装在所述涡轮机区室中。
CN201510257835.XA 2014-05-20 2015-05-20 用于检测涡轮机中流体泄露的方法和用于分配流体的系统 Active CN105092158B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1454516 2014-05-20
FR1454516A FR3021350B1 (fr) 2014-05-20 2014-05-20 Procede de detection de fuite de fluide dans une turbomachine et systeme de distribution de fluide

Publications (2)

Publication Number Publication Date
CN105092158A true CN105092158A (zh) 2015-11-25
CN105092158B CN105092158B (zh) 2020-06-05

Family

ID=51168225

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510257835.XA Active CN105092158B (zh) 2014-05-20 2015-05-20 用于检测涡轮机中流体泄露的方法和用于分配流体的系统

Country Status (4)

Country Link
US (1) US10400623B2 (zh)
CN (1) CN105092158B (zh)
FR (1) FR3021350B1 (zh)
GB (1) GB2528549B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113518851A (zh) * 2019-03-15 2021-10-19 赛峰航空器发动机 飞行器发动机油路中可能燃料泄漏的检测方法
TWI808171B (zh) * 2018-05-14 2023-07-11 日商華爾卡股份有限公司 實驗裝置、實驗系統、程式、方法及學習方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170009597A1 (en) * 2014-02-19 2017-01-12 Siemens Aktiengesellschaft Turbo-machine having a thermal transfer line
GB2553681B (en) 2015-01-07 2019-06-26 Homeserve Plc Flow detection device
GB201501935D0 (en) 2015-02-05 2015-03-25 Tooms Moore Consulting Ltd And Trow Consulting Ltd Water flow analysis
US20170267360A1 (en) * 2016-03-18 2017-09-21 Rohr, Inc. Thermal management system for deicing aircraft with temperature based flow restrictor
USD800591S1 (en) 2016-03-31 2017-10-24 Homeserve Plc Flowmeter
US10066630B2 (en) 2016-06-15 2018-09-04 General Electric Company Method and system for metallic low pressure fan case heating
FR3054595B1 (fr) * 2016-07-27 2018-08-17 Ge Energy Products France Snc Compartiment d'une turbine a gaz comprenant un dispositif de detection d'une fuite d'air chaud et procede de detection d'une fuite d'air chaud associe
US11280213B2 (en) * 2017-04-19 2022-03-22 General Electric Company Fluid supply line leakage detection system and method
FR3081924B1 (fr) * 2018-05-30 2021-05-14 Safran Aircraft Engines Turbomachine pour aeronef comprenant un conduit de fluide pressurise entoure d'une gaine metallique tressee ou tissee
DE102018219884A1 (de) * 2018-11-20 2020-05-20 Rolls-Royce Deutschland Ltd & Co Kg Triebwerk mit Ventileinrichtung und Prüfverfahren
GB201904677D0 (en) * 2019-04-03 2019-05-15 Rolls Royce Plc Oil pipe assembly
DE102020102332A1 (de) 2020-01-30 2021-08-05 Rolls-Royce Deutschland Ltd & Co Kg Sensorvorrichtung und Messverfahren
US11702958B2 (en) 2021-09-23 2023-07-18 General Electric Company System and method of regulating thermal transport bus pressure
DE102022105673A1 (de) 2022-03-10 2023-09-14 PFW Aerospace GmbH Verfahren zur Herstellung eines mindestens zweischichtigen Sandwichbauelements
CN116733549B (zh) * 2023-08-16 2023-11-03 四川空分设备(集团)有限责任公司 膨胀机轴封泄漏监测预警方法、装置及轴封

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981466A (en) * 1974-12-23 1976-09-21 The Boeing Company Integrated thermal anti-icing and environmental control system
CN101203667A (zh) * 2005-06-21 2008-06-18 法国空中巴士公司 用于除去涡轮发动机的空气进口罩的前缘的冰霜的系统
US20100147399A1 (en) * 2006-05-18 2010-06-17 Airbus Deutschland Gmbh Wiring Arrangement For Protecting A Bleed Air Supply System Of An Aircraft Against Overheating And Bleed Air Supply System Incorporating Such A Wiring Arrangement
CN102162765A (zh) * 2011-01-26 2011-08-24 南京航空航天大学 飞机高温高压导管中高温气体泄漏探测系统及方法
US20110215936A1 (en) * 2010-03-05 2011-09-08 General Electric Company Thermal measurement system and method for leak detection
CN102414547A (zh) * 2009-04-22 2012-04-11 斯奈克玛 一种在飞机涡轮发动机部件上进行流体测试的装置的密封头
CN102438896A (zh) * 2009-05-05 2012-05-02 空中客车运营简化股份公司 用于螺旋桨风扇式螺旋桨叶片的除冰装置
CN102791579A (zh) * 2010-03-08 2012-11-21 三菱重工业株式会社 航空器的翼前缘部的防除冰装置及航空器主翼
CN103323188A (zh) * 2012-03-23 2013-09-25 福特环球技术公司 燃料系统诊断法
US20140119881A1 (en) * 2012-10-31 2014-05-01 General Electric Company Apparatus for recirculating a fluid within a turbomachine and method for operating the same

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3059660A (en) * 1958-10-08 1962-10-23 Gen Electric Turbine control system
GB889305A (en) * 1959-11-26 1962-02-14 Rolls Royce Gas turbine engine
US3769998A (en) * 1971-10-07 1973-11-06 Garrett Corp Regulator and shutoff valve
US3771350A (en) * 1971-12-30 1973-11-13 Aviat Inc Pipeline leak detector
US4006634A (en) * 1975-09-17 1977-02-08 National Semiconductor Corporation Flow meter
US4351150A (en) * 1980-02-25 1982-09-28 General Electric Company Auxiliary air system for gas turbine engine
US4710095A (en) * 1982-08-04 1987-12-01 General Electric Company Turbomachine airflow temperature sensor
US4655607A (en) * 1983-12-19 1987-04-07 Santa Barbara Research Center High speed hot air leak sensor
IL78786A0 (en) * 1985-06-03 1986-08-31 Short Brothers Plc Duct for hot air
US4702273A (en) * 1986-03-07 1987-10-27 Parker Hannifin Corporation Electrically controlled starter air valve
US4852343A (en) * 1987-07-02 1989-08-01 Avco Corporation Method of operating anti-icing valve
US5063963A (en) * 1990-08-09 1991-11-12 General Electric Company Engine bleed air supply system
GB9120113D0 (en) * 1991-09-20 1992-09-23 Short Brothers Plc Thermal antiicing of aircraft structures
US5463865A (en) * 1993-09-30 1995-11-07 General Electric Company Starter air valve position pressure transducer
US5581995A (en) * 1995-03-14 1996-12-10 United Technologies Corporation Method and apparatus for detecting burner blowout
FR2772341B1 (fr) * 1997-12-12 2000-03-24 Aerospatiale Diffuseur d'air chaud pour capot d'entree d'air de moteur a reaction a circuit de degivrage
US6098011A (en) * 1998-05-18 2000-08-01 Alliedsignal, Inc. Efficient fuzzy logic fault accommodation algorithm
DE10111640A1 (de) * 2001-03-10 2002-10-02 Airbus Gmbh Verfahren zur Ermittlung und Meldung von Überhitzungen und Feuern in einem Flugzeug
US7725272B2 (en) * 2006-03-30 2010-05-25 Codman Neuro Sciences, Sarl Methods and devices for monitoring fluid of an implantable infusion pump
US7784263B2 (en) * 2006-12-05 2010-08-31 General Electric Company Method for determining sensor locations
US7588368B2 (en) * 2006-12-20 2009-09-15 Cummins Inc. System for diagnosing temperature sensor operation in an exhaust gas aftertreatment system
GB0703336D0 (en) * 2007-02-20 2007-03-28 Thermocable Flexible Elements Temperature detector
US20100003123A1 (en) * 2008-07-01 2010-01-07 Smith Craig F Inlet air heating system for a gas turbine engine
GB2462826B (en) * 2008-08-20 2014-03-12 Rolls Royce Plc A method for detecting overpressure inside a compartment associated with a gas turbine nacelle
US8100632B2 (en) * 2008-12-03 2012-01-24 General Electric Company Cooling system for a turbomachine
US8696196B2 (en) * 2008-12-22 2014-04-15 Embraer S.A. Bleed leakage detection system and method
US8061657B2 (en) * 2008-12-31 2011-11-22 General Electric Company Method and apparatus for aircraft anti-icing
IT1396514B1 (it) * 2009-11-27 2012-12-14 Nuovo Pignone Spa Metodo di controllo di turbina basato su rapporto tra temperatura di scarico e pressione di turbina
FR2957586B1 (fr) * 2010-03-18 2012-04-27 Airbus Operations Sas Dispositif de degivrage comprenant des moyens pour detecter une fuite au niveau d'une alimentation en air chaud
US8702372B2 (en) * 2010-05-03 2014-04-22 Bha Altair, Llc System and method for adjusting compressor inlet fluid temperature
US9019108B2 (en) * 2010-08-05 2015-04-28 General Electric Company Thermal measurement system for fault detection within a power generation system
US9097182B2 (en) * 2010-08-05 2015-08-04 General Electric Company Thermal control system for fault detection and mitigation within a power generation system
US20120048000A1 (en) * 2010-08-31 2012-03-01 Joseph Kirzhner Method and system to detect and measure piping fuel leak
FR2972485B1 (fr) * 2011-03-08 2013-04-12 Snecma Procede de surveillance du changement d'etat d'une vanne par mesure de pression.
US8997558B2 (en) * 2011-03-29 2015-04-07 General Electric Company Combustor probe for gas turbine
DE102011102458A1 (de) * 2011-05-24 2012-11-29 Rolls-Royce Deutschland Ltd & Co Kg Enteisungsvorrichtung eines Fluggasturbinentriebwerks
FR2987398B1 (fr) 2012-02-24 2017-07-21 Snecma Systeme de detection de premices de panne d'une vanne d'un moteur d'aeronef
US9140189B2 (en) * 2012-04-11 2015-09-22 General Electric Company Systems and methods for detecting fuel leaks in gas turbine engines
US9239008B2 (en) * 2012-10-16 2016-01-19 General Electric Company Turbine leak detection system
US9528880B2 (en) * 2013-08-16 2016-12-27 General Electric Company Method and system for gas temperature measurement
US9933313B2 (en) * 2013-09-06 2018-04-03 United Technologies Corporation Method for determining circumferential sensor positioning
US9764847B2 (en) * 2013-10-18 2017-09-19 The Boeing Company Anti-icing system for aircraft
KR101490947B1 (ko) * 2013-11-22 2015-02-06 현대자동차 주식회사 환원제 분사시스템의 리크 감지방법
GB201404462D0 (en) * 2014-03-13 2014-04-30 Rolls Royce Plc Ice thickness measurement sensor
ITUB20151085A1 (it) * 2015-05-28 2016-11-28 Alenia Aermacchi Spa Gondola per motore aeronautico con sistema antighiaccio utilizzante un fluido bifase.
US9914543B2 (en) * 2015-12-09 2018-03-13 The Boeing Company System and method for aircraft ice detection within a zone of non-detection

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981466A (en) * 1974-12-23 1976-09-21 The Boeing Company Integrated thermal anti-icing and environmental control system
CN101203667A (zh) * 2005-06-21 2008-06-18 法国空中巴士公司 用于除去涡轮发动机的空气进口罩的前缘的冰霜的系统
US20100147399A1 (en) * 2006-05-18 2010-06-17 Airbus Deutschland Gmbh Wiring Arrangement For Protecting A Bleed Air Supply System Of An Aircraft Against Overheating And Bleed Air Supply System Incorporating Such A Wiring Arrangement
CN102414547A (zh) * 2009-04-22 2012-04-11 斯奈克玛 一种在飞机涡轮发动机部件上进行流体测试的装置的密封头
CN102438896A (zh) * 2009-05-05 2012-05-02 空中客车运营简化股份公司 用于螺旋桨风扇式螺旋桨叶片的除冰装置
US20110215936A1 (en) * 2010-03-05 2011-09-08 General Electric Company Thermal measurement system and method for leak detection
CN102791579A (zh) * 2010-03-08 2012-11-21 三菱重工业株式会社 航空器的翼前缘部的防除冰装置及航空器主翼
CN102162765A (zh) * 2011-01-26 2011-08-24 南京航空航天大学 飞机高温高压导管中高温气体泄漏探测系统及方法
CN103323188A (zh) * 2012-03-23 2013-09-25 福特环球技术公司 燃料系统诊断法
US20140119881A1 (en) * 2012-10-31 2014-05-01 General Electric Company Apparatus for recirculating a fluid within a turbomachine and method for operating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI808171B (zh) * 2018-05-14 2023-07-11 日商華爾卡股份有限公司 實驗裝置、實驗系統、程式、方法及學習方法
CN113518851A (zh) * 2019-03-15 2021-10-19 赛峰航空器发动机 飞行器发动机油路中可能燃料泄漏的检测方法

Also Published As

Publication number Publication date
GB2528549A (en) 2016-01-27
FR3021350B1 (fr) 2016-07-01
GB2528549B (en) 2017-11-29
GB201508575D0 (en) 2015-07-01
FR3021350A1 (fr) 2015-11-27
CN105092158B (zh) 2020-06-05
US10400623B2 (en) 2019-09-03
US20150337679A1 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
CN105092158A (zh) 用于检测涡轮机中流体泄露的方法和用于分配流体的系统
RU2693147C2 (ru) Способ обнаружения утечки текучей среды в турбомашине и система распределения текучей среды
EP2881731B1 (en) Thermographic inspection techniques
CN107152340B (zh) 用于检测管道系统失效的方法和系统
US10837311B2 (en) System to determine a state of a valve
NO333438B1 (no) Fremgangsmate og apparat for sammensetningsbasert kompressorkontroll og ytelsesovervaking.
US8825278B2 (en) System for detecting the first signs of a malfunction of an aircraft engine valve
US20170211600A1 (en) System and method for heatlh monitoring of servo-hydraulic actuators
CN105387977B (zh) 一种针对航空发动机的两腔室三压力区结构安装边泄漏检测系统及方法
US20220268657A1 (en) Method and a system for monitoring the state of an exchanger in an air circuit of an aircraft
US10082445B2 (en) Method for monitoring the change in state of a valve by measuring pressure
CN105423018A (zh) 高温法兰连接系统的测漏装置
CN105314117A (zh) 用于检测涡轮轴引擎的进气口处的结冰的方法和设备
CN108953295A (zh) 用于液压马达耐久试验的爆管检测系统及检测方法
CN104389802A (zh) 一种涡轮增压器实验室用压气机端漏油检测装置
CN108088692B (zh) 一种散热器的冷热冲击测试方法、装置及系统
US20140283582A1 (en) Method And Apparatus For Determining The Thermal Status Of Fuel In A Line Leak Detection System
CN106768710B (zh) 一种多级刷式密封试验方法
CN205751541U (zh) 一种核电站的主蒸汽管道泄漏监测系统
US10676206B2 (en) System and method for heat exchanger failure detection
CN203688181U (zh) 内漏内堵检测装置
CN103928066B (zh) 核电厂凝汽器传热管检漏方法及压差检漏系统
CN104033732B (zh) 压力介质管路的监测装置、方法及应用该装置的冷库监测系统
Esperon-Miguez et al. Simulating faults in a Boeing 737-200 Environmental Control System using a thermodynamic model
GB2541010A (en) Detecting leaks in pipes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant