CN105075167A - 用于控制无线电资源分配的基站和方法 - Google Patents

用于控制无线电资源分配的基站和方法 Download PDF

Info

Publication number
CN105075167A
CN105075167A CN201380072365.9A CN201380072365A CN105075167A CN 105075167 A CN105075167 A CN 105075167A CN 201380072365 A CN201380072365 A CN 201380072365A CN 105075167 A CN105075167 A CN 105075167A
Authority
CN
China
Prior art keywords
user
subcarrier
base station
quality
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380072365.9A
Other languages
English (en)
Other versions
CN105075167B (zh
Inventor
麦塔·舒尔曼
艾耿·史克鲁斯
克利斯托佛·泰恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Publication of CN105075167A publication Critical patent/CN105075167A/zh
Application granted granted Critical
Publication of CN105075167B publication Critical patent/CN105075167B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • H04L27/26416Filtering per subcarrier, e.g. filterbank multicarrier [FBMC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Abstract

本发明涉及一种基站(100),包括:用于无线电频带内的多载波无线电传输的收发器(101),所述收发器(101)用于接收向所述基站(100)请求服务的多个用户的服务质量请求(102);以及无线电资源控制器(103),所述无线电资源控制器用于向所述用户分配所述多载波无线电传输的子载波,并根据所述用户的所述服务质量请求在所述无线电频带中配置所述子载波。

Description

用于控制无线电资源分配的基站和方法
背景技术
本发明涉及一种基站和一种用于控制基站中无线电资源分配的方法。具体而言,本发明涉及蜂窝通信系统中无线电接入、无线电资源分配和自适应无线电传输的领域。
近年来,集成电路和数字信号处理器依照摩尔定律发展所带来的快速进步已经使无线电系统具有比以前更强大的基带处理能力,这允许对现有技术的宽带蜂窝系统在其无线电符号、甚至波形的使用方面进行动态调整。
在由P.Siohan、C.Siclet和N.Lacaille发表在2002年5月的IEEE信号处理会报第50卷第5期第1170至1183页,的“基于滤波器组理论的OFDM/OQAM系统的分析和设计(AnalysisanddesignofOFDM/OQAMsystemsbasedonfilterbanktheory)”,以及由F.Schaich发表在2010年欧洲无线电会议(EW),2010年,第1051至1058页的“基于滤波器组的多载波传输(FBMC)---演进的OFDM:WiMAX上下文中的FBMC(Filterbankbasedmulticarriertransmission(FBMC)—evolvingOFDM:FBMCinthecontextofWiMAX)”中描述的基于滤波器组的多载波(FBMC)传输是一种允许蜂窝系统使用任意可调的脉冲形状进行传输的多载波传输方案。可以根据调控频谱掩模的要求、就针对高多普勒效应的稳健性和所需的稳健性程度,例如同步误差而言的移动性条件对脉冲形状进行调整。频谱高效的FBMC系统可以基于OQAM-OFDM信令来实现。
通过选择合适的脉冲形状,FBMC系统产生非常低的带外泄漏。由此,频带上彼此相邻操作的两个非正交系统之间的保护频带得到明显降低。相比之下,近年来,观察到蜂窝系统的射频前端只在提高仪器的线性度和动态范围方面有渐进式进步。因此,由于实现和成本因素,无线电符号的调制阶数实际上是有限的。
在这种上下文中,学术界已提出如在由D.Dasalukunte、F.Rusek和V.Owall发表在IEEE电路与系统会报I定期论文,第58卷,第4期,第827至838页,2011年4月的“多载波快于奈奎斯特收发器:硬件架构和性能分析(MulticarrierFaster-Than-NyquistTransceivers:HardwareArchitectureandPerformanceAnalysis)”中描述的一种被称为“快于奈奎斯特(FasterThanNyquist)”(FTN)的传输模式,以实现调制阶数有限的传输的更高数据速率,从而大幅度提高了信道条件极为良好,即在高信噪比条件下的无线电效率。
由于允许配置波形,具体来说是当使用FBMC技术时的脉冲形状,以及传输模式,具体来说是FTN,因此当在蜂窝系统中分配无线电资源时获得两种新的自由度。对于现今的无线电系统,使用自适应调制编码(AMC)方案来根据特定链路条件调整传输信令。这些条件允许在两个维度:调制星座和码率上调整每个链路的信令。此外,已提出多种传输功率分配方案,并且现在正在使用中。对于将来的系统,可以预见,服务需求种类会明显增加,并会出现各种各样的用户终端类型。伴随着多种多样的信道选择性特性,即每条无线电链路上观测到的信道条件,无线电资源分配问题的问题空间被认为在其维度上明显扩大。
如果向基于像OFDM之类的固定信令方案的系统应用像AMC之类的常见无线电资源分配策略,会遇到以下弊端。首先,系统不能利用极为良好的信道条件的优势,只会导致中等的数据速率传输。另外,系统不能考虑到具有高移动性的用户群。由于高多普勒效应,传统的OFDM系统遭受会严重影响性能的高频率偏移。基于OFDM的系统对频域和时域同步具有很高的要求。同步不良的系统,例如低功率低成本的传感器设备会遭受严重的性能下降。当访问与其它系统共享的某些特定频带时,系统必须满足调控器的严格带外泄漏要求。常规的OFDM信号的边带使用会导致大保护频带的显著浪费,特别是如果只有窄频带可用的话。
经常应用于现今的LTE和WiMax系统的现有技术的传输方案被称为根据TSGR1#17(00)1395,“自适应调制编码(AMC)”,瑞典斯德哥尔摩,2000年的“自适应调制编码”(AMC)。它通常与OFDM或扩散编码,即CDMA方案相结合,以自适应地选择一组合适的传输参数,即调制编码方案(MCS),即调制/星座阶数和编码率。对于应用于LTE系统,通过动态地接收信道质量指示的反馈,以及来自更高层的QoS要求,即数据速率、分组丢失率等,LTEMAC调度器决定或者针对用户或者针对物理资源块而言最适合的MCS。诸如循环前缀长度和子载波间距等现有技术系统的参数是仅有的无法动态调整的长期系统特定参数。
发明内容
本发明的目的在于提供一种改进的无线电资源分配技术。
此目标通过独立权利要求的特征来实现。另外的实施形式是从从属权利要求、说明书和附图显而易见的。
本发明基于以下发现:在动态无线电资源分配的上下文中具有新的自由度的一种自适应传输方案提供了提高的无线电资源分配效率。适当地应用了问题空间的额外维度以及新服务的特定要求,以改进无线电资源分配过程。当使用例如FBMC系统结构时,这类额外的维度是针对每条无线电链路分别配置的例如信号波形、传输模式和子载波间距。传输方案为每条链路/每个用户,即每个设备或每个用户组自适应地配置波形和传输模式,从而能够在系统无线电频谱效率方面实现显著的系统性能提升。
为了详细描述本发明,将使用下列术语、缩写和符号:
CP:循环前缀
CP是指末端重复的符号的前缀。虽然通常配置接收器丢弃CP样本,但CP有两个目的:作为保护间隔,它消除了来自前一符号的符号间干扰。作为符号的末端的重复,它允许将频率选择性多径信道的线性卷积建模为循环卷积,进而可以使用离散傅立叶变换将循环卷积变换至频域。
CP-OFDM:基于CP的OFDM
CP-OFDM在每个子载波上传输复值符号。在CP-OFDM中,所传输的信号可以写成通过索引为n的符号时间期间索引为m的子载波以及通过原型滤波函数的时间频率转换获得的合成滤波基础来传送的符号的函数,其中时间频率转换依赖于符号持续时间和载波间频率间距。
EGF:扩展高斯函数
EGF是从由M.Alard、C.Roche和P.Siohan在“具有近乎最优的时频定位的一个新函数家族(Anewfamilyoffunctionwithanearlyoptimaltime-frequencylocalizatio)”,RNRT项目Modyr技术报告,1999年,以及由P.Siohan和C.Roche在“基于扩展高斯函数的余弦调制滤波器组(Cosine-ModulatedFilterbanksBasedonExtendedGaussianFunction)”,IEEE信号处理会报,第48卷,第11期,第3052至3061页,2000年11月中描述的高斯函数推导出的。
FBMC:基于多载波的滤波器组
FBMC系统包括发射机侧的合成滤波器组(SFB)和接收机侧的分析滤波器组(AFB)。SFB将M个低速率子载波信号组合成一个高速率信号,该高速率信号通过频率选择性无线电信道进行传输。AFB将接收到的高速率信号再次分解为M个低速率子载波信号。通常采用每个子载波一个FIR均衡器以补偿由频率选择性无线电信道引起的符号间干扰(ISI)和信道间干扰(ICI),并改善符号决策。
FTN:快于奈奎斯特
1975年,J.E.Mazo在“快于奈奎斯特信令(Faster-than-Nyquist)”,贝尔系统科技杂志,第54卷,第1451至1462页,1975年10月中描述过,二进制正弦(t/T)脉冲可以每TΔ秒发送一次,其中TΔ<T,而没有渐近错误概率损失。他称此为FTN信令,因为脉冲出现的速度比奈奎斯特的正交脉冲极限所允许的速度更快。FTN信令已经以许多方式被广义化了。
IOTA:IOTA函数
IOTA函数是EGF的一个特例,它的性质,如正交性和良好的时间频率定位与这些EGF函数的相同。
链路:两个用户之间的点对点连接
LTE:长期演进
LTE,商业上叫做4GLTE,是一种针对用于手机和数据终端的高速数据无线电通信的标准。它基于GSM/EDGE和UMTS/HSPA网络技术,利用不同的无线电接口以及核心网络改进增加了容量并提高了速度。
OFDM:正交频分复用
OFDM是用作数字多载波调制方法的一种频分复用(FDM)方案。大量紧密间隔的正交子载波信号被用于在若干并行的数据流或信道上携带数据。每个子载波利用某种调制方案(如正交振幅调制或相移键控等)以较低的符号率进行调制,从而保持总数据速率类似于相同带宽条件下的传统单载波调制方案。
OQAM:偏移正交调幅
单载波OQAM的原理是使正交信号相对于发射机处调制之前的同相信号延迟T/2,其中T是符号周期。在单信道情况下,使用OQAM消除了与π相移相关的振幅波动。
OQAM-OFDM:OQAM-正交频分复用
OQAM-OFDM每个子载波上传输通过OQAM调制而成的实值符号,而不是像OFDM/QAM方案中一样使用复基带符号。合成基础函数由原型滤波函数的时间频率变换的版本获得,从而保持其合成和分析基础之间的正交性。
PDCCH:物理下行链路控制信道
PDCCH是e-UTRAN协议栈的下行链路信道,即用于移动网络的3GPP的LTE升级路径的空中接口。除了其它信息之外,PDCCH携带用于终端的下行线路分配信息和上行链路分配授权。
QoS:服务质量
QoS是指网络向利用各种WAN、LAN和MAN技术的选定网络流量提供优先级更高的服务的能力,这些服务包括专用带宽、(一些实时和交互式流量所要求的)受控的抖动和时延,以及改进的损失特性。同时,QoS保证一类流量的提供优先级不会使其他流失效。
QoS受各种因素影响,这些因素可以分为“人为”因素和“技术”因素。人为因素包括:服务稳定性、服务可用性和保证时延。技术因素包括:可靠性、可扩展性、有效性、可维护性、服务等级等。在数据包从源点传输至目的地的过程中,以下问题可能导致服务质量的下降:由于来自共享相同网络资源的其它用户的不断变化的负载引起的低吞吐量;丢弃的数据包,因为路由器可能无法递送、即丢弃一些数据包;噪声和干扰导致的传输错误;由于网络中的长队或拥塞引起的时延;由于数据包递送的变化造成的抖动;由于数据包通过网络的不同路由引起的乱序递送。
SNR:信噪比
SNR是正在传输的可用信号的功率强度与无用信号(噪声)的强度的比率。它是无线电链路传输质量的一个量度。
根据第一方面,本发明涉及一种基站,包括:用于无线电频带内的多载波无线电传输的收发器,该收发器用于接收向基站请求服务的多个用户的服务质量请求;以及无线电资源控制器,该无线电资源控制器用于向用户分配多载波无线电传输的子载波,并根据用户的服务质量请求在无线电频带中配置子载波。
当无线电资源控制器根据用户的服务质量请求在无线电频带中分配和配置子载波时,吞吐量、QoS和传输方案的复杂性可以分别针对每个用户进行调整以适应相应的环境和系统条件。一些用户可以请求较高的服务质量,因为它们是通过长和/或噪声大的传输信道连接至基站的,或者因为它们配置用于实时数据传输。其它用户可以请求较低的服务质量,因为它们是通过短和/或不畸变的传输信道连接至基站的,或者因为它们配置用于非实时数据传输,或者因为它们希望使用更便宜的费率。通过根据用户的这些特定的服务质量请求调整无线电资源控制器,基站可以根据用户个人的需要向每个用户提供高效的服务。由于向用户提供的波形可根据用户的特定服务请求针对每个用户分别配置,因此整个系统的吞吐量、质量、复杂性和可靠性可以得到改善。子载波在无线电频带中的分配包括将子载波布置在无线电频带中的适当位置。子载波在无线电频带中的配置包括相对于适当的频谱形状形成子载波。适当的位置和适当的形状可以通过使用某种优化标准来确定。因此,与其它方案相比,较高程度的适应是可能的,因为可以针对每个用户考虑一大组个别要求,这使得:整个系统具有更好的共存能力,因为在需要时可使用适当的波形;为每一位用户提供了更好的服务,因为频谱传输更高效;系统容量增加,因为频谱传输更高效;向每个用户的QoS分配的伸缩性更好,并且运营商可控制并根据用户的状态确定QoS分配;最后,资源频谱和能量的利用更为经济。
无线电资源控制器能够根据用户的服务质量请求在无线电频带中布置或配置子载波。因此,子载波在无线电频带中的布置不是预先确定的,而是子载波在无线电频带中的布置和配置可以根据用户的要求灵活和动态地确定。具体地说,子载波在无线电频带中的分配包括:相对于某种最优性标准将子载波布置在无线电频带中的适当位置,并且子载波在无线电频带中的配置包括相对于某种最优性标准以适当的光谱形状形成子载波。最优性标准将用户的服务质量请求考虑在内,并由此考虑到了客户端的特定需要。
在根据第一方面的基站的第一可能实施形式中,无线电资源控制器用于响应于请求不同服务质量的用户的服务质量请求在无线电频带中重新配置子载波。
用户所要求的服务质量可以改变,例如,如果用户希望升级到提供更高QoS的更高费率,或者当用户从无线电小区的中心移动至无线电小区的边缘时。由于这些不断变化的条件,用户可能请求不同的服务质量。
子载波在频带中的配置可以根据用户的需要动态地改变。当用户请求与之前不同的服务质量时,例如,由于移动至小区边缘,频带中的子载波配置或布置可以重新配置,从而确保向用户提供更好的QoS或维持所要求的QoS。子载波在无线电频带中的重新配置意味着子载波在无线电频带中的位置将会不同,或者它们将使用不同的脉冲形状。重新配置可以基于用户的服务质量请求通过使用某种最优性标准来执行。最优性准则考虑了服务质量请求的变异性,即,服务质量请求不同,子载波在无线电频带中的配置可能不同,即脉冲形状不同和/或位置不同。
在根据如上所述的第一方面或根据第一方面的第一实施形式的第二可能实施形式中,配置子载波包括以下各项中的至少一项:脉冲形成子载波、在频带中间隔布置子载波、选择CP、选择分配给相邻用户的两个子载波之间的保护频带、选择分配给相邻用户的两个子载波之间的保护频带宽度、选择用于每个用户的传输模式。
这允许子载波在频带中的灵活和动态的配置以满足用户的服务要求。
在根据如上所述的第一方面或根据第一方面的任一种前述实施形式的基站的第三可能实施形式中,无线电资源控制器用于根据以下各项中的至少一项配置子载波:OQAM-OFDM传输方案、CP-OFDM传输方案、填充零OFDM传输方案、FTN传输方案、用户的优先级。
基站能够在不同的传输方案中进行选择以向用户提供最优服务质量。这允许动态地适应不断变化的环境的一种灵活的传输。
在根据如上所述的第一方面或根据第一方面的任一种前述实施形式的第四可能实施形式中,请求相同服务质量的用户被分组在同一用户组中。
由于网络条件受不断变化的环境条件的影响,以下问题可能导致服务质量的下降:由于来自共享相同网络资源的其它用户的不断变化的负载引起的低吞吐量;丢弃的数据包,因为路由器可能无法递送、即丢弃一些数据包;噪声和干扰导致的错误;由于网络中的长队或拥塞引起的时延;由于数据包递送的变化造成的抖动;由于数据包在网络中的不同路由引起的乱序递送。相邻用户或位于同一网络节点中的用户或需要相同的网络服务的用户可能面临类似的QoS下降。这些用户可以分组在具有相同服务质量的同一用户组中。服务质量可以通过不同的QoS类别来定义,例如:用于错误少且带宽、时延和抖动要求低的数据传输的背景QoS;用于错误少但对时延要求较高的数据传输的交互式服务的使用情况的交互QoS;用于带宽要求最低并且由于接收机中的抖动缓冲因此可容忍抖动的流媒体服务的流媒体QoS;以及用于与流媒体要求类似但对时延和抖动容忍度较低的电话和视频会议的会话QoS。
可以为分组在同一用户组中的用户分配性质相同或相似的链路,例如,具有相同或相似的传输质量或性能的链路。传输链路可以用于连接要求相同服务质量的用户组,例如,一条传输链路可以用于服务要求背景QoS的用户组,另一条传输链路可以用于服务要求交互QoS的用户组,另一条传输链路可以用于服务要求流媒体QoS的用户组,另一条传输链路可以用于服务要求会话QoS的用户组。这样的分组方案便于子载波在频带中的配置并提高QoS。
在根据如上所述的第一方面或根据第一方面的任一种前述实施形式的基站的第五可能实施形式中,收发器用于FBMC无线电传输和FTN传输中的至少一种。
FBMC无线电传输是一种用于将多个低速率子载波信号作为一个高速率信号通过频率选择性无线电信道进行传输的高效方案。包括用于FBMC传输的收发器的基站可以灵活配置和动态调整来补偿ISI和ICI,以便改进符号决策。
在根据如上所述的第一方面或根据第一方面的任一种前述实施形式的基站的第六可能实施形式中,用户的服务质量请求包括关于以下各项中的至少一项的信息:用户的SNR、用户的移动性、用户的同步能力、用户的电池状态、用户的带宽要求。
基站可以使用所有这些信息,以便提供针对一些或所有用户的最优配置。
在根据如上所述的第一方面或根据第一方面的任一种前述实施形式的基站的第七可能实施形式中,在子载波分配给其收发器支持FTN模式的用户的情况下,无线电资源控制器用于根据FTN模式配置子载波。
因此,用户被分配给用户特定的子载波,以便提供灵活和高效的无线电资源使用。其收发器支持FTN模式的用户在传输的调制阶数有限的情况下实现了更高的数据速率,从而大幅度提高了信道条件良好情况下即高SNR情况下的无线电效率。
在根据如上所述的第一方面或根据第一方面的任一种前述实施形式的基站的第八可能实施形式中,在子载波分配给其收发信机支持FBMC模式的用户的情况下,无线电资源控制器用于根据FBMC模式配置子载波。
每个用户可以由无线电资源控制器分别配置。其收发信机支持FBMC模式的用户可以映射至脉冲形状可调整的子载波以供传输。无线电资源控制器可以根据调控频谱掩模、移动性条件的要求调整脉冲形状,例如根据针对多普勒效应的稳健性和所需的稳健性程度,例如同步误差。
在根据如上所述的第一方面或根据第一方面的任一种前述实施形式的基站的第九可能实施形式中,在子载波分配给其收发信机既不支持FBMC模式也不支持FTN模式的用户的情况下,无线电资源控制器用于根据CP-OFDM模式配置子载波。
不支持高数据速率传输模式的用户可以映射至具有默认配置的子载波。因此,移动台可以灵活适应支持不同传输模式的用户,从而向每个用户提供服务。
在根据如上所述的第一方面或根据第一方面的任一种前述实施形式的基站的第十可能实施形式中,在子载波分配给受限于能量约束条件的用户的情况下,无线电资源控制器用于根据CP-OFDM模式配置子载波。
因此,基站向要求不同的QoS和优先级的用户提供优先服务。
在根据如上所述的第一方面或根据第一方面的任一种前述实施形式的基站的第十一可能实施形式中,在子载波分配给其移动速度高于预定阈值或其同步能力低于预定水平并且其收发器支持FBMC模式的用户的情况下,无线电资源控制器用于根据FBMC模式配置子载波。
无线电资源控制器可以针对其收发器支持FBMC模式的用户调整脉冲形状。在频带中彼此相邻操作的两个非正交系统之间的保护频带由此可以明显减少,从而节省射频资源,并产生非常低的带外泄漏。
在根据如上所述的第一方面或根据第一方面的任一种前述实施形式的基站的第十二可能实施形式中,在无线电频带中配置子载波基于分配给每个用户的用户特定优先级。
根据第二方面,本发明涉及一种用于控制基站中的无线电资源分配的方法,该基站具有用于无线电频带内的多载波无线电传输的收发器,该方法包括:接收向基站请求服务的多个用户的服务质量请求;向用户分配多载波无线电传输的子载波;以及根据用户的服务质量请求在无线电频带中配置子载波。
该方法提供了对子载波的灵活和动态的配置。每个用户的整体吞吐量、QoS和传输方案的复杂性可以通过提供给用户的波形来适应环境和系统条件。因此,高程度的适应是可能的,这使得:整个系统具有改进的共存能力,因为在需要时可使用适当的波形;为每一位用户提供了更好的服务,因为频谱传输得到改进;系统容量增加,因为频谱传输得到改进;向每个用户的QoS分配更具伸缩性,并且运营商可控制并根据用户的状态确定QoS分配;资源频谱和能量的利用更为经济高效。
在根据第二方面的方法的第一可能实施形式中,在无线电频带中配置子载波基于分配给每个用户的用户特定优先级。
根据第三方面,本发明涉及一种用于确定用户流量优先级的装置,包括:用于频带内的多载波传输的收发器,该收发器用于接收请求服务的多个用户的服务质量请求;以及带宽控制器,该带宽控制器用于向用户分配多载波传输的子载波,并根据用户的服务质量请求在频带中配置子载波,其中配置子载波基于分配给每个用户的用户特定优先级。
该装置能够考虑到所有用户请求以及用户优先级,并能够提供满足所有用户需求同时就使用的系统资源而言成本最小的最优系统配置。
根据第四方面,本发明涉及一种用于确定频带内多载波传输的用户流量的优先级的方法,该方法包括:接收请求服务的多个用户的服务质量请求;向用户分配多载波传输的子载波;以及根据用户的服务质量请求在频带中配置子载波,其中这种配置基于分配给每个用户的用户特定优先级。
该方法能够考虑到所有用户请求以及用户优先级,并能够提供满足所有用户需求同时就使用的系统资源而言成本最小的最优系统配置。
根据第五方面,本发明涉及一种用于基站控制同一频带中不同波形的利用的方法,通过针对位于频谱边缘或频谱附近的用户进行自适应脉冲整形以实现:更好的共存性,从而避免引起对其它用户的干扰;对于信道良好和/或SNR高的用户,更高的数据速率;以及更稳健的传输。
该方法减少了对其它用户的干扰,提供了高数据速率和稳健传输。
根据第六方面,本发明涉及一种用于基站的方法,该方法包括:根据小区内某些用户的状态、其环境条件,及其QoS要求,借助于自适应波形,确定这些用户的优先级;并基于用户的优先级状态及其信道条件,向他们分配可用带宽以针对优先级高的用户,同时考虑到他们的环境和系统条件实现稳定的QoS。
该方法能够向优先用户提供稳定的QoS,无论用户位于无线电小区中什么位置。
本文描述的方法、系统和设备可以实现为数字信号处理器、微控制器或任何其它副处理器中的软件或者实现为专用集成电路内的硬件电路。
本发明可以在数字电子电路中,或计算机硬件、固件、软件中,或其组合中实现,例如在常规移动设备的可用硬件中或在专用于处理本文描述的方法和设备的新硬件中实现。
本发明的这些和其它方面将从下文描述的实施形式显而易见。
附图说明
本发明的另外的实施例将参考以下附图进行描述,在附图中:
图1示出根据实施形式的基站100的方框图;
图2示出根据实施形式的用于控制基站中无线电资源分配的方法200的示意图;
图3示出根据实施形式的用于向不同用户分配无线电资源的方法300的示意图;
图4示出根据实施形式的用于宏小区400内的两个用户401、403的无线电资源分配算法的示意图;
图5示出根据实施形式的用于确定用户流量优先级的装置500的方框图;
图6示出根据实施形式的用于确定用户流量优先级的方法600的示意图。
具体实施方式
图1示出根据实施形式的基站100的方框图。
基站100包括收发器101和无线电资源控制器103。收发器用于无线电频带内的多载波无线电传输。收发器101接收向基站100请求服务的多个用户的服务质量请求102。无线电资源控制器103向用户分配多载波无线电传输的子载波,并根据用户的服务质量请求102在无线电频带中配置子载波。收发器101将服务质量请求102转发104给无线电资源控制器103。
在基站100的实施形式中,无线电资源控制器103响应于请求不同服务质量,即与最后请求所请求的服务质量不同的服务质量,的用户的服务质量请求在无线电频带中重新配置子载波。在基站100的实施形式中,配置子载波包括以下各项中的至少一项:脉冲形成子载波、在频带中间隔布置子载波、选择CP、选择分配给相邻用户的两个子载波之间的保护频带、选择分配给相邻用户的两个子载波之间的保护频带宽度、选择用于每个用户的传输模式。在基站100的实施形式中,无线电资源控制器103根据以下各项中的至少一项配置子载波:OQAM-OFDM传输方案、CP-OFDM传输方案、填充零OFDM传输方案、FTN传输方案、用户的优先级。在基站100的实施形式中,用户被分配至用户组中。在基站100的实施形式中,收发器101根据基于滤波器组的多载波无线电传输执行传输和接收。在基站100的实施形式中,用户的服务质量请求包括关于以下各项中的至少一项的信息:用户的SNR、用户的移动性、用户的同步能力、用户的电池状态、用户的带宽要求。
在基站100的实施形式中,在子载波分配给其链路SNR大于预定阈值并且其收发器支持FTN模式的用户的情况下,无线电资源控制器103根据FTN模式配置子载波。在基站100的实施形式中,在子载波从无线电频带的边缘分配给其收发器支持FBMC模式的用户的情况下,无线电资源控制器103根据FBMC模式配置子载波。在基站100的实施形式中,在子载波分配给其收发器既不支持FBMC模式也不支持FTN模式的用户的情况下,无线电资源控制器103根据CP-OFDM模式配置子载波。在基站100的实施形式中,在子载波分配给受限于能量约束条件的用户的情况下,无线电资源控制器103根据CP-OFDM模式配置子载波。在基站100的实施形式中,在子载波分配给其移动速度高于预定阈值或其同步能力低于预定水平并且其收发器支持FBMC模式的用户的情况下,无线电资源控制器103根据FBMC模式配置子载波。在基站100的实施形式中,在无线电频带中配置子载波基于分配给每个用户的用户特定优先级。
图2示出根据实施形式的用于控制基站中的无线电资源分配的方法200,该基站具有用于无线电频带内的多载波无线电传输的收发器。方法200包括接收201向基站请求服务的多个用户的服务质量请求。方法200包括向用户分配203多载波无线电传输的子载波。方法200包括根据用户的服务质量请求在无线电频带中配置205子载波。
在实施形式中,方法200提供了一种自适应传输方案,这种自适应传输方案用于根据每一链路/用户/用户组信道、流量和终端类型条件及其相应的收发器结构,分配波形和传输模式。用户向蜂窝系统,例如基站,请求满足特定QoS标准的服务。此外,提供了关于其当前信号链路和系统条件的信息。在实施形式中,该信息包括以下各项中的一项或多项:信道的时延扩展、信道的多普勒扩展、信道和/或接收器的噪声系数、对功耗的约束条件,例如,电池状态、用户终端类别,从而提供关于其能力的信息,例如,带宽、最大调制阶数、支持FTN模式与否、支持FBMC模式与否、支持CP-OFDM模式与否。通过将所有用户请求和他们所报告的要求考虑在内,基站选择一种目标在于满足所有用户需求同时就使用的系统资源而言成本最小的最优系统配置。在实施形式中,方法200包括将用户划分成具有类似的要求或条件的组。在实施形式中,方法200包括为每个用户组选择适当的传输方案配置并针对所要求的带宽配置这一配置。在方法200的实施形式中,在无线电频带中配置子载波基于分配给每个用户的用户特定优先级。
由于针对具有低带外辐射的FBMC信令的频谱整形的性质,传输方案的不同配置可以在同一频带中共存而不需要很大的保护频带,甚至不需要任何保护频带。在方法200的实施形式中,关于自适应传输考虑的其它参数是以下各项中一项或多项:所使用的脉冲形状及其正交水平、使用FTN(是/否)和正交水平、子载波间距、复杂性(影响对处理功率的需求),以及CP-OFDM模式情况下CP的长度。
因此,方法200提供了一种自适应传输方案,这种自适应传输方案根据上面列出的条件,在传输过程中,分别针对每个用户,动态地调整收发器配置,包括FBMC模式、脉冲形状、FTN模式等。
图3示出根据实施形式的用于向不同符号用户分配无线电资源的方法300的示意图。图3示出基站处、用于在分别配置的用于数据传输的链路330、332、334、336上服务四个不同用户,用户1(U1,340)、用户2(U2,342)、用户3(U3,344)和用户4(U4,346)的配置。
用户1的符号输入至执行OQAM的OQAM映射器301,以在OQAM映射器301的输出端处提供用户1的OQAM映射后符号。用户1的OQAM映射后符号经过FTN映射器305,从而提供用户1的FTN映射后符号。
用户2的符号输入至执行OQAM的OQAM映射器301,以在OQAM映射器301的输出端处提供用户2的OQAM映射后符号。用户1的FTM映射后符号和用户2的OQAM映射后符号被输入至快速傅立叶逆变换(IFFT)块311,其中用户1和用户2的相邻符号通过保护带307间隔开。经IFFT311处理后的符号由PPN处理单元317过滤,从而提供用于用户1和用户2的子载波。
用户3的符号输入至执行OQAM的OQAM映射器303,以在OQAM映射器303的输出端处提供用户3的OQAM映射后符号。用户3的OQAM映射后符号被输入至IFFT块313。经IFFT块313处理后的符号由多相网络(PPN)处理单元319过滤,从而提供用于用户3的子载波。
用户4的符号被输入至IFFT块315。经IFFT块处理后的符号由CP附加(ADD)处理单元321过滤,从而提供用于用户4的子载波。
加法器323将用于用户1和用户2的子载波、用于用户3的子载波和用于用户4的子载波相加,从而在频域中提供用于用户1、用户2、用户3和用户4的符号。
用户1的符号的信道良好、多普勒扩展低并且具有IOTA脉冲形状。因此,提供了利用FTN的高数据速率,使用小子载波间距,并且要求低带外辐射。
用户2的符号的信道较差,多普勒扩展低。因此,FTN是不可能的。
用户3的符号的信道较差、多普勒扩展高并且具有EGF脉冲形状。因此,FTN是不可能的,使用大子载波间距,并且根据信道调整脉冲形状。
用户4的符号的信道较差、多普勒扩展高,并且接收机处存在功率约束条件。因此,FTN是不可能的,使用大子载波间距,并且应用CP-OFDM以提供简单的均衡。
在实施形式中,每条链路的子载波的间距不是一个常量,而是分别针对每个用户选择间距。
方法300可以应用于上文参见图1描述的基站100中,其中收发器101和无线电资源控制器103实现相应的资源分配算法。
图1的收发器101接收用户1(U1,340)、用户2(U2,342)、用户3(U3,344)和用户4(U4,346)的服务质量请求,并将这些服务质量请求转发给无线电资源控制器103,无线电资源控制器103分别配置链路330、332、334、336以用于数据传输。OQAM映射器301、303,FTN映射器305,保护频带307、309,IFFT块311、313、315,PPN处理单元317、319和CPADD321布置在收发器101中。用于用户1的链路330、用于用户2的链路332、用于用户3的链路334和用于用户4的链路336向收发器101的不同的处理单元301、303、305、307、309、311、313、315、317、319、321的分配,以及这些处理单元在收发器101中的分配和配置由无线电资源控制器103进行控制。
图4示出根据实施形式的用于宏小区400内的两个用户401、403的无线电资源分配算法的示意图。如图4中可以看出,存在LTE宏小区400场景中的两个用户401、403,其中用户#1401位于基站405附近,并且其信道性质良好,而用户#2403位于小区边缘并且信道条件差。通信信道,即用户#1401的空中接口421,直接连接至基站405,而通信信道,即用户#2403的空中接口423,在到达基站405之前必须穿过位于用户#2403与基站405之间的两座建筑物407。基站405可以对应于参见图1描述的基站100,包括收发器101和无线电资源控制器103。用户#1401和用户#2403具有相同的数据速率需求。用户#1401没有关于功耗的复杂性问题,并且占用带宽比用户#2403少。用户#2403的关于功耗的复杂性低,并且占用带宽比用户#1401多。无线电资源分配,例如由上文参见图1描述的无线电资源控制器103执行,得益于使用FTN模式传输,通过消耗仅一小部分可用带宽,便为用户#1401提供了数据速率非常高的服务。鉴于用户#2403具有相同的数据速率需求,并且其允许的接收期功耗是相当有限的,即电池电量低,系统配置用户#2403使之处于CP-OFDM模式,并分配比用户#1401相对更多的带宽,因为相对于基于FBMC的FTN模式,常规CP-OFDM具有较低的频谱效率但较低的接收器复杂性/功耗需求。
在用于其链路SNR大于预定义阈值(“SNR_TH_1”),并且其收发器支持FTN模式的那些用户的资源分配算法的实施形式中,资源分配算法向用户分配FTN模式资源。
在用于其频谱掩模严格并且其用户恰好位于频带边缘并且其收发器支持FBMC模式的那些系统的资源分配算法的实施形式中,资源分配算法向用户分配FBMC模式资源。
在用于其用户的收发器既不支持FTN模式也不支持FBMC模式的资源分配算法的实施形式中,资源分配算法向用户分配CP-OFDM模式资源(向下兼容性)。如果用户受限于严格的能量约束条件,即电池电量低,那么资源分配算法选择CP-OFDM模式。由于CP-OFDM复杂性小得多,因此处理的功率消耗少得多。
在用于具有高移动性,即估计的移动速度高于预定义阈值“SPEED_TH_1”,或具有较差同步能力的系统的资源分配算法的实施形式中,资源分配算法分配具有较大的子载波间距和优化的脉冲形状的FBMC模式资源。
在资源分配算法的实施形式中,根据所有用户的带宽要求,资源分配算法决定针对每种传输模式,即FTN、FTN+FBMC、FBMC、CP-OFDM等的带宽资源的划分,以及如果需要的话,两种相邻配置之间的保护频带宽度。
在资源分配算法的实施形式中,资源分配算法经由下行链路信令信道,例如经由用于LTE的PDCCH,向每个用户以信号形式发送分配决定。
资源分配算法可以应用在如上文参见图1描述的基站100的无线电资源控制器103中。参见图2描述的方法200的分配子载波203和配置子载波205的步骤可以应用资源分配算法用于子载波的分配和配置。
图5示出根据实施形式的用于确定用户流量优先级的装置500的方框图。
装置500用于确定用户流量优先级。装置500包括收发器501和带宽控制器503。收发器501用于频带内的多载波传输。收发器501接收请求服务的多个用户的服务质量请求502。带宽控制器503向用户分配多载波传输的子载波,并根据用户的服务质量请求502在频带中配置子载波。配置子载波的步骤基于分配给每个用户的用户特定优先级。
收发器501可以对应于参见图1描述的收发器101。带宽控制器503可以对应于参见图1描述的带宽控制器103。在实施形式中,收发器501用于通过有线线路数据传输,例如DSL,进行多载波传输。
图6示出根据实施形式的用于确定用户流量优先级的方法600的示意图。
该方法用于确定频带内多载波传输的用户流量的优先级。方法600包括接收601请求服务的多个用户的服务质量请求。方法600包括向用户分配603多载波传输的子载波。方法600包括根据用户的服务质量请求在频带中配置605子载波,其中这种配置基于分配给每个用户的用户特定优先级。
接收请求步骤601可以对应于参见图2描述的接收请求步骤201。分配子载波步骤603可以对应于参见图2描述的分配子载波步骤203。在子载波的配置是基于用户的优先级的情况下,基于用户特定优先级配置子载波的步骤605可以对应于参见图2描述的配置子载波步骤205。
通过阅读以上内容,所属领域的技术人员将清楚地了解,可提供多种方法、系统、记录媒体上的计算机程序及其类似者等等。
本发明还支持包含计算机可执行代码或计算机可执行指令的计算机程序产品,这些计算机可执行代码或计算机可执行指令在执行时使得至少一台计算机执行本文所述的执行及计算步骤。
通过以上启示,对于本领域技术人员来说,许多替代产品、修改及变体是显而易见的。当然,所属领域的技术人员容易意识到除本文所述的应用之外,还存在本发明的众多其它应用。虽然已参考一个或多个特定实施例描述了本发明,但所属领域的技术人员将认识到在不偏离本发明的范围的前提下,仍可对本发明作出许多改变。因此,应理解,只要是在所附权利要求书及其等效文句的范围内,可以用不同于本文具体描述的方式来实践本发明。

Claims (15)

1.一种基站(100),其特征在于,包括:
用于无线电频带内的多载波无线电传输的收发器(101),所述收发器(101)用于接收向所述基站(100)请求服务的多个用户的服务质量请求(102);以及
无线电资源控制器(103),用于向所述用户分配所述多载波无线电传输的子载波,并根据所述用户的所述服务质量请求在所述无线电频带中配置所述子载波。
2.根据权利要求1所述的基站(100),其特征在于,所述无线电资源控制器(103)用于响应于请求不同服务质量的用户的服务质量请求(102)在所述无线电频带中重新配置所述子载波。
3.根据权利要求1或权利要求2所述的基站(100),其特征在于,所述配置所述子载波包括以下各项中的至少一项:
脉冲形成所述子载波,
在所述频带中间隔布置所述子载波,
选择循环前缀CP,
选择分配给相邻用户的两个子载波之间的保护频带,
选择分配给相邻用户的两个子载波之间的保护频带宽度,
选择用于每个用户的传输模式。
4.根据前述权利要求之一所述的基站(100),其特征在于,所述无线电资源控制器(103)用于根据以下各项中的至少一项配置所述子载波:
偏移正交调幅-正交频分复用,OQAM-OFDM传输方案,
循环前缀-OFDM,CP-OFDM传输方案,
填充零OFDM传输方案,
快于奈奎斯特,FTN传输方案,
用户的优先级。
5.根据前述权利要求之一所述的基站(100),其特征在于,请求相同服务质量的用户被分组在同一用户组中。
6.根据前述权利要求之一所述的基站(100),其特征在于,所述收发器(101)用于基于滤波器组的多载波无线电传输和FTN传输中的至少一种。
7.根据前述权利要求之一所述的基站(100),其特征在于,用户的所述服务质量请求(102)包括关于以下各项中的至少一项的信息:
所述用户的信噪比,
所述用户的移动性,
所述用户的同步能力,
所述用户的电池状态,
所述用户的带宽要求。
8.根据前述权利要求之一所述的基站(100),其特征在于,在子载波分配给其收发器支持FTN模式的用户的情况下,所述无线电资源控制器(103)用于根据FTN模式配置所述子载波。
9.根据前述权利要求之一所述的基站(100),其特征在于,在子载波分配给其收发器支持基于滤波器组的多载波FBMC模式的用户的情况下,所述无线电资源控制器(103)用于根据FBMC模式配置所述子载波。
10.根据前述权利要求之一所述的基站(100),其特征在于,在子载波分配给其收发器既不支持FBMC模式也不支持FTN模式的用户的情况下,所述无线电资源控制器(103)用于根据CP-OFDM模式配置所述子载波。
11.根据前述权利要求之一所述的基站(100),其特征在于,在子载波分配给受限于能量约束条件的用户的情况下,所述无线电资源控制器(103)用于根据CP-OFDM模式配置所述子载波。
12.根据前述权利要求之一所述的基站(100),其特征在于,在子载波分配给其移动速度高于预定阈值或其同步能力低于预定水平并且其收发器支持FBMC模式的用户的情况下,所述无线电资源控制器(103)用于根据FBMC模式配置所述子载波。
13.一种用于控制基站中的无线电资源分配的方法(200),其特征在于,所述基站具有用于无线电频带内的多载波无线电传输的收发器,其特征在于,所述方法(200)包括:
接收(201)向所述基站请求服务的多个用户的服务质量请求;
向所述用户分配(203)所述多载波无线电传输的子载波;以及
根据所述用户的所述服务质量请求在所述无线电频带中配置(205)所述子载波。
14.一种用于确定用户流量优先级的装置(500),其特征在于,包括:
用于频带内的多载波传输的收发器(501),所述收发器(501)用于接收请求服务的多个用户的服务质量请求(502);以及
带宽控制器(503),用于向所述用户分配所述多载波传输的子载波,并根据所述用户的所述服务质量请求(502)在所述频带中配置所述子载波,其中所述配置所述子载波基于分配给每个用户的用户特定优先级。
15.一种用于确定频带内多载波传输的用户流量的优先级的方法(600),其特征在于,所述方法(600)包括:
接收(601)请求服务的多个用户的服务质量请求;
向所述用户分配(603)所述多载波传输的子载波;以及
根据所述用户的所述服务质量请求在所述频带中配置(605)所述子载波,其中所述配置基于分配给每个用户的用户特定优先级。
CN201380072365.9A 2013-02-08 2013-02-08 用于控制无线电资源分配的基站和方法 Active CN105075167B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2013/052602 WO2014121847A1 (en) 2013-02-08 2013-02-08 Base station and method for controlling radio resources allocation

Publications (2)

Publication Number Publication Date
CN105075167A true CN105075167A (zh) 2015-11-18
CN105075167B CN105075167B (zh) 2019-03-26

Family

ID=47722259

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380072365.9A Active CN105075167B (zh) 2013-02-08 2013-02-08 用于控制无线电资源分配的基站和方法

Country Status (4)

Country Link
US (1) US10660093B2 (zh)
EP (1) EP2954634B1 (zh)
CN (1) CN105075167B (zh)
WO (1) WO2014121847A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294692A (zh) * 2017-06-27 2017-10-24 中国联合网络通信集团有限公司 一种数据包的传输方法、装置及基站
CN109644175A (zh) * 2016-08-10 2019-04-16 阿尔卡特朗讯 用于处理待经由第一无线电模块发送的数据的设备

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3006535A1 (fr) * 2013-05-28 2014-12-05 France Telecom Procede et dispositif de modulation delivrant un signal a porteuses multiples, procede et dispositif de demodulation et programme d’ordinateur correspondants.
WO2015031075A1 (en) * 2013-08-29 2015-03-05 Interdigital Patent Holdings, Inc. Methods and apparatus for faster than nyquist rate multi-carrier modulation
JP6598146B2 (ja) * 2015-02-20 2019-10-30 株式会社国際電気通信基礎技術研究所 無線通信装置、無線モジュールおよびそれらを備える無線通信システム
WO2016141989A1 (en) 2015-03-12 2016-09-15 Huawei Technologies Co., Ltd. Adaptation of subcarrier frequency spacing based on energy efficiency indicator
US10321458B2 (en) * 2015-05-08 2019-06-11 Lg Electronics Inc. Method for allocating frequency resources in wireless communication system, and apparatus using the same
WO2017005295A1 (en) * 2015-07-06 2017-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Resource allocation for data transmission in wireless systems
CN116056223A (zh) * 2016-01-13 2023-05-02 三星电子株式会社 用于支持无线通信系统中的多个服务的方法和设备
US11089579B2 (en) 2016-01-13 2021-08-10 Samsung Electronics Co., Ltd. Method and apparatus for supporting multiple services in advanced MIMO communication systems
RU2719404C2 (ru) 2016-01-26 2020-04-17 Сони Корпорейшн Аппаратура и способ
CN107302800A (zh) * 2016-04-15 2017-10-27 索尼公司 用于混合多址接入无线通信系统的装置和方法
WO2017184035A1 (en) * 2016-04-19 2017-10-26 Telefonaktiebolaget Lm Ericsson (Publ) Faster-than-nyquist signaling for fbmc burst transmissions
ES2733547T3 (es) * 2016-08-10 2019-11-29 Alcatel Lucent Dispositivo y equipo de usuario para procesar una señal de referencia de información de estado de canal
EP3507955A1 (en) 2016-09-23 2019-07-10 Huawei Technologies Co., Ltd. Radio transmitter and receiver devices processing signal waveforms with selected pulse shaping scheme
US10158555B2 (en) 2016-09-29 2018-12-18 At&T Intellectual Property I, L.P. Facilitation of route optimization for a 5G network or other next generation network
US10206232B2 (en) 2016-09-29 2019-02-12 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (IAB) wireless networks
US10602507B2 (en) * 2016-09-29 2020-03-24 At&T Intellectual Property I, L.P. Facilitating uplink communication waveform selection
US10171214B2 (en) 2016-09-29 2019-01-01 At&T Intellectual Property I, L.P. Channel state information framework design for 5G multiple input multiple output transmissions
US10644924B2 (en) 2016-09-29 2020-05-05 At&T Intellectual Property I, L.P. Facilitating a two-stage downlink control channel in a wireless communication system
US10355813B2 (en) 2017-02-14 2019-07-16 At&T Intellectual Property I, L.P. Link adaptation on downlink control channel in a wireless communications system
WO2018166607A1 (en) 2017-03-16 2018-09-20 Huawei Technologies Co., Ltd. Communication techniques based on adaptive numerology
EP3537678B1 (en) * 2018-03-08 2022-05-04 Institut Mines Telecom - IMT Atlantique - Bretagne - Pays de la Loire Pseudo-guard intervals insertion in an fbmc transmitter
US11490363B2 (en) 2018-04-18 2022-11-01 Google Llc User device-initiated bandwidth request
US10609681B2 (en) 2018-04-24 2020-03-31 Google Llc User device-initiated request for resource configuration
WO2020242898A1 (en) 2019-05-26 2020-12-03 Genghiscomm Holdings, LLC Non-orthogonal multiple access
US11177995B2 (en) * 2020-02-05 2021-11-16 Huawei Technologies Co., Ltd. Methods and apparatus for communicating a single carrier waveform
TWI765523B (zh) 2021-01-11 2022-05-21 國立陽明交通大學 仿真用戶之高移動性資源分配系統及其方法
WO2023192897A1 (en) * 2022-03-30 2023-10-05 Qualcomm Incorporated Cyclic prefix adaptation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2415871A (en) * 2004-06-30 2006-01-04 Samsung Electronics Co Ltd Dynamic subcarrier allocation in Multicarrier Spread Spectrum communication
CN101405973A (zh) * 2006-03-20 2009-04-08 英特尔公司 用于分配时间和频率资源的无线接入网和方法
WO2012025131A1 (en) * 2010-08-24 2012-03-01 Nec Europe Ltd. Communication network and method for operating a communication network

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003037639A (ja) * 2001-07-23 2003-02-07 Sony Corp 無線インパルス送信機、受信機、及び方法
US9628231B2 (en) * 2002-05-14 2017-04-18 Genghiscomm Holdings, LLC Spreading and precoding in OFDM
CN100574178C (zh) * 2005-07-04 2009-12-23 上海原动力通信科技有限公司 实现多载波高速下行分组接入业务的设备、系统及方法
JP2007159066A (ja) * 2005-12-08 2007-06-21 Sanyo Electric Co Ltd 無線通信装置及び無線通信制御方法
US7940640B2 (en) * 2006-01-20 2011-05-10 Nortel Networks Limited Adaptive orthogonal scheduling for virtual MIMO system
US8131306B2 (en) 2006-03-20 2012-03-06 Intel Corporation Wireless access network and method for allocating data subcarriers within a downlink subframe based on grouping of user stations
US8369301B2 (en) * 2007-10-17 2013-02-05 Zte (Usa) Inc. OFDM/OFDMA frame structure for communication systems
US20090257344A1 (en) * 2008-04-14 2009-10-15 Nec Laboratories America All optical ofdm with integrated coupler based ifft/fft and pulse interleaving
US8825480B2 (en) * 2008-06-05 2014-09-02 Qualcomm Incorporated Apparatus and method of obtaining non-speech data embedded in vocoder packet
EP2342832B1 (en) * 2008-10-27 2016-06-22 Novelsat Ltd High-performance faster-than-nyquist (ftn) signaling schemes
CN101729477B (zh) * 2008-10-31 2015-02-25 三星电子株式会社 多载波无线传输系统中发射信号的方法
US8559962B2 (en) * 2009-01-22 2013-10-15 Innovative Sonic Limited Method and apparatus for improving reconfiguration procedure for scheduling request
US9059749B2 (en) * 2009-10-02 2015-06-16 Sharp Kabushiki Kaisha Antenna port mode and transmission mode transitions
US11012947B2 (en) * 2009-10-21 2021-05-18 Qualcomm Incorporated Uplink multi-power amplifier/antenna operation and channel prioritization
CN102340824B (zh) * 2010-07-22 2015-04-01 中兴通讯股份有限公司 一种多载波高速数据业务调度的方法和装置
US8804639B2 (en) * 2010-10-04 2014-08-12 Qualcomm Incorporated Control channel resources for multi-bit ACK/NAK
US9596095B2 (en) * 2011-07-29 2017-03-14 Telefonaktiebolaget L M Ericsson (Publ) Optimized near-simultaneous distribution of multimedia content
JP5838266B2 (ja) * 2011-08-12 2016-01-06 インターデイジタル パテント ホールディングス インコーポレイテッド 拡張キャリアおよびキャリアセグメントに対する参照信号構成
US9160511B2 (en) * 2012-01-30 2015-10-13 Qualcomm Incorporated Cyclic prefix in evolved multimedia broadcast multicast service with high transmit power
WO2013162166A1 (en) * 2012-04-27 2013-10-31 Lg Electronics Inc. Method and apparatus for reconfiguring device-to-device connection information in wireless communication system
RU2599619C1 (ru) * 2012-09-28 2016-10-10 Хуавей Текнолоджиз Ко., Лтд. Способ реконфигурации ресурсов, базовая станция и пользовательское оборудование
US20140198865A1 (en) * 2013-01-16 2014-07-17 Qualcomm Incorporated Ofdm pilot and frame structures
US9900867B2 (en) * 2013-05-16 2018-02-20 Telefonaktiebolaget Lm Ericsson (Publ) User equipment and a method for transmitting sounding reference signals
US20190182701A1 (en) * 2016-05-19 2019-06-13 Vid Scale, Inc. Client centric service quality control

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2415871A (en) * 2004-06-30 2006-01-04 Samsung Electronics Co Ltd Dynamic subcarrier allocation in Multicarrier Spread Spectrum communication
CN101405973A (zh) * 2006-03-20 2009-04-08 英特尔公司 用于分配时间和频率资源的无线接入网和方法
WO2012025131A1 (en) * 2010-08-24 2012-03-01 Nec Europe Ltd. Communication network and method for operating a communication network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QING BAI ET AL: "《Scheduling and resource allocation in OFDM and FBMC systems:An interactive approach and performance comparison》", 《2010 EUROPEAN WIRELESS CONFERENCE》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109644175A (zh) * 2016-08-10 2019-04-16 阿尔卡特朗讯 用于处理待经由第一无线电模块发送的数据的设备
US11252000B2 (en) 2016-08-10 2022-02-15 Alcatel Lucent Device to process data to be transmitted via a first radio module
CN109644175B (zh) * 2016-08-10 2022-02-18 阿尔卡特朗讯 用于处理待经由第一无线电模块发送的数据的设备
CN107294692A (zh) * 2017-06-27 2017-10-24 中国联合网络通信集团有限公司 一种数据包的传输方法、装置及基站
CN107294692B (zh) * 2017-06-27 2020-03-24 中国联合网络通信集团有限公司 一种数据包的传输方法、装置及基站

Also Published As

Publication number Publication date
CN105075167B (zh) 2019-03-26
WO2014121847A1 (en) 2014-08-14
US20150351098A1 (en) 2015-12-03
EP2954634A1 (en) 2015-12-16
EP2954634B1 (en) 2020-04-29
US10660093B2 (en) 2020-05-19

Similar Documents

Publication Publication Date Title
CN105075167A (zh) 用于控制无线电资源分配的基站和方法
CN107370517B (zh) 采用显式跳频的多载波通信系统
JP3535344B2 (ja) マルチキャリア伝送方法及びデータ送信装置並びに移動局装置及び基地局装置
AU2008312350B2 (en) OFDM/OFDMA frame structure for communication systems
US7295626B2 (en) Orthogonal division multiple access technique incorporating single carrier and OFDM signals
CN102868510B (zh) 通信方法和无线发射机
CN102047732B (zh) 用户装置和基站装置以及通信控制方法
CN108476194B (zh) 使用物联网(iot)设备的窄带的广义频分复用传输
WO2006135187A2 (en) A method of allocating wireless resources in a multi-carrier system
JP5167212B2 (ja) マルチキャリヤ通信方法
WO2013144897A2 (en) Hybrid Multicarrier Technique
US10862643B2 (en) Device and user equipment to process a channel state information reference signal
CN102907050B (zh) 多址接入方法、装置及系统
CN101064701B (zh) 一种发送测量导频的方法及其用户终端、系统
KR102542702B1 (ko) 다중반송파 무선 통신 시스템에서의 반복전송 운용 방안 및 장치
KR20070034905A (ko) 광대역 무선 접속 통신 시스템에서 주파수 자원 운용 장치및 방법
CN1885844B (zh) 基于正交复用多载波传输降低峰均比的装置及其方法
CN1893410B (zh) 实现正交频分复用系统的频率复用方法及接入设备
CN109644175A (zh) 用于处理待经由第一无线电模块发送的数据的设备
CN106470180B (zh) 基于滤波器组多载波调制的信号发送方法、接收方法和装置
CN113286355B (zh) 基于otfs-noma跨域传输系统中的功率分配方法
JP4818413B2 (ja) 通信システム、その基地局及び通信方法
Hamdi et al. Transmission over OFDM and SC-FDMA for LTE systems
CN1885843B (zh) 基于多带滤波器组的多载波系统降低峰均比的装置和方法
CN103477598A (zh) 一种基于ofdm的数据传输方法和发射站点

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant