CN105071731A - Efficient acceleration control method for permanent-magnet synchronous motor - Google Patents

Efficient acceleration control method for permanent-magnet synchronous motor Download PDF

Info

Publication number
CN105071731A
CN105071731A CN201510471021.6A CN201510471021A CN105071731A CN 105071731 A CN105071731 A CN 105071731A CN 201510471021 A CN201510471021 A CN 201510471021A CN 105071731 A CN105071731 A CN 105071731A
Authority
CN
China
Prior art keywords
magnet synchronous
permanent magnet
motor
synchronous motor
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510471021.6A
Other languages
Chinese (zh)
Inventor
黄智宇
乔旭日
夏天骏
孙昌波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201510471021.6A priority Critical patent/CN105071731A/en
Publication of CN105071731A publication Critical patent/CN105071731A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

本发明涉及一种永磁同步电机高效加速控制方法,包括下列步骤:实时检测永磁同步电机转速,并与目标转速进行对比,当电机转速小于目标转速的k(k≤1)倍时,永磁同步电机进入高效加速控制模式,使转矩轴电流iq达到逆变器与永磁同步电机限制条件下的最大定子电流值ilim,以获得最大的电磁转矩,从而使电机一直以最大的加速度逼近目标转速,以上所述为开环控制阶段;当电机转速达到目标转速的k倍及以上时,永磁同步电机退出高效加速控制模式,进入平稳控制模式,切换到id=0的矢量控制策略下,永磁同步电机进入电流与转速的双闭环控制,使电机较平稳的逼近目标转速后并使系统稳定的运行在期望转速情况下。本方法在永磁同步电机启动之初或预定转速发生大的变化时,可以尽快达到目标转速,大大缩短电机的加速时间;且结构简单,易于实现。

The invention relates to a high-efficiency acceleration control method for a permanent magnet synchronous motor, comprising the following steps: detecting the rotational speed of the permanent magnet synchronous motor in real time, and comparing it with a target rotational speed; The magnetic synchronous motor enters the high-efficiency acceleration control mode, so that the torque shaft current i q reaches the maximum stator current value i lim under the limitation of the inverter and the permanent magnet synchronous motor, so as to obtain the maximum electromagnetic torque, so that the motor has been operating at the maximum The acceleration approaching the target speed, the above is the open-loop control stage; when the motor speed reaches k times the target speed and above, the permanent magnet synchronous motor exits the high-efficiency acceleration control mode, enters the stable control mode, and switches to i d = 0 Under the vector control strategy, the permanent magnet synchronous motor enters the double closed-loop control of current and speed, so that the motor can approach the target speed more smoothly and the system can run stably at the desired speed. The method can reach the target speed as soon as possible when the permanent magnet synchronous motor is started or when the predetermined speed changes greatly, greatly shortening the acceleration time of the motor; and the structure is simple and easy to realize.

Description

一种永磁同步电机高效加速控制方法A high-efficiency acceleration control method for permanent magnet synchronous motors

技术领域technical field

本发明属于电机控制技术领域,涉及一种永磁同步电机高效加速控制方法。The invention belongs to the technical field of motor control, and relates to a high-efficiency acceleration control method for a permanent magnet synchronous motor.

背景技术Background technique

随着新型电力电子器件GTO,IGBT等的出现使同步电动机调速系统发展到了一个新的阶段,永磁同步电动机调速系统具有良好的静态和动态特性,适合应用于机床,机器人和柔性制造系统中。电动机的转子采用永久磁铁励磁,消除了转子励磁损耗。如今永磁同步电机得到了广泛的应用,因为它具有维护方便、可控性强、受环境影响小、电机效率高以及具有高功率因数等诸多有点。永磁同步电机正在向大功率、高转速、高效率和小型化方向发展。当今世界已研制出功率密度超过1KW/kg且额定效率大于90%的小型永磁同步电动机,并且满足低速大扭矩和高速恒功率的牵引控制要求。With the emergence of new power electronic devices GTO, IGBT, etc., the synchronous motor speed control system has developed to a new stage. The permanent magnet synchronous motor speed control system has good static and dynamic characteristics and is suitable for use in machine tools, robots and flexible manufacturing systems. middle. The rotor of the motor is excited by permanent magnets, which eliminates the loss of rotor excitation. Nowadays, permanent magnet synchronous motors are widely used because of their advantages such as convenient maintenance, strong controllability, low environmental impact, high motor efficiency, and high power factor. Permanent magnet synchronous motors are developing towards high power, high speed, high efficiency and miniaturization. Today's world has developed a small permanent magnet synchronous motor with a power density exceeding 1KW/kg and a rated efficiency greater than 90%, and it meets the traction control requirements of low-speed high-torque and high-speed constant power.

经典的电机控制方法主要有:矢量控制、直接转矩控制双闭环控制,矢量控制的速度环和电流环同时采用经典PI控制;现代控制理论主要是在速度环和电流环加入滑模变结构控制;智能控制理论则在双闭环中加入模糊控制、神经网络、专家系统等控制策略。The classic motor control methods mainly include: vector control, direct torque control double closed-loop control, the speed loop and current loop of vector control adopt classic PI control at the same time; modern control theory mainly adds sliding mode variable structure control to the speed loop and current loop ; Intelligent control theory adds fuzzy control, neural network, expert system and other control strategies in the double closed loop.

然而,现有的各种电机控制策略还存在着各种不足,矢量控制技术算法结构比较复杂,需要对电机的交、直轴电流进行解耦控制,实现起来比较困难,对控制器要求比较高,且其对速度的响应较慢,抗干扰能力差;直接转矩控制技术低速下调速性能差;现代控制理论及智能控制的研究多停留在理论阶段。However, various existing motor control strategies still have various deficiencies. The algorithm structure of vector control technology is relatively complex, and it is necessary to decouple the AC and DC axis currents of the motor. It is difficult to implement and requires relatively high requirements for the controller. , and its response to speed is slow, and its anti-interference ability is poor; direct torque control technology has poor speed regulation performance at low speeds; modern control theory and intelligent control research mostly stay at the theoretical stage.

发明内容Contents of the invention

有鉴于此,本发明的目的在于提供一种永磁同步电机高效加速控制方法,该方法可以在矢量控制策略的基础上加快其对速度的响应。In view of this, the object of the present invention is to provide a high-efficiency acceleration control method for a permanent magnet synchronous motor, which can accelerate its response to speed based on a vector control strategy.

为达到上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:

一种永磁同步电机高效加速控制方法,包括以下步骤:A high-efficiency acceleration control method for a permanent magnet synchronous motor, comprising the following steps:

步骤一、实时检测永磁同步电机的实际转速ωt并返回系统;Step 1, real-time detection of the actual speed ω t of the permanent magnet synchronous motor and return to the system;

步骤二、将电机实际转速与目标转速ωr的k(k≤1)倍进行对比,判定永磁同步电机的控制方式:高效加速控制模式或者平稳控制模式;Step 2. Comparing the actual speed of the motor with the k (k≤1) times of the target speed ω r , determine the control mode of the permanent magnet synchronous motor: high-efficiency acceleration control mode or stable control mode;

步骤三、若ωt<kωr,则电机进入高效加速控制模式,令转矩轴电流iq为逆变器和永磁同步电机本身等硬件限制条件下的最大定子电流值ilim,经过电流调节器输出转矩轴电压uqref,并经过Park变换输入SVPWM模块,SVPWM模块输出六路PWM波控制逆变器IGBT,使其输出最大电磁转矩时的三相电流,以使电机获得最大的电磁转矩,使电机以能达到的最大加速度逼近目标转速,此阶段为开环控制;Step 3. If ω t <kω r , the motor enters the high-efficiency acceleration control mode, and the torque axis current i q is the maximum stator current value i lim under hardware constraints such as the inverter and the permanent magnet synchronous motor itself. The regulator outputs the torque shaft voltage u qref , which is input to the SVPWM module after Park transformation, and the SVPWM module outputs six PWM waves to control the inverter IGBT, so that it can output the three-phase current at the maximum electromagnetic torque, so that the motor can obtain the maximum electromagnetic Torque, so that the motor approaches the target speed with the maximum acceleration that can be achieved. This stage is open-loop control;

步骤四、当电机转速达到目标转速的k倍及以上时,即ωt≥kωr时,则电机退出高效加速控制模式,进入平稳控制模式,切换为id=0的矢量控制策略,形成转速与电流的双闭环控制系统,系统返回实际转速ωt与目标转速ωr形成误差量,经速度控制器输出转矩轴电流的初始值iqref,iqref与电流返回值形成电流误差值,再经过电流调节器调整,输出转矩轴电压uqref,经过Park变换输入SVPWM模块,SVPWM模块输出六路PWM波控制逆变器IGBT输出三相电流,使电机较平稳的逼近目标转速,此阶段为闭环控制;Step 4. When the motor speed reaches k times or more than the target speed, that is, when ω t ≥ kω r , the motor exits the high-efficiency acceleration control mode, enters the stable control mode, and switches to the vector control strategy with i d = 0 to form a speed The double closed-loop control system of current and current, the system returns the actual speed ω t and the target speed ω r to form an error amount, the initial value i qref of the torque axis current is output by the speed controller, and the current error value is formed by i qref and the current return value, and then After being adjusted by the current regulator, the output torque axis voltage u qref is input to the SVPWM module through Park transformation, and the SVPWM module outputs six PWM waves to control the inverter IGBT to output three-phase current, so that the motor can approach the target speed more smoothly. This stage is a closed loop control;

步骤五、永磁同步电机最终稳定在目标转速下,系统一直运行在平稳控制模式,若永磁同步电机运行工况发生改变,闭环控制下,系统也可以迅速的做出调整,系统稳态运行。Step 5. The permanent magnet synchronous motor is finally stabilized at the target speed, and the system has been running in a stable control mode. If the operating condition of the permanent magnet synchronous motor changes, the system can also make rapid adjustments under closed-loop control, and the system runs in a stable state. .

进一步,在步骤一中,通过一个传感器对电机的实际转速进行实时检测并返回控制系统。Further, in step 1, a sensor is used to detect the actual rotational speed of the motor in real time and return it to the control system.

进一步,在步骤二中,k(k≤1)的值根据硬件设备条件和永磁同步电机的不同用途不同需求进行设定,从而应对多种不同的需求。Further, in step 2, the value of k (k≤1) is set according to hardware equipment conditions and different requirements of different uses of the permanent magnet synchronous motor, so as to meet various different requirements.

进一步,在步骤三中,根据逆变器和永磁同步电机本身硬件条件对定子最大电流ilim进行设定。Further, in step three, the maximum stator current i lim is set according to the hardware conditions of the inverter and the permanent magnet synchronous motor itself.

进一步,在步骤三和四中,通过矢量控制算法控制转矩轴电流和磁通电流;k和ilim的值,只需对系统进行一次设定即可。Further, in steps 3 and 4, the torque axis current and the magnetic flux current are controlled by the vector control algorithm; the values of k and i lim only need to be set once for the system.

本发明的有益效果在于:针对在永磁同步电机启动之初或者目标转速发生较大变化时,电机实际转速与目标转速有较大差值,现有的矢量控制系统有响应速度慢的缺点,本发明可以在矢量控制的基础之上加快响应速度,以硬件条件下能达到的最大加速度进行加速,大大缩短电机的加速时间,以适应不同用途电机在不同工况下的各种需求。The beneficial effect of the present invention is that: at the beginning of permanent magnet synchronous motor start-up or when the target speed changes greatly, there is a large difference between the actual speed of the motor and the target speed, and the existing vector control system has the disadvantage of slow response speed, The present invention can accelerate the response speed on the basis of vector control, accelerate with the maximum acceleration that can be achieved under hardware conditions, greatly shorten the acceleration time of the motor, and adapt to various needs of motors for different purposes under different working conditions.

附图说明Description of drawings

为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:In order to make the purpose, technical scheme and beneficial effect of the present invention clearer, the present invention provides the following drawings for illustration:

图1为永磁同步电机高效加速控制方法的流程图;Fig. 1 is a flow chart of a high-efficiency acceleration control method for a permanent magnet synchronous motor;

图2为实施例中永磁同步电机高效加速控制方法的结构框图;Fig. 2 is the structural block diagram of the efficient acceleration control method of the permanent magnet synchronous motor in the embodiment;

图3为实施例中采用普通矢量控制方法下的电机转速仿真曲线;Fig. 3 adopts the motor speed simulation curve under common vector control method in the embodiment;

图4为实施例中采用高效加速控制方法下的电机转速仿真曲线;Fig. 4 is the simulation curve of the motor speed under the high-efficiency acceleration control method in the embodiment;

图5为实施例中采用普通矢量控制方法下的电机转矩轴电流仿真曲线;Fig. 5 adopts the motor torque shaft current emulation curve under common vector control method in the embodiment;

图6为实施例中采用高效加速控制方法下的电机转矩轴电流仿真曲线。Fig. 6 is the simulation curve of the torque shaft current of the motor under the high-efficiency acceleration control method in the embodiment.

具体实施方式Detailed ways

下面将结合附图,对本发明的优选实施例进行详细的描述。The preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

如图1和图2所示,本发明的永磁同步电机高效加速控制方法的流程图和结构框图,本发明所述方法具体包含步骤如下:As shown in Figure 1 and Figure 2, the flow chart and structural block diagram of the high-efficiency acceleration control method of the permanent magnet synchronous motor of the present invention, the specific steps of the method of the present invention are as follows:

首先定义以下参数量:First define the following parameter quantities:

在本实施例中,系统参数设定值为:目标转速ωr=2500r/min,k=0.7,定子极限电流ilim=95A。In this embodiment, the set values of the system parameters are: target speed ω r =2500r/min, k=0.7, stator limit current i lim =95A.

步骤(a):通过传感器对电机的位置信息进行检测,再将位置信息对时间进行微分,得到电机实际转速ωt并返回带入系统;Step (a): Detect the position information of the motor through the sensor, and then differentiate the position information with respect to time to obtain the actual speed ω t of the motor and bring it back into the system;

步骤(b):将ωt与系统输入转速的k倍kωr进行对比,这里kωr=1750r/min,判定永磁同步电机的控制方式,高效加速控制方式或者平稳控制方式;Step (b): compare ω t with k times kω r of the system input speed, where kω r = 1750r/min, determine the control mode of the permanent magnet synchronous motor, the efficient acceleration control mode or the stable control mode;

步骤(c):若kωr<1750r/min时;电机进入高效加速控制控制方式,如图2所示,令转矩轴电流iq=95A,经过电流调节器输出转矩轴电压uqref,经过Park变换输入SVPWM模块,SVPWM模块输出六路PWM波控制逆变器IGBT输出三相电流,以使电机获得最大的电磁转矩,使电机以能达到的最大加速度逼近目标转速,此阶段为开环控制;Step (c): If kω r <1750r/min; the motor enters the high-efficiency acceleration control control mode, as shown in Figure 2, let the torque axis current i q = 95A, output the torque axis voltage u qref through the current regulator, Input the SVPWM module through Park transformation, the SVPWM module outputs six PWM waves to control the inverter IGBT to output three-phase current, so that the motor can obtain the maximum electromagnetic torque, and the motor can approach the target speed with the maximum acceleration that can be achieved. This stage is an open loop control;

步骤(d):当电机加速一段时间后,转速达到目标转速的k倍及以上时,即ωt≥1750r/min时,如图2所示,电机退出高效加速控制模式,进入平稳控制模式,切换为id=0的矢量控制策略,形成转速与电流的双闭环控制系统,系统返回实际转速ωt与目标转速ωr形成误差量,经速度控制器输出转矩轴电流的初始值iqref,iqref与电流返回值形成电流误差值,再经过电流调节器调整,输出转矩轴电压uqref,经过Park变换输入SVPWM模块,SVPWM模块输出六路PWM波控制逆变器IGBT输出三相电流,使电机较平稳的逼近目标转速,此阶段为闭环控制;Step (d): After the motor accelerates for a period of time, the speed reaches k times or more than the target speed, that is, when ω t ≥ 1750r/min, as shown in Figure 2, the motor exits the high-efficiency acceleration control mode and enters the stable control mode, Switch to the vector control strategy with i d = 0 to form a double closed-loop control system of speed and current. The system returns the actual speed ω t and the target speed ω r to form an error amount, and the initial value of the torque shaft current i qref is output by the speed controller , i qref and the current return value form a current error value, and then adjusted by the current regulator, the output torque shaft voltage u qref is input to the SVPWM module after Park transformation, and the SVPWM module outputs six PWM waves to control the inverter IGBT to output three-phase current, Make the motor approach the target speed more smoothly, this stage is closed-loop control;

步骤(e):永磁同步电机最终稳定在目标转速下,系统一直运行在平稳控制模式,若永磁同步电机运行工况发生改变,闭环控制下,系统也可以迅速的做出调整,系统稳态运行。Step (e): The permanent magnet synchronous motor is finally stabilized at the target speed, and the system has been running in the stable control mode. If the operating condition of the permanent magnet synchronous motor changes, the system can also make rapid adjustments under closed-loop control, and the system is stable. state operation.

如图2所示,本发明具体实施的控制方法结构框图,该控制方法主要包括:控制方式判断模块、坐标变换模块、SVPWM模块、电流控制器等主要模块。As shown in FIG. 2 , the structural block diagram of the control method implemented in the present invention mainly includes: a control mode judgment module, a coordinate transformation module, an SVPWM module, a current controller and other main modules.

本发明具体实例中的速度控制器和电流控制器采用的都是PI控制方法。Both the speed controller and the current controller in the specific example of the present invention adopt the PI control method.

图3和图4分别为采用普通矢量控制方式和高效加速控制方式的速度仿真曲线,如图3在普通矢量控制方式下,从电机启动开始,经过0.79s的加速达到目标转速2500r/min,如图4所示,在高效加速控制方式下,电机经过0.44s的加速达到目标转速2500r/min,对比下可以很明显的体现出本发明的有益效果。图5为实施例中采用普通矢量控制方法下的电机转矩轴电流仿真曲线,图6为实施例中采用高效加速控制方法下的电机转矩轴电流仿真曲线。Figure 3 and Figure 4 are the speed simulation curves of the ordinary vector control mode and the high-efficiency acceleration control mode respectively. As shown in Figure 3, in the ordinary vector control mode, starting from the motor start, after 0.79s acceleration to reach the target speed of 2500r/min, as As shown in Fig. 4, under the high-efficiency acceleration control mode, the motor reaches the target speed of 2500r/min after 0.44s of acceleration, and the beneficial effect of the present invention can be clearly reflected by comparison. Fig. 5 is the simulation curve of the motor torque shaft current under the common vector control method in the embodiment, and Fig. 6 is the simulation curve of the motor torque shaft current under the high-efficiency acceleration control method in the embodiment.

最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。Finally, it should be noted that the above preferred embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail through the above preferred embodiments, those skilled in the art should understand that it can be described in terms of form and Various changes may be made in the details without departing from the scope of the invention defined by the claims.

Claims (5)

1.一种永磁同步电机高效加速控制方法,其特征在于:包括以下步骤:1. A high-efficiency acceleration control method for permanent magnet synchronous motors, characterized in that: comprises the following steps: 步骤一、实时检测永磁同步电机的实际转速ωt并返回系统;Step 1, real-time detection of the actual speed ω t of the permanent magnet synchronous motor and return to the system; 步骤二、将电机实际转速与目标转速ωr的k(k≤1)倍进行对比,判定永磁同步电机的控制方式:高效加速控制模式或者平稳控制模式;Step 2. Comparing the actual speed of the motor with the k (k≤1) times of the target speed ω r , determine the control mode of the permanent magnet synchronous motor: high-efficiency acceleration control mode or stable control mode; 步骤三、若ωt<kωr,则电机进入高效加速控制模式,令转矩轴电流iq为逆变器和永磁同步电机本身等硬件限制条件下的最大定子电流值ilim,经过电流调节器输出转矩轴电压uqref,并经过Park变换输入SVPWM模块,SVPWM模块输出六路PWM波控制逆变器IGBT,使其输出最大电磁转矩时的三相电流,以使电机获得最大的电磁转矩,使电机以能达到的最大加速度逼近目标转速,此阶段为开环控制;Step 3. If ω t <kω r , the motor enters the high-efficiency acceleration control mode, and the torque axis current i q is the maximum stator current value i lim under hardware constraints such as the inverter and the permanent magnet synchronous motor itself. The regulator outputs the torque shaft voltage u qref , which is input to the SVPWM module after Park transformation, and the SVPWM module outputs six PWM waves to control the inverter IGBT, so that it can output the three-phase current at the maximum electromagnetic torque, so that the motor can obtain the maximum electromagnetic Torque, so that the motor approaches the target speed with the maximum acceleration that can be achieved. This stage is open-loop control; 步骤四、当电机转速达到目标转速的k倍及以上时,即ωt≥kωr时,则电机退出高效加速控制模式,进入平稳控制模式,切换为id=0的矢量控制策略,形成转速与电流的双闭环控制系统,系统返回实际转速ωt与目标转速ωr形成误差量,经速度控制器输出转矩轴电流的初始值iqref,iqref与电流返回值形成电流误差值,再经过电流调节器调整,输出转矩轴电压uqref,经过Park变换输入SVPWM模块,SVPWM模块输出六路PWM波控制逆变器IGBT输出三相电流,使电机较平稳的逼近目标转速,此阶段为闭环控制;Step 4. When the motor speed reaches k times or more than the target speed, that is, when ω t ≥ kω r , the motor exits the high-efficiency acceleration control mode, enters the stable control mode, and switches to the vector control strategy with i d = 0 to form a speed The double closed-loop control system of current and current, the system returns the actual speed ω t and the target speed ω r to form an error amount, the initial value i qref of the torque axis current is output by the speed controller, and the current error value is formed by i qref and the current return value, and then After being adjusted by the current regulator, the output torque axis voltage u qref is input to the SVPWM module through Park transformation, and the SVPWM module outputs six PWM waves to control the inverter IGBT to output three-phase current, so that the motor can approach the target speed more smoothly. This stage is a closed loop control; 步骤五、永磁同步电机最终稳定在目标转速下,系统一直运行在平稳控制模式,若永磁同步电机运行工况发生改变,闭环控制下,系统也可以迅速的做出调整,系统稳态运行。Step 5. The permanent magnet synchronous motor is finally stabilized at the target speed, and the system has been running in a stable control mode. If the operating condition of the permanent magnet synchronous motor changes, the system can also make rapid adjustments under closed-loop control, and the system runs in a stable state. . 2.根据权利要求1所述的一种永磁同步电机高效加速控制方法,其特征在于:在步骤一中,通过一个传感器对电机的实际转速进行实时检测并返回控制系统。2. A method for high-efficiency acceleration control of a permanent magnet synchronous motor according to claim 1, characterized in that: in step 1, the actual rotational speed of the motor is detected in real time by a sensor and returned to the control system. 3.根据权利要求1所述的一种永磁同步电机高效加速控制方法,其特征在于:在步骤二中,k(k≤1)的值根据硬件设备条件和永磁同步电机的不同用途不同需求进行设定,从而应对多种不同的需求。3. The efficient acceleration control method of a permanent magnet synchronous motor according to claim 1, characterized in that: in step 2, the value of k (k≤1) is different according to the hardware equipment conditions and the different purposes of the permanent magnet synchronous motor Requirements are set to respond to a variety of different needs. 4.根据权利要求1所述的一种永磁同步电机高效加速控制方法,其特征在于:在步骤三中,根据逆变器和永磁同步电机本身硬件条件对定子最大电流ilim进行设定。4. The efficient acceleration control method of a permanent magnet synchronous motor according to claim 1, characterized in that: in step 3, the stator maximum current i lim is set according to the hardware conditions of the inverter and the permanent magnet synchronous motor itself . 5.根据权利要求1所述的一种永磁同步电机高效加速控制方法,其特征在于:在步骤三和四中,通过矢量控制算法控制转矩轴电流和磁通电流。5. A high-efficiency acceleration control method for a permanent magnet synchronous motor according to claim 1, characterized in that: in steps 3 and 4, the torque axis current and the flux current are controlled by a vector control algorithm.
CN201510471021.6A 2015-08-04 2015-08-04 Efficient acceleration control method for permanent-magnet synchronous motor Pending CN105071731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510471021.6A CN105071731A (en) 2015-08-04 2015-08-04 Efficient acceleration control method for permanent-magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510471021.6A CN105071731A (en) 2015-08-04 2015-08-04 Efficient acceleration control method for permanent-magnet synchronous motor

Publications (1)

Publication Number Publication Date
CN105071731A true CN105071731A (en) 2015-11-18

Family

ID=54501036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510471021.6A Pending CN105071731A (en) 2015-08-04 2015-08-04 Efficient acceleration control method for permanent-magnet synchronous motor

Country Status (1)

Country Link
CN (1) CN105071731A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105703683A (en) * 2016-03-09 2016-06-22 广东美的制冷设备有限公司 Air conditioner, method and device for controlling starting of compressor of air conditioner
CN106374432A (en) * 2016-09-14 2017-02-01 广州视源电子科技股份有限公司 Synchronous motor step-out detection method and device
CN106627251A (en) * 2017-01-22 2017-05-10 北京新能源汽车股份有限公司 Motor control method and device
CN106712632A (en) * 2017-03-28 2017-05-24 核工业理化工程研究院 Sensorless control device for AC permanent magnet synchronous motor and starting method of control device
CN108462421A (en) * 2016-12-13 2018-08-28 成都阜特科技股份有限公司 A kind of permanent magnet synchronous motor position and velocity estimation under low speed operation
CN108462428A (en) * 2018-03-21 2018-08-28 上海小蚁科技有限公司 Motor speed adjusting method and device, computer readable storage medium, terminal
CN109245623A (en) * 2018-08-29 2019-01-18 广州市保伦电子有限公司 The method and system of microphone synchronization lifting
CN109995298A (en) * 2019-05-10 2019-07-09 中山大洋电机股份有限公司 Position-sensor-free vector control permanent magnet synchronous motor smooth start control method
CN110138292A (en) * 2019-04-30 2019-08-16 厦门汉印电子技术有限公司 A kind of output torque control method, apparatus, equipment and the storage medium of stepper motor
CN111193441A (en) * 2018-11-14 2020-05-22 追创科技(苏州)有限公司 Starting method of brushless direct current motor
CN112865631A (en) * 2019-11-27 2021-05-28 英飞凌科技奥地利有限公司 Constant speed control and constant power control of permanent magnet synchronous motor
TWI755246B (en) * 2021-01-07 2022-02-11 財團法人工業技術研究院 System and method for acceleration adjustment of machine tool in rapid traverse
CN115441781A (en) * 2022-08-22 2022-12-06 陕西航空电气有限责任公司 Starting function soft exit control method of starting and power generation integrated system
CN115664276A (en) * 2022-10-17 2023-01-31 佛山市顺德区一拓电气有限公司 A SPWM-based BLDC driving method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219933A (en) * 2013-02-26 2013-07-24 常州信息职业技术学院 Permanent-magnet synchronous motor start-up smooth switching method
CN103516267A (en) * 2012-06-27 2014-01-15 珠海格力电器股份有限公司 Method and system for starting permanent magnet synchronous fan motor for air conditioner
US20150061556A1 (en) * 2013-08-30 2015-03-05 Regal Beloit America, Inc. Method of controlling an electrical machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516267A (en) * 2012-06-27 2014-01-15 珠海格力电器股份有限公司 Method and system for starting permanent magnet synchronous fan motor for air conditioner
CN103219933A (en) * 2013-02-26 2013-07-24 常州信息职业技术学院 Permanent-magnet synchronous motor start-up smooth switching method
US20150061556A1 (en) * 2013-08-30 2015-03-05 Regal Beloit America, Inc. Method of controlling an electrical machine

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105703683B (en) * 2016-03-09 2018-05-01 广东美的制冷设备有限公司 The startup control method and device of air conditioner and its compressor
CN105703683A (en) * 2016-03-09 2016-06-22 广东美的制冷设备有限公司 Air conditioner, method and device for controlling starting of compressor of air conditioner
CN106374432A (en) * 2016-09-14 2017-02-01 广州视源电子科技股份有限公司 Synchronous motor step-out detection method and device
CN106374432B (en) * 2016-09-14 2019-06-14 广州视源电子科技股份有限公司 Synchronous motor step-out detection method and device
CN108462421A (en) * 2016-12-13 2018-08-28 成都阜特科技股份有限公司 A kind of permanent magnet synchronous motor position and velocity estimation under low speed operation
CN106627251A (en) * 2017-01-22 2017-05-10 北京新能源汽车股份有限公司 Motor control method and device
CN106712632A (en) * 2017-03-28 2017-05-24 核工业理化工程研究院 Sensorless control device for AC permanent magnet synchronous motor and starting method of control device
CN106712632B (en) * 2017-03-28 2024-01-02 核工业理化工程研究院 Control device without position sensor for AC permanent magnet synchronous motor and starting method thereof
CN108462428A (en) * 2018-03-21 2018-08-28 上海小蚁科技有限公司 Motor speed adjusting method and device, computer readable storage medium, terminal
CN109245623A (en) * 2018-08-29 2019-01-18 广州市保伦电子有限公司 The method and system of microphone synchronization lifting
CN111193441B (en) * 2018-11-14 2021-03-16 追创科技(苏州)有限公司 Starting method of brushless direct current motor
CN111193441A (en) * 2018-11-14 2020-05-22 追创科技(苏州)有限公司 Starting method of brushless direct current motor
CN110138292A (en) * 2019-04-30 2019-08-16 厦门汉印电子技术有限公司 A kind of output torque control method, apparatus, equipment and the storage medium of stepper motor
CN109995298B (en) * 2019-05-10 2020-11-10 中山大洋电机股份有限公司 Position sensorless vector control permanent magnet synchronous motor smooth start control method
CN109995298A (en) * 2019-05-10 2019-07-09 中山大洋电机股份有限公司 Position-sensor-free vector control permanent magnet synchronous motor smooth start control method
CN112865631A (en) * 2019-11-27 2021-05-28 英飞凌科技奥地利有限公司 Constant speed control and constant power control of permanent magnet synchronous motor
TWI755246B (en) * 2021-01-07 2022-02-11 財團法人工業技術研究院 System and method for acceleration adjustment of machine tool in rapid traverse
US11675337B2 (en) 2021-01-07 2023-06-13 Industrial Technology Research Institute System and method for acceleration adjustment of machine tool at rapid traverse
CN115441781A (en) * 2022-08-22 2022-12-06 陕西航空电气有限责任公司 Starting function soft exit control method of starting and power generation integrated system
CN115664276A (en) * 2022-10-17 2023-01-31 佛山市顺德区一拓电气有限公司 A SPWM-based BLDC driving method and system

Similar Documents

Publication Publication Date Title
CN105071731A (en) Efficient acceleration control method for permanent-magnet synchronous motor
CN107046387B (en) Variable PID parameter current loop starting method of permanent magnet synchronous motor
CN112039390B (en) Permanent magnet synchronous motor sliding mode control method based on load torque observation
CN103872951A (en) Permanent magnet synchronous motor torque control method based on sliding mode flux linkage observer
CN108390602B (en) A Direct Predictive Power Control Method for Hybrid Excitation Synchronous Motors
CN105071735B (en) Asynchronous machine energy-saving control method based on the simplified models of T 1
CN108418487A (en) A speed pulsation suppression method for electric vehicles
CN109951122A (en) Fuzzy sliding mode control system and method for permanent magnet synchronous motor based on improved exponential reaching law
CN102710206A (en) Variable-speed permanent-magnet alternator system and double-port voltage stabilization control method therefor
CN110429891B (en) Position-sensor-free permanent magnet motor direct-drive power generation control method
Karthik et al. Analysis of scalar and vector control based efficiency-optimized induction motors subjected to inverter and sensor faults
CN102355175B (en) Brake control method for induction motor
CN109302102B (en) Frequency converter runaway starting method
CN103986381B (en) The microgrid of sea wave power generation system builds optimized power factor composite control method
CN102427323A (en) Start control and MPPT (Maximum Power Point Tracking) control method for switched reluctance wind power system
CN106788095B (en) Field weakening control method for the output of asynchronous machine torque capacity
Zhuoyong et al. Research on IPMSM control based on MTPA
CN112910349A (en) Permanent magnet synchronous motor, sliding mode control method, control system, terminal and medium
Hassan et al. Direct torque control of non-salient pole AFPMSMs with SVPWM inverter
CN114050748B (en) A Partition Coordinated Control Method for Five-phase Double-excitation Synchronous Motor
CN116094383A (en) Time-varying nonlinear disturbance observer of permanent magnet synchronous motor and current constraint control method
CN205725555U (en) The efficiency improving device of permagnetic synchronous motor
CN105553359B (en) Modulation ratio control method based on flywheel energy storage asynchronous generator voltage closed loop
Cui et al. Research on pmsm speed control system based on improved reaching law
Chen et al. Research on a control method of DC speed regulating electric energy vehicle based on neural network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20151118