CN105069144A - Similar image search method - Google Patents

Similar image search method Download PDF

Info

Publication number
CN105069144A
CN105069144A CN201510514545.9A CN201510514545A CN105069144A CN 105069144 A CN105069144 A CN 105069144A CN 201510514545 A CN201510514545 A CN 201510514545A CN 105069144 A CN105069144 A CN 105069144A
Authority
CN
China
Prior art keywords
feature
rootsift
image
distance
database
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510514545.9A
Other languages
Chinese (zh)
Inventor
陆湛
冯久超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201510514545.9A priority Critical patent/CN105069144A/en
Publication of CN105069144A publication Critical patent/CN105069144A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/50Information retrieval; Database structures therefor; File system structures therefor of still image data
    • G06F16/58Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
    • G06F16/583Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content

Landscapes

  • Engineering & Computer Science (AREA)
  • Library & Information Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种搜索相似图片的方法,包括如下步骤,S1构建图像的RootSIFT模型,并对图像数据库中的图像进行RootSIFT特征的提取,所述RootSIFT特征包括关键点和特征描述子,将提取的特征描述子存储到特征数据库;S2提取目标图像的RootSIFT特征,使用Flann特征匹配方法,与特征数据库中的特征描述子进行匹配,计算匹配成功的关键点个数,即两幅图像之间的距离;S3输出相似图像。

The invention discloses a method for searching similar pictures, comprising the following steps: S1 constructs a RootSIFT model of an image, and extracts RootSIFT features from images in an image database, the RootSIFT features include key points and feature descriptors, and extract The feature descriptors in the feature database are stored in the feature database; S2 extracts the RootSIFT features of the target image, uses the Flann feature matching method to match with the feature descriptors in the feature database, and calculates the number of key points that are successfully matched, that is, the distance between the two images distance; S3 outputs similar images.

Description

一种搜索相似图片的方法A way to search for similar images

技术领域technical field

本发明涉及图像处理领域,具体涉及一种搜索相似图片的方法。The invention relates to the field of image processing, in particular to a method for searching similar pictures.

背景技术Background technique

随着数字信息技术的发展,数字图像已经进入了千家万户,然而随着数字图像数量的增加,如何在庞大的图像数据库里快速而准确地寻找跟某一张图片相似的其它图片成为了一个难题。例如一个人去了埃及旅行,那里风景秀丽文化深厚,因此拍摄了成千上万的照片。有一天他偶尔发现特别喜欢一张黄昏下金字塔的照片,然后他想知道他的相机里面还有没有类似场景的照片,如果一张又一张地翻阅他的照片集工作量是非常庞大的,那能不能建立一个个人的图片搜索引擎?只要在引擎中输入某一张图片,图像搜索引擎就会提取该图像的特征,然后跟图像数据库中的图像特征进行匹配,最后输出跟输入图像相似度最高的图像。With the development of digital information technology, digital images have entered thousands of households. However, with the increase in the number of digital images, how to quickly and accurately find other pictures similar to a certain picture in a huge image database has become a problem. problem. For example, a person traveled to Egypt, where the scenery is beautiful and the culture is profound, so he took thousands of photos. One day he occasionally found a photo of the pyramids at dusk that he particularly liked, and then he wondered if there were any photos of similar scenes in his camera. It would be a huge workload to browse through his photo collection one by one, Can you build a personal image search engine? As long as a certain picture is input into the engine, the image search engine will extract the features of the image, then match it with the image features in the image database, and finally output the image with the highest similarity with the input image.

SIFT即尺度不变特征变换(Scale-invariantfeaturetransform,SIFT),是用于图像处理领域的一种描述子。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。SIFT由DavidLowe在1999年提出,在2004年加以完善。SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、微视角改变的容忍度也相当高。RootSIFT是SIFT的一种改进算法,它采用Hellinger核函数代替SIFT中欧氏距离度量值作为两个向量间的相似性度量,实验结果表明,RootSIFT的效果比SIFT更好。SIFT is a scale-invariant feature transform (Scale-invariant feature transform, SIFT), which is a descriptor used in the field of image processing. This description has scale invariance, can detect key points in the image, and is a local feature descriptor. SIFT was proposed by David Lowe in 1999 and improved in 2004. The SIFT feature is based on some local appearance interest points on the object independent of the size and rotation of the image. The tolerance to light, noise, and micro viewing angle changes is also quite high. RootSIFT is an improved algorithm of SIFT. It uses the Hellinger kernel function instead of the Euclidean distance measure in SIFT as the similarity measure between two vectors. Experimental results show that the effect of RootSIFT is better than SIFT.

发明内容Contents of the invention

为了克服现有技术存在的缺点与不足,本发明提供一种搜索相似图片的方法。In order to overcome the shortcomings and deficiencies of the prior art, the present invention provides a method for searching similar pictures.

本发明采用如下技术方案:The present invention adopts following technical scheme:

一种搜索相似图片的方法,包括如下步骤A method for searching for similar pictures, comprising the following steps

S1构建图像的RootSIFT模型,并对图像数据库中的图像进行RootSIFT特征的提取,所述RootSIFT特征包括关键点和特征描述子,将提取的特征描述子存储到特征数据库;S1 builds the RootSIFT model of the image, and extracts the RootSIFT feature to the image in the image database, the RootSIFT feature includes key points and feature descriptors, and stores the extracted feature descriptors into the feature database;

S2提取目标图像的RootSIFT特征,使用Flann特征匹配方法,与特征数据库中每一幅图像的特征描述子进行匹配,计算匹配成功的关键点个数,即两幅图像之间的距离;S2 extracts the RootSIFT feature of the target image, uses the Flann feature matching method, matches the feature descriptor of each image in the feature database, and calculates the number of key points that match successfully, that is, the distance between the two images;

S3输出与目标图像匹配成功的关键点数最多的前n幅图像。S3 outputs the top n images with the largest number of key points that successfully match the target image.

所述S1具体为:The S1 is specifically:

S1.1在SIFT基础上,建立图像的RootSIFT模型;S1.1 On the basis of SIFT, establish the RootSIFT model of the image;

S1.2遍历图像数据库中的每一张图片,通过RootSIFT模型提取每一张图片的RootSIFT特征;S1.2 traverse each picture in the image database, and extract the RootSIFT feature of each picture through the RootSIFT model;

S1.3将提取的RootSIFT特征的特征描述子通过python的pickle模块存储到一个pkl文件中。S1.3 Store the feature descriptor of the extracted RootSIFT feature into a pkl file through the pickle module of python.

所述Flann特征匹配方法具体为:计算两幅图像的特征描述子向量的距离,具体是对每个需要匹配的关键点同对应图片的各个关键点进行距离的计算并找出距离目标关键点最近距离的关键点。The Flann feature matching method is specifically: calculating the distance between the feature descriptor vectors of two images, specifically calculating the distance between each key point that needs to be matched and each key point of the corresponding picture and finding the distance from the target key point. Key points for distance.

当最近的距离除以次近的距离的值少于0.75时认为这两个关键点匹配成功。When the value of the closest distance divided by the next closest distance is less than 0.75, the two key points are considered to be matched successfully.

本发明的有益效果Beneficial effects of the present invention

(1)本发明依据SIFT的改进算法RootSIFT特征提取方法提取图像的特征,该特征具有对旋转、尺度、缩放、亮度变化保持不变性,从不同的角度描述图像的特征,更能准确地搜索与目标图像相似的图像;(1) The present invention extracts the feature of image according to the improved algorithm RootSIFT feature extraction method of SIFT, and this feature has the invariance to rotation, scale, scaling, brightness change, describes the feature of image from different angles, can search and compare more accurately images similar to the target image;

(2)本发明在特征匹配时使用了Flann特征匹配方法,使系统拥有了快速的匹配速率以及更好的搜索的准确率。(2) The present invention uses the Flann feature matching method during feature matching, so that the system has a fast matching rate and better search accuracy.

附图说明Description of drawings

图1是本发明的工作流程图。Fig. 1 is a work flowchart of the present invention.

具体实施方式Detailed ways

下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。The present invention will be described in further detail below in conjunction with the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.

实施例Example

如图1所示,一种搜索相似图片的方法,包括如下步骤:As shown in Figure 1, a method for searching similar pictures includes the following steps:

S1构建图像的RootSIFT模型,并对图像数据库中的图像进行RootSIFT特征的提取,将提取的特征描述子存储到特征数据库。所述RootSIFT特征包括关键点和特征描述子,每个关键点有三个信息:位置,所处尺度、方向,为每个关键点建立一个特征描述子,用一组向量将这个关键点描述出来,使其不随各种变化而改变,比如光照变化、视角变化等等。一般表征特征描述子在关键点尺度空间内4*4的窗口中计算的8个方向的梯度信息,共4*4*8=128维向量。S1 builds the RootSIFT model of the image, extracts the RootSIFT feature from the image in the image database, and stores the extracted feature descriptor in the feature database. The RootSIFT feature includes key points and feature descriptors, each key point has three information: position, scale, direction, a feature descriptor is established for each key point, and this key point is described by a set of vectors, Make it not change with various changes, such as lighting changes, viewing angle changes, and so on. The general feature descriptor calculates gradient information in 8 directions in a 4*4 window in the key point scale space, and a total of 4*4*8=128-dimensional vectors.

所述的RootSIFT模型是在SIFT特征模型拓展而来的。在纹理分类和图像分类中使用欧氏距离的性能比使用Hellinger核函数的性能低。因此,考虑SIFT算法中相似性度量也可以用Hellinger核函数来度量,发现核函数的效果更好。The RootSIFT model is extended from the SIFT feature model. The performance of using Euclidean distance in texture classification and image classification is lower than that of using Hellinger kernel function. Therefore, considering that the similarity measure in the SIFT algorithm can also be measured by the Hellinger kernel function, it is found that the effect of the kernel function is better.

步骤S1具体包括:Step S1 specifically includes:

S1.1在SIFT基础上,建立图像的RootSIFT模型。S1.1 On the basis of SIFT, establish the RootSIFT model of the image.

具体方式是使用Hellinger核函数代替欧氏距离来衡量两个特征向量之间的相似性,具体的操作可以分为两个步骤完成:①对特征向量进行L1规范化,②对每个元素求平方根。得到具有L1规范化的特征向量RootSIFT。The specific method is to use the Hellinger kernel function instead of the Euclidean distance to measure the similarity between two feature vectors. The specific operation can be divided into two steps: ① normalize the feature vector by L1, and ② calculate the square root of each element. Get the eigenvector RootSIFT with L1 normalization.

S1.2遍历图像数据库中的每一张图片,提取每一张图片的RootSIFT特征。S1.2 traverse each picture in the image database, and extract the RootSIFT feature of each picture.

S1.3将提取的RootSIFT特征的特征描述子通过python的pickle模块存储到一个pkl文件中。S1.3 Store the feature descriptor of the extracted RootSIFT feature into a pkl file through the pickle module of python.

S2提取目标图像的RootSIFT特征,使用Flann特征匹配方法,与特征数据库中的每一幅图像的特征描述子进行匹配,计算图像数据库中每一幅图像与目标图像匹配成功的关键点个数,即图像与图像的距离。S2 extracts the RootSIFT feature of the target image, uses the Flann feature matching method to match the feature descriptor of each image in the feature database, and calculates the number of key points that each image in the image database successfully matches the target image, that is Image-to-image distance.

具体方式是使用Flann特征匹配方法,其中k设置为2,即选择距离最近的关键点数为2。取一幅图像中的某个关键点,并找出其与另一幅图像中距离欧氏最近的前两个关键点,具体计算方法是在计算两个关键点的特征描述子向量的欧氏距离,即两个向量每个对应元素差的平方和。这两个关键点中,如果最近的距离除以次近的距离少于某个比例阈值,则接受这一对匹配点,这样操作的原因是为了排除因为图像遮挡和背景混乱而产生的无匹配关系的关键点。本方法中设置的阈值是0.75。在本方法中认为两幅图像之间匹配成功的关键点个数是两幅图像的距离,匹配成功的个数越多说明这两幅的图像距离越近,两幅图像之间的相似度越高。The specific way is to use the Flann feature matching method, where k is set to 2, that is, the number of key points with the closest distance is selected as 2. Take a key point in an image and find the first two key points closest to Euclidean in another image. The specific calculation method is to calculate the Euclidean of the feature descriptor vectors of the two key points The distance is the sum of the squares of the difference between each corresponding element of the two vectors. Among these two key points, if the closest distance divided by the next closest distance is less than a certain ratio threshold, the pair of matching points is accepted. The reason for this operation is to exclude no matching due to image occlusion and background confusion. key points of the relationship. The threshold set in this method is 0.75. In this method, the number of key points that are successfully matched between two images is considered to be the distance between the two images. The more the number of successful matches, the closer the distance between the two images and the greater the similarity between the two images. high.

S3输出与目标图像匹配成功的关键点数最多的前n幅图像。S3 outputs the top n images with the largest number of key points that successfully match the target image.

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the embodiment, and any other changes, modifications, substitutions and combinations made without departing from the spirit and principle of the present invention , simplification, all should be equivalent replacement methods, and are all included in the protection scope of the present invention.

Claims (4)

1.一种搜索相似图片的方法,其特征在于,包括如下步骤:1. A method for searching for similar pictures, characterized in that, comprising the steps of: S1构建图像的RootSIFT模型,并对图像数据库中的图像进行RootSIFT特征的提取,所述RootSIFT特征包括关键点和特征描述子,将提取的特征描述子存储到特征数据库;S1 builds the RootSIFT model of the image, and extracts the RootSIFT feature to the image in the image database, the RootSIFT feature includes key points and feature descriptors, and stores the extracted feature descriptors into the feature database; S2提取目标图像的RootSIFT特征,使用Flann特征匹配方法,与特征数据库中每一幅图像的特征描述子进行匹配,计算匹配成功的关键点个数,即两幅图像之间的距离;S2 extracts the RootSIFT feature of the target image, uses the Flann feature matching method, matches the feature descriptor of each image in the feature database, and calculates the number of key points that match successfully, that is, the distance between the two images; S3输出与目标图像匹配成功的关键点数最多的前n幅图像。S3 outputs the top n images with the largest number of key points that successfully match the target image. 2.根据权利要求1所述一种搜索相似图片的方法,其特征在于,所述S1具体为:2. A method for searching similar pictures according to claim 1, wherein said S1 is specifically: S1.1在SIFT基础上,建立图像的RootSIFT模型;S1.1 On the basis of SIFT, establish the RootSIFT model of the image; S1.2遍历图像数据库中的每一张图片,通过RootSIFT模型提取每一张图片的RootSIFT特征;S1.2 traverse each picture in the image database, and extract the RootSIFT feature of each picture through the RootSIFT model; S1.3将提取的RootSIFT特征的特征描述子通过python的pickle模块存储到一个pkl文件中。S1.3 Store the feature descriptor of the extracted RootSIFT feature into a pkl file through the pickle module of python. 3.根据权利要求1所述的方法,其特征在于,所述Flann特征匹配方法具体为:计算两幅图像的特征描述子向量的距离,具体是对每个需要匹配的关键点同对应图片的各个关键点进行距离的计算并找出距离目标关键点最近距离的关键点。3. The method according to claim 1, wherein the Flann feature matching method is specifically: calculating the distance between the feature descriptor vectors of two images, specifically the distance between each key point that needs to be matched and the corresponding picture Each key point calculates the distance and finds the key point with the shortest distance from the target key point. 4.根据权利要求1所述的方法,其特征在于,当最近的距离除以次近的距离的值少于0.75时认为这两个关键点匹配成功。4. The method according to claim 1, characterized in that, when the value of the shortest distance divided by the next shortest distance is less than 0.75, the two key points are considered to be successfully matched.
CN201510514545.9A 2015-08-20 2015-08-20 Similar image search method Pending CN105069144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510514545.9A CN105069144A (en) 2015-08-20 2015-08-20 Similar image search method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510514545.9A CN105069144A (en) 2015-08-20 2015-08-20 Similar image search method

Publications (1)

Publication Number Publication Date
CN105069144A true CN105069144A (en) 2015-11-18

Family

ID=54498513

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510514545.9A Pending CN105069144A (en) 2015-08-20 2015-08-20 Similar image search method

Country Status (1)

Country Link
CN (1) CN105069144A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106528665A (en) * 2016-10-21 2017-03-22 广州视源电子科技股份有限公司 AOI equipment test file searching method and system
CN107295327A (en) * 2016-04-05 2017-10-24 富泰华工业(深圳)有限公司 Light-field camera and its control method
CN109271995A (en) * 2017-07-18 2019-01-25 深圳市凯立德科技股份有限公司 A kind of high-precision image matching method and system
CN109346188A (en) * 2018-10-19 2019-02-15 刘瑞红 A kind of medical statistics data processing method
CN110598019A (en) * 2019-09-11 2019-12-20 腾讯科技(深圳)有限公司 Repeated image identification method and device
CN111460190A (en) * 2020-04-07 2020-07-28 中国民航信息网络股份有限公司 Method and device for matching luggage
CN112184702A (en) * 2020-10-27 2021-01-05 携程计算机技术(上海)有限公司 Image cheating detection method, device, electronic device, storage medium
CN112926447A (en) * 2021-02-24 2021-06-08 贵州电网有限责任公司 Electric power material automatic discrimination method based on image feature recognition
CN113077410A (en) * 2020-01-03 2021-07-06 上海依图网络科技有限公司 Image detection method, device and method, chip and computer readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120011142A1 (en) * 2010-07-08 2012-01-12 Qualcomm Incorporated Feedback to improve object recognition
CN103442014A (en) * 2013-09-03 2013-12-11 中国科学院信息工程研究所 Method and system for automatic detection of suspected counterfeit websites
CN103955694A (en) * 2014-04-09 2014-07-30 广州邦讯信息系统有限公司 Image recognition meter reading system and method
CN104751475A (en) * 2015-04-16 2015-07-01 中国科学院软件研究所 Feature point optimization matching method for static image object recognition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120011142A1 (en) * 2010-07-08 2012-01-12 Qualcomm Incorporated Feedback to improve object recognition
CN103442014A (en) * 2013-09-03 2013-12-11 中国科学院信息工程研究所 Method and system for automatic detection of suspected counterfeit websites
CN103955694A (en) * 2014-04-09 2014-07-30 广州邦讯信息系统有限公司 Image recognition meter reading system and method
CN104751475A (en) * 2015-04-16 2015-07-01 中国科学院软件研究所 Feature point optimization matching method for static image object recognition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RELJA 等: "Three things everyone should know to improve object retrieval", 《IEEE CONFERENCE ON COMPUTER VISION & PATTERN RECOGNITION》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107295327A (en) * 2016-04-05 2017-10-24 富泰华工业(深圳)有限公司 Light-field camera and its control method
CN107295327B (en) * 2016-04-05 2019-05-10 富泰华工业(深圳)有限公司 Light field camera and control method thereof
CN106528665A (en) * 2016-10-21 2017-03-22 广州视源电子科技股份有限公司 AOI equipment test file searching method and system
CN106528665B (en) * 2016-10-21 2019-09-03 广州视源电子科技股份有限公司 AOI equipment test file searching method and system
CN109271995A (en) * 2017-07-18 2019-01-25 深圳市凯立德科技股份有限公司 A kind of high-precision image matching method and system
CN109346188A (en) * 2018-10-19 2019-02-15 刘瑞红 A kind of medical statistics data processing method
CN110598019A (en) * 2019-09-11 2019-12-20 腾讯科技(深圳)有限公司 Repeated image identification method and device
CN113077410A (en) * 2020-01-03 2021-07-06 上海依图网络科技有限公司 Image detection method, device and method, chip and computer readable storage medium
CN111460190A (en) * 2020-04-07 2020-07-28 中国民航信息网络股份有限公司 Method and device for matching luggage
CN111460190B (en) * 2020-04-07 2023-06-16 中国民航信息网络股份有限公司 Luggage matching method and device
CN112184702A (en) * 2020-10-27 2021-01-05 携程计算机技术(上海)有限公司 Image cheating detection method, device, electronic device, storage medium
CN112184702B (en) * 2020-10-27 2025-01-07 携程计算机技术(上海)有限公司 Image cheating detection method, device, electronic device, and storage medium
CN112926447A (en) * 2021-02-24 2021-06-08 贵州电网有限责任公司 Electric power material automatic discrimination method based on image feature recognition

Similar Documents

Publication Publication Date Title
CN105069144A (en) Similar image search method
Van Gemert et al. APT: Action localization proposals from dense trajectories.
Zhang et al. Histogram of 3D facets: A depth descriptor for human action and hand gesture recognition
Simonyan et al. Learning local feature descriptors using convex optimisation
Jangyodsuk et al. Sign language recognition using dynamic time warping and hand shape distance based on histogram of oriented gradient features
Joon Oh et al. Person recognition in personal photo collections
CN103207898B (en) A kind of similar face method for quickly retrieving based on local sensitivity Hash
CN104991954B (en) Shopping search system based on picture search and its implementation
CN103258037A (en) Trademark identification searching method for multiple combined contents
US9626552B2 (en) Calculating facial image similarity
CN105574505A (en) Human body target re-identification method and system among multiple cameras
CN103577840B (en) Item identification method
Nanni et al. Effective and precise face detection based on color and depth data
CN105608463B (en) A kind of stereo-picture feature matching method
CN110019912A (en) Graphic searching based on shape
CN103984942A (en) Object recognition method and mobile terminal
Trinh et al. On illumination-invariant variational optical flow for weakly textured scenes
CN110309810A (en) A Pedestrian Re-Identification Method Based on Batch Center Similarity
Paul et al. Mining images for image annotation using SURF detection technique
CN102393960A (en) Method for describing local characteristic of image
Zhou et al. Discarding wide baseline mismatches with global and local transformation consistency
CN105074729B (en) Method, system and medium for luminosity edge-description
Weinmann et al. Material recognition for efficient acquisition of geometry and reflectance
Peng et al. Learning to multimodal hash for robust video copy detection
Ji et al. An effective pipeline for a real-world clothes retrieval system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151118