CN105049154A - Precoding optimization method for multi-user cognition network based on MIMO-VFDM - Google Patents

Precoding optimization method for multi-user cognition network based on MIMO-VFDM Download PDF

Info

Publication number
CN105049154A
CN105049154A CN201510273916.9A CN201510273916A CN105049154A CN 105049154 A CN105049154 A CN 105049154A CN 201510273916 A CN201510273916 A CN 201510273916A CN 105049154 A CN105049154 A CN 105049154A
Authority
CN
China
Prior art keywords
msub
mrow
matrix
msup
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510273916.9A
Other languages
Chinese (zh)
Other versions
CN105049154B (en
Inventor
姚如贵
南花妮
张兆林
王伶
李耿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Shenzhen Institute of Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201510273916.9A priority Critical patent/CN105049154B/en
Publication of CN105049154A publication Critical patent/CN105049154A/en
Application granted granted Critical
Publication of CN105049154B publication Critical patent/CN105049154B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0606Space-frequency coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0668Orthogonal systems, e.g. using Alamouti codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The invention provides a precoding optimization method for a multi-user cognition network based on MIMO-VFDM. On the basis that a CTP inhibits interlayer interference, an ITP controls the mutual interference among users in an SC. Through the selection and rotation of a null space, an optimized ITP code matrix is built. The method can enable the channel capacity of the SC to be maximized, thereby enlarging the capacity of a cognition network while the interference among a plurality of two-layer network users.

Description

Multi-user cognitive network precoding optimization method based on MIMO-VFDM
Technical Field
The invention relates to an optimization design scheme of multi-user two-layer cognitive network precoding transmitted by adopting multi-input multi-Output (MIMO) and Vandermonde-subspace frequency division multiplexing (VFDM), which is used for inhibiting interference among users in a two-layer cognitive network and maximizing the channel capacity of the two-layer network.
Background
The continuous increase of wireless services leads to the increasing scarcity of frequency domain resources, so that wireless transmission with high spectrum utilization becomes a research hotspot of modern communication. Deployment of two-layer networks such as a cognitive network is a feasible scheme for solving spectrum resources. In a two-layer network communication system based on cognitive radio technology, small-cells (SCs) are arranged as a second-layer network around and sharing spectrum transmission with a macro-cell (MC). The MC has priority over the shared spectrum, and the two-tier network has opportunistic access to the spectrum and must ensure that no or within a tolerable range interference is generated for the MC. Therefore, how to control the interference of SCs on MC becomes a main problem for research in the implementation of two-layer cognitive network.
The VFDM technology, as an emerging method for solving the problem of interference control in the cognitive network, utilizes the frequency band redundancy provided by the cyclic prefix in the block transmission system (e.g., OFDM system) to establish a new transmission link for the SCs without interfering with the normal communication of the MC. After adopting VFDM, signals transmitted by the two-layer transmitter are constrained to the null space from the two-layer network to the one-layer network interference channel by means of Cross-tiorpecoder (CTP). Intra-layer precoding (ITP) is then used to control the inter-user interference within the SC.
Document 1, "channel signaling information and signaling cells base done-vddm [ wireless communication and network connectivity (wcnc), IEEE 2012: 2560-.
Document 2, "Spatial-frequency signaling alignment for opportunistic transmission [ ieee transaction in signaling processing,2014,62: 1561-.
Document 3 "Zero-while method for downlink signaling MIMO channels, [ signaling processing, ieee transactions son,2004,52(2):461-471] proposes a Block-DiagonalZero-Forcing (BD-ZF) precoding algorithm to solve the inter-user interference problem in the multi-user MIMO downlink. The BD-ZF precoding algorithm has the advantages of convenience in design, simple structure and the like, and is very suitable for designing an ITP precoding matrix among multiple users.
Disclosure of Invention
In order to overcome the defects of the prior art, the invention provides a two-layer network precoding optimization method based on BD-ZF on the basis of the prior precoding algorithm. The optimized ITP coding matrix is constructed through selection and rotation of the null space, the channel capacity of the SC can be maximized, and therefore interference among two-layer networks and multiple users is suppressed, and the capacity of a cognitive network is improved.
The technical scheme adopted by the invention for solving the technical problem comprises the following steps:
step 1, carrying out overall interlayer channel matrix H from SC base station SBS to MC user MUSMPerforming singular value decomposition to obtain <math> <mrow> <msub> <mi>H</mi> <mi>SM</mi> </msub> <mo>=</mo> <msub> <mi>U</mi> <mi>ctp</mi> </msub> <msub> <mi>&Lambda;</mi> <mi>ctp</mi> </msub> <msubsup> <mi>V</mi> <mi>ctp</mi> <mi>H</mi> </msubsup> <mo>,</mo> </mrow> </math> Wherein, Uctp∈CK×KAndare all unitary matrices that are used for the transmission of the signal,in the form of a diagonal matrix, <math> <mrow> <msub> <mi>&Lambda;</mi> <mi>ctp</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>&Sigma;</mi> <mi>ctp</mi> </msub> <mo>,</mo> <msub> <mi>O</mi> <mrow> <mi>K</mi> <mo>&times;</mo> <mo>[</mo> <mrow> <mo>(</mo> <msub> <mi>N</mi> <mi>T</mi> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>K</mi> <mo>+</mo> <msub> <mi>N</mi> <mi>T</mi> </msub> <mi>L</mi> <mo>]</mo> </mrow> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> therein, sigmactp∈CK×KIs a diagonal matrix with diagonal elements of HSMThe singular value of (a);
step 2, partitioning the matrix Vctp=(V1,V2) Wherein V2Is HSMDesigning a CTP matrix C as V based on a set of standard orthogonal bases in null space2To obtain J ═ NT-1)K+NTL, wherein, NTThe number of SBS antennas is, K is the effective symbol length of MC, L is the cyclic prefix length of MC;
step 3, carrying out CTP precoding on the channel matrix in the SC layer to obtain an equivalent channel matrixSplitting into N by rowSUK x [ (N)T-1)K+NTL]Sub-matrix of dimensionn=1,…,NSU,NSUIndicating the number of SC users, i.e. <math> <mrow> <msub> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> </msub> <msup> <mrow> <mo>[</mo> <mn>1</mn> <mo>]</mo> </mrow> <mi>H</mi> </msup> <mo>,</mo> <msub> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> </msub> <msup> <mrow> <mo>[</mo> <mn>2</mn> <mo>]</mo> </mrow> <mi>H</mi> </msup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> </msub> <msup> <mrow> <mo>[</mo> <msub> <mi>N</mi> <mi>SU</mi> </msub> <mo>]</mo> </mrow> <mi>H</mi> </msup> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>,</mo> </mrow> </math> WhereinByThe (n-1) th K +1 row to the nK row of (a) represents an equivalent channel matrix from SBS to nth SU within SC;
step 4, interference item wSIs divided into NSUA K x 1 dimensional sub-matrix wS[i],i=1,…,NSUI.e. wS=(wS[1]H,wS[2]H,…,wS[NSU]H)HWherein w iss[i]From wSThe (i-1) K +1 line to the iK line of (A) of (B) of (C of) of;
step 5, initializing m to be 0;
step 6, calculating a group of standard orthogonal bases V of the matrix null space corresponding to the m-th SU user ITPnull[m]The method comprises the following steps:
i. constructing an in-layer equivalent interference channel matrix of the mth SU
Wherein,is a [ (N)SU-1)K]×[(NT-1)K+NTL]Matrix of dimensions of at least one Nnull[m]=NTL+(NT-NSU) A null space of dimension K;
ii, toPerforming singular value decompositionTo obtainZero space orthonormal basis V ofnull[m]Whereinand are all unitary matrices and are used as a matrix,is a diagonal matrix whose diagonal elements areIs (N)SU-1) K singular values; thenSet of orthonormal bases V of null spacenull[m]=VSS[m](:,(NSU-1)K+1:(NT-1)K+NTL);
Step 7, calculating a post-processing matrix Q [ m ] = R w - 1 / 2 [ m ] , Wherein, R w [ m ] = E ( w S [ m ] w S H [ m ] ) is wS[m]The autocorrelation matrix of (a);
and 8, solving the selection and rotation operation matrix T [ m ] to enable the channel capacity of the mth SU to be maximum, and comprising the following steps of:
i. computing matricesTo XH[m]X[m]And (3) carrying out characteristic value decomposition:
<math> <mrow> <msup> <mi>X</mi> <mi>H</mi> </msup> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mi>X</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mo>=</mo> <msub> <mi>Q</mi> <mi>xx</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msub> <mi>&Lambda;</mi> <mi>xx</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msubsup> <mi>Q</mi> <mi>xx</mi> <mi>H</mi> </msubsup> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mo>;</mo> </mrow> </math>
wherein, <math> <mrow> <msub> <mi>Q</mi> <mi>xx</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mo>&Element;</mo> <msup> <mi>C</mi> <mrow> <msub> <mi>N</mi> <mi>null</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mo>&times;</mo> <msub> <mi>N</mi> <mi>null</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> </mrow> </msup> </mrow> </math> is a unitary matrix of the first phase, <math> <mrow> <msub> <mi>&Lambda;</mi> <mi>xx</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mo>&Element;</mo> <msup> <mi>C</mi> <mrow> <msub> <mi>N</mi> <mi>null</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mo>&times;</mo> <msub> <mi>N</mi> <mi>null</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> </mrow> </msup> </mrow> </math> is a diagonal matrix, the diagonal elements of which are matrix XH[m]X[m]A characteristic value of (d);
ii. matrix T [ m ]]From Qxx[m]Before D [ m ] of]Column formation, i.e. T [ m ]]=Qxx[m](:,1:D[m]) Wherein D [ m ]]Is the transmit dimension for SU whenWhen, D [ m ]]=Nnull[m]When is coming into contact with N T > ( N SU + 1 ) K K + L Time D [ m ]]=K;
Step 9, solving the optimized ITP matrix of the mth SU
Step 10, calculating the channel capacity of the mth SU
<math> <mrow> <mi>C</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>K</mi> <mo>+</mo> <mi>L</mi> </mrow> </mfrac> <msub> <mi>log</mi> <mn>2</mn> </msub> <mo>|</mo> <msub> <mi>I</mi> <mi>K</mi> </msub> <mo>+</mo> <mi>Q</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msub> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msub> <mi>V</mi> <mi>null</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mi>T</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mi>P</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msup> <mi>T</mi> <mi>H</mi> </msup> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msubsup> <mi>V</mi> <mi>null</mi> <mi>H</mi> </msubsup> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msubsup> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> <mi>H</mi> </msubsup> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msup> <mrow> <mi>Q</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> </mrow> <mi>H</mi> </msup> <mo>|</mo> <mo>,</mo> </mrow> </math>
Wherein, IKAn identity matrix representing dimensions K x K,representing the signal power distribution matrix sent to the mth SU, and obtaining Pm by water filling power algorithm];
Step 11, adding 1 to m, and repeating the steps 6-10 until m is equal to NSUAnd finishing the optimization design.
The invention has the beneficial effects that: the method can effectively inhibit the interference among users and simultaneously can maximize the transmission capacity of a two-layer network.
Drawings
FIG. 1 is a diagram of an OFDMA-based MC and MIMO-VFDM-based multi-user SC system model;
FIG. 2 is NSUITP usable dimension area and N based on BD-ZF at fixed timeTSchematic diagram of corresponding relationship of (1);
FIG. 3 shows the channel capacity of SC and the number of users NSUA schematic diagram of the relationship of (1);
FIG. 4 shows the channel capacity of SC and the number of users NTA schematic diagram of the relationship of (1);
fig. 5 is a diagram of the channel capacity of the SC at different signal-to-noise ratios.
Detailed Description
The present invention will be further described with reference to the following drawings and examples, which include, but are not limited to, the following examples.
A system model of the two-layer cognitive network is shown in fig. 1. The cognitive network consists of a first layer of MC and a second layer of SC, wherein the MC adopts an LTE orthogonal frequency division multiple access mode for communication, and the SC adopts an MIMO-VFDM mode for communication. MC and SC share spectrum bandwidth, but MC has priority usage of shared spectrum. The MC of one-layer network comprises an MC base station (MCBaseStation, MBS) and an MC user (MCUser, MU), and the SC of the two-layer network comprises an SC base station (SCBASeStation, SBS) and NSUAnd SC users (SCUser, SU). Assuming that all nodes can perfectly obtain the required channel state information, the system model is set as follows: MBS and all MU in the first layer network MC adopt single antenna, SBS in the second layer network SC adopts multi-antenna communication, SBS antenna number is NTAll SUs use a single antenna. The MC adopts an OFDM transmission mode with an effective symbol length of K and a cyclic prefix length of L.
Define x in conjunction with the system modelM∈CK×1Sending symbol vectors, y, for MBSM∈CK×1Is the signal vector, x, received by the MUS[n]∈C(K+L)×1,n=1,2,…,NTSignal vector, y, transmitted for the nth antenna of SBSS[m]∈CK×1,m=1,2,…,NSUFor the signal vector received by the mth SU,the overall noise signal received for all SUs. The in-layer channel matrix of the MC is HMM∈CK×KAnd represents the channel frequency domain response matrix from MBS to MU. The intra-layer channel matrix of the SC isRepresenting the overall channel matrix of SBS to individual SUs within the SC. The inter-layer channel matrix includes:andthe overall inter-layer channel matrices for SBS to MU and MBS to all SUs are indicated separately.
The mutual interference between SC inner users is controlled by ITP on the basis that CTP restrains the interference between layers. The present invention will be described in two parts, namely, CTP design and ITP optimization design.
Design of CTP
Let sS∈CJ×1For SBS to send a signal vector before CTP encoding,is a CTP coding matrix, wherein J represents the largest transmission dimension of SBS. The design of the CTP matrix ensures that the transmitting signal of the SC does not interfere the communication of the MC, and the requirement is metNamely, it is
HSMC=0(1)
The CTP matrix satisfying formula (1) falls on matrix HSMThe specific design scheme of CTP is as follows:
1) for channel matrix HSMPerforming singular value decomposition to obtain <math> <mrow> <msub> <mi>H</mi> <mi>SM</mi> </msub> <mo>=</mo> <msub> <mi>U</mi> <mi>ctp</mi> </msub> <msub> <mi>&Lambda;</mi> <mi>ctp</mi> </msub> <msubsup> <mi>V</mi> <mi>ctp</mi> <mi>H</mi> </msubsup> <mo>,</mo> </mrow> </math> Wherein, Uctp∈CK×KAndare all unitary matrices that are used for the transmission of the signal,is a diagonal matrix with the expression of <math> <mrow> <msub> <mi>&Lambda;</mi> <mi>ctp</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>&Sigma;</mi> <mi>ctp</mi> </msub> <mo>,</mo> <msub> <mi>O</mi> <mrow> <mi>K</mi> <mo>&times;</mo> <mo>[</mo> <mrow> <mo>(</mo> <msub> <mi>N</mi> <mi>T</mi> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>K</mi> <mo>+</mo> <msub> <mi>N</mi> <mi>T</mi> </msub> <mi>L</mi> <mo>]</mo> </mrow> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> Therein, sigmactp∈CK×KIs a diagonal matrix with diagonal elements of HSMThe singular value of (a).
2) For matrix VctpThe following segmentation is performed:
Vctp=(V1,V2)(2)
whereinEasy to prove V2Satisfy HSMV20, thus V2Is HSMA set of orthonormal bases of null space. Design CTP matrix C ═ V2It can be found that J ═ NT-1)K+NTL。
Optimal design of ITP
The design principle of ITP is similar to CTP, with the main purpose of eliminating inter-signal interference within the SC while maximizing SC channel capacity. Equivalent channel matrix of SC layer channel matrix after CTP precodingCan be expressed asSU receives external interference term and noiseThe optimal design steps of ITP are as follows:
1) will matrixSplitting into N by rowSUK x [ (N)T-1)K+NTL]Sub-matrix of dimensionn=1,…,NSUI.e. by <math> <mrow> <msub> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> </msub> <msup> <mrow> <mo>[</mo> <mn>1</mn> <mo>]</mo> </mrow> <mi>H</mi> </msup> <mo>,</mo> <msub> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> </msub> <msup> <mrow> <mo>[</mo> <mn>2</mn> <mo>]</mo> </mrow> <mi>H</mi> </msup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> </msub> <msup> <mrow> <mo>[</mo> <msub> <mi>N</mi> <mi>SU</mi> </msub> <mo>]</mo> </mrow> <mi>H</mi> </msup> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>,</mo> </mrow> </math> WhereinByThe (n-1) th K +1 to nK rows of (a) constitute an equivalent channel matrix representing SBS to nth SU within SC.
2) Interference term wSIs divided into NSUA K x 1 dimensional sub-matrix wS[i],i=1,…,NSUI.e. wS=(wS[1]H,wS[2]H,…,wS[NSU]H)HWherein w iss[i]From wSThe (i-1) K +1 line to ik line elements of (i-1) represent interference terms received by the ith SU.
3) And initializing m to be 0.
4) Calculating a set of standard orthogonal bases V of a matrix null space corresponding to the ITP of the mth SU usernull[m]。
Constructing an intra-layer equivalent interference channel matrix for the mth SUThe following were used:
wherein,is a [ (N)SU-1)K]×[(NT-1)K+NTL]Matrix of dimensions of at least one Nnull[m]=NTL+(NT-NSU) A null space of dimension K;
iv, pairSingular value decomposition is performed to obtainZero space orthonormal basis V ofnull[m]。The singular value of (a) is decomposed into:
wherein,andare all unitary matrices and are used as a matrix,is a diagonal matrix whose diagonal elements areIs (N)SU-1) K singular values.
ThenThe set of orthonormal bases for the null space can be represented by:
Vnull[m]=VSS[m](:,(NSU-1)K+1:(NT-1)K+NTL)(5)
5) computing post-processing matrix qm]. To maximize SC channel capacity, a post-processing matrix is used at each SU receiver to align the signal vector y received by the mth SUS[m]∈CK×1To perform whiteningAnd eliminating interference from the MC and the noise signal. Q [ m ]]The calculation formula is as follows:
Q [ m ] = R w - 1 / 2 [ m ] - - - ( 6 )
wherein, R w [ m ] = E ( w S [ m ] w S H [ m ] ) is wS[m]The autocorrelation matrix of (a).
6) And solving the selection and rotation operation matrix T [ m ] to enable the channel capacity of the mth SU to reach the maximum. Then the solution for T [ m ] is as follows:
calculating a matrixTo XH[m]X[m]And (3) carrying out characteristic value decomposition:
<math> <mrow> <msup> <mi>X</mi> <mi>H</mi> </msup> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mi>X</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mo>=</mo> <msub> <mi>Q</mi> <mi>xx</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msub> <mi>&Lambda;</mi> <mi>xx</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msubsup> <mi>Q</mi> <mi>xx</mi> <mi>H</mi> </msubsup> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
wherein,is a unitary matrix of the first phase,is a diagonal matrix, the diagonal elements of which are matrix XH[m]X[m]The characteristic value of (2).
iii. matrix T [ m ]]From Qxx[m]Before D [ m ] of]Column formation, i.e. T [ m ]]=Qxx[m](:,1:D[m]) Wherein D [ m ]]Is the sending dimension corresponding to SU, and the rule for selecting is given by fig. 2: when in useWhen, D [ m ]]=Nnull[m]When is coming into contact withTime D [ m ]]=K。
7) Solving an optimized ITP matrix for the mth SUThe calculation formula is as follows:
U BD - ZF opt [ m ] = V null [ m ] T [ m ] - - - ( 8 )
8) and calculating the channel capacity C [ m ] of the mth SU according to the following calculation formula:
<math> <mrow> <mi>C</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>K</mi> <mo>+</mo> <mi>L</mi> </mrow> </mfrac> <msub> <mi>log</mi> <mn>2</mn> </msub> <mo>|</mo> <msub> <mi>I</mi> <mi>K</mi> </msub> <mo>+</mo> <mi>Q</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msub> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msub> <mi>V</mi> <mi>null</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mi>T</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mi>P</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msup> <mi>T</mi> <mi>H</mi> </msup> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msubsup> <mi>V</mi> <mi>null</mi> <mi>H</mi> </msubsup> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msubsup> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> <mi>H</mi> </msubsup> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msup> <mrow> <mi>Q</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> </mrow> <mi>H</mi> </msup> <mo>|</mo> </mrow> </math> (9) wherein, IKAn identity matrix representing dimensions K x K,representing the signal power distribution matrix sent to the mth SU, and obtaining Pm by water filling power algorithm]。
9) m plus 1, repeat 4) -9) until m ═ NSUAnd finishing the optimization design.
One layer of the network of the embodiment adopts OFDM transmission with K-64, L-16 and the bandwidth of 1.92 MHz; the channel impulse responses are unchanged during the transmission of the OFDM symbols and all obey complex gaussian random distribution.
FIG. 2 shows NSUITP usable dimension area and N based on BD-ZF for constant valueTThe relationship (2) of (c). The shaded portion in the figure represents the available transmission dimension area of SBS to the mth SU link in the case of CTP. The observation shows that: i) when in useThe dimension of the null space is equal to the upper bound of the usable dimension of the SU; ii) whenThe null-space dimension is greater than the desired dimension. Case i) requires for Vnull[m]Make a certain rotation to constructA matrix for maximizing the channel capacity of the SC; case ii) requires for Vnull[m]Performing selection and rotation operations to constructAnd (4) matrix. Maximizing SC channel capacity. To Vnull[m]Both operations of (2) can be performed by selecting and rotating the matrix T m]And (5) realizing.
FIG. 3 shows a diagram at NTThe channel capacity and N of SC when using optimized and non-optimized BD-ZFITP matrix under the conditions of SNR 10dB and SNR 10dB 8SUThe corresponding relationship of (1). As can be seen from the figure, NSULess than 9 hours, the invention provides an optimized ITP algorithmThe performance is obviously superior to that of the unoptimized ITP algorithm, NSUThe two algorithms perform consistently when 9. It can also be observed that with NSUThe capacity of the SC channel of the optimized ITP algorithm proposed by the present invention is not monotonically increasing, but increases first and then decreases. This means that the number of users in a cell is not as large as possible, but there is a number of users that optimizes the channel capacity of the cell.
FIG. 4 shows a diagram at NSU2, the channel capacity and N of SC when using optimized and non-optimized BD-ZFITP matrix under the conditions of SNR 10dB and SNR 30dBTThe corresponding relationship of (1). As can be seen from fig. 4, with the number N of transmitting antennasTThe performance of the optimized ITP design algorithm is obviously superior to that of the unoptimized ITP design algorithm.
Fig. 5 shows the comparison result of SC transmission capacities of the optimized ITP algorithm and the unoptimized ITP algorithm at different signal-to-noise ratios. In fig. 5, the number of transmitting antennas of SBS is set to NTThe number of SC users N is given as 8SU4 and NSUTwo cases are 9. As can be seen from FIG. 5, when N isSUWhen the channel capacity performance of the optimized ITP algorithm is 4, the channel capacity performance of the optimized ITP algorithm is obviously better than that of the unoptimized ITP algorithm, and when N is equal to 4SUAt 9, the optimized ITP design algorithm performed consistently with the unoptimized algorithm, which is consistent with the results shown in fig. 3.

Claims (1)

1. A multi-user cognitive network precoding optimization method based on MIMO-VFDM is characterized by comprising the following steps:
step 1, carrying out overall interlayer channel matrix H from SC base station SBS to MC user MUSMPerforming singular value decomposition to obtain <math> <mrow> <msub> <mi>H</mi> <mi>SM</mi> </msub> <mo>=</mo> <msub> <mi>U</mi> <mi>ctp</mi> </msub> <msub> <mi>&Lambda;</mi> <mi>ctp</mi> </msub> <msubsup> <mi>V</mi> <mi>ctp</mi> <mi>H</mi> </msubsup> <mo>,</mo> </mrow> </math> Wherein,andare all unitary matrices that are used for the transmission of the signal,in the form of a diagonal matrix, <math> <mrow> <msub> <mi>&Lambda;</mi> <mi>ctp</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>&Sigma;</mi> <mi>ctp</mi> </msub> <mo>,</mo> <msub> <mn>0</mn> <mrow> <mi>K</mi> <mo>&times;</mo> <mo>[</mo> <mrow> <mo>(</mo> <msub> <mi>N</mi> <mi>T</mi> </msub> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>K</mi> <mo>+</mo> <msub> <mi>N</mi> <mi>T</mi> </msub> <mi>L</mi> <mo>]</mo> </mrow> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> wherein,is a diagonal matrix with diagonal elements of HSMThe singular value of (a);
step 2, partitioning the matrix Vctp=(V1,V2) Wherein V2Is HSMDesigning a CTP matrix C as V based on a set of standard orthogonal bases in null space2To obtain J ═ NT-1)K+NTL, wherein, NTThe number of SBS antennas is, K is the effective symbol length of MC, L is the cyclic prefix length of MC;
step 3, carrying out CTP precoding on the channel matrix in the SC layer to obtain an equivalent channel matrixSplitting into N by rowSUK x [ (N)T-1)K+NTL]Sub-matrix of dimensionn=1,…,NSU,NSUIndicating the number of SC users, i.e. <math> <mrow> <msub> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> </msub> <msup> <mrow> <mo>[</mo> <mn>1</mn> <mo>]</mo> </mrow> <mi>H</mi> </msup> <mo>,</mo> <msub> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> </msub> <msup> <mrow> <mo>[</mo> <mn>2</mn> <mo>]</mo> </mrow> <mi>H</mi> </msup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> </msub> <msup> <mrow> <mo>[</mo> <msub> <mi>N</mi> <mi>SU</mi> </msub> <mo>]</mo> </mrow> <mi>H</mi> </msup> <mo>)</mo> </mrow> <mi>H</mi> </msup> <mo>,</mo> </mrow> </math> WhereinByThe (n-1) th K +1 row to the nK row of (a) represents an equivalent channel matrix from SBS to nth SU within SC;
step 4, interference item wSIs divided into NSUA K x 1 dimensional sub-matrix wS[i],i=1,…,NSUI.e. wS=(wS[1]H,wS[2]H,…,wS[NSU]H)HWherein w iss[i]From wSThe (i-1) K +1 line to the iK line of (A) of (B) of (C of) of;
step 5, initializing m to be 0;
step 6, calculating a group of standard orthogonal bases V of the matrix null space corresponding to the m-th SU user ITPnull[m]The method comprises the following steps:
i. constructing an in-layer equivalent interference channel matrix of the mth SU
Wherein,is a [ (N)SU-1)K]×[(NT-1)K+NTL]Matrix of dimensions of at least one Nnull[m]=NTL+(NT-NSU) A null space of dimension K;
ii, toCarrying out singular valueSolution (II)To obtainZero space orthonormal basis V ofnull[m]Whereinand USS[m]∈Are all unitary matrices and are used as a matrix,is a diagonal matrix whose diagonal elements areIs (N)SU-1) K singular values; thenSet of orthonormal bases V of null spacenull[m]=VSS[m](:,NSU-1)K+1:(NT-1)K+NTL);
Step 7, calculating a post-processing matrix Q [ m ] = R w - 1 / 2 [ m ] , Wherein, R w [ m ] = E ( w S [ m ] w S H [ m ] ) is wS[m]The autocorrelation matrix of (a);
and 8, solving the selection and rotation operation matrix T [ m ] to enable the channel capacity of the mth SU to be maximum, and comprising the following steps of:
i. computing matricesTo XH[m]X[m]And (3) carrying out characteristic value decomposition:
<math> <mrow> <msup> <mi>X</mi> <mi>H</mi> </msup> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mi>X</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mo>=</mo> <msub> <mi>Q</mi> <mi>xx</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msub> <mrow> <mo></mo> <mi>&Lambda;</mi> </mrow> <mi>xx</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msubsup> <mi>Q</mi> <mi>xx</mi> <mi>H</mi> </msubsup> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mo>;</mo> </mrow> </math>
wherein,is a unitary matrix of the first phase,is a diagonal matrix, the diagonal elements of which are matrix XH[m]X[m]A characteristic value of (d);
ii. matrix T [ m ]]From Qxx[m]Before D [ m ] of]Column formation, i.e. T [ m ]]=Qxx[m](:,1:D[m]) Wherein D [ m ]]Is the transmit dimension for SU whenWhen, D [ m ]]=Nnull[m]When is coming into contact with N T > ( N SU + 1 ) K K + L Time D [ m ]]=K;
Step 9, solving the optimized ITP matrix of the mth SU
Step 10, calculating the channel capacity of the mth SU
<math> <mrow> <mi>C</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>K</mi> <mo>+</mo> <mi>L</mi> </mrow> </mfrac> <msub> <mi>log</mi> <mn>2</mn> </msub> <mo>|</mo> <msub> <mi>I</mi> <mi>K</mi> </msub> <mo>+</mo> <mi>Q</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msub> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msub> <mi>V</mi> <mi>null</mi> </msub> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mi>T</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mi>P</mi> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msup> <mi>T</mi> <mi>H</mi> </msup> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msubsup> <mi>V</mi> <mi>null</mi> <mi>H</mi> </msubsup> <mo>[</mo> <mi>m</mi> <mo>]</mo> <msubsup> <mover> <mi>H</mi> <mo>&OverBar;</mo> </mover> <mi>SS</mi> <mi>H</mi> </msubsup> <mo>[</mo> <mi>m</mi> <mo>]</mo> <mi>Q</mi> <msup> <mrow> <mo></mo> <mo>[</mo> <mi>m</mi> <mo>]</mo> </mrow> <mi>H</mi> </msup> <mo>|</mo> <mo>,</mo> </mrow> </math>
Wherein, IKAn identity matrix representing dimensions K x K,representing the signal power distribution matrix sent to the mth SU, and obtaining Pm by water filling power algorithm];
Step 11, adding 1 to m, and repeating the steps 6-10 until m is equal to NSUAnd finishing the optimization design.
CN201510273916.9A 2015-05-26 2015-05-26 A kind of multi-user's cognition network precoding optimization method based on MIMO VFDM Expired - Fee Related CN105049154B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510273916.9A CN105049154B (en) 2015-05-26 2015-05-26 A kind of multi-user's cognition network precoding optimization method based on MIMO VFDM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510273916.9A CN105049154B (en) 2015-05-26 2015-05-26 A kind of multi-user's cognition network precoding optimization method based on MIMO VFDM

Publications (2)

Publication Number Publication Date
CN105049154A true CN105049154A (en) 2015-11-11
CN105049154B CN105049154B (en) 2018-04-10

Family

ID=54455384

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510273916.9A Expired - Fee Related CN105049154B (en) 2015-05-26 2015-05-26 A kind of multi-user's cognition network precoding optimization method based on MIMO VFDM

Country Status (1)

Country Link
CN (1) CN105049154B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166047A (en) * 2006-10-17 2008-04-23 中国科学院上海微系统与信息技术研究所 Multi-antenna communication system transmitting device for channel geometric mean decomposition, receiving device, transmitting method and receiving method
CN101207464A (en) * 2006-12-18 2008-06-25 中国科学院上海微系统与信息技术研究所 Generalized grasman code book constitution method and feedback method based thereon
CN101702703A (en) * 2009-11-25 2010-05-05 南京邮电大学 Vandermonde frequency-division multiplexing method based on multi-carrier modulation technology
CN104467930A (en) * 2014-12-09 2015-03-25 山东大学 Multi-user MIMO system user selection method based on space angle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101166047A (en) * 2006-10-17 2008-04-23 中国科学院上海微系统与信息技术研究所 Multi-antenna communication system transmitting device for channel geometric mean decomposition, receiving device, transmitting method and receiving method
CN101207464A (en) * 2006-12-18 2008-06-25 中国科学院上海微系统与信息技术研究所 Generalized grasman code book constitution method and feedback method based thereon
CN101702703A (en) * 2009-11-25 2010-05-05 南京邮电大学 Vandermonde frequency-division multiplexing method based on multi-carrier modulation technology
CN104467930A (en) * 2014-12-09 2015-03-25 山东大学 Multi-user MIMO system user selection method based on space angle

Also Published As

Publication number Publication date
CN105049154B (en) 2018-04-10

Similar Documents

Publication Publication Date Title
EP3035556B1 (en) Method and apparatus for transmitting common signal in hybrid beamforming
CN101990293B (en) Precoding method, codebook set and base station
CN102868477B (en) A kind of method for multi-user pre-coding and device based on packet wave beam
CN104052535A (en) Millimeter wave large-scale MIMO system multi-user transmission method based on space division multiple access and interference suppression
US9559759B2 (en) System and method for massive MIMO communication
CN111713054B (en) Communication method, communication device and system
CN110166088B (en) Power control algorithm of user-centered cell-free MIMO system
US11770286B2 (en) Signal dimension reduction using a non-linear transformation
CN109890036B (en) Self-return method of heterogeneous network
CN104243121A (en) Pilot frequency distribution method based on sectorization in Massive MIMO system
US20200212979A1 (en) Method and apparatus for combining plurality of radio frequency signals
CN106506109B (en) Intensive small cell network user grouping and self-adapting interference suppression method
CN109787665B (en) Method and system for grouping and precoding massive MIMO (multiple input multiple output) users in stratosphere
CN103220116A (en) Distributed resource distribution method for multiple input multiple output (MIMO)-orthogonal frequency division multiple access (OFDMA) wireless relay system
KR20150140368A (en) Mobile station and reporting method
CN101667893A (en) Virtual multi-input multi-output relay transmission method based on space-time block coding
CN107592675A (en) A kind of 3D MIMO multi-cell downlink adaptive transmission methods
CN107911867B (en) Downlink transmission and interference coordination method of cellular and D2D hybrid communication network
CN105409311B (en) System and method for cooperateing with precoding in isomery bilayer wireless network
CN106792734B (en) Utilize the heterogeneous network disturbance coordination method of three-dimensional statistic channel information
CN105049154B (en) A kind of multi-user&#39;s cognition network precoding optimization method based on MIMO VFDM
CN103269238B (en) Interference alignment and the method offset, system customer equipment and base station
WO2018115966A1 (en) Method and device for performing pre-combining processing on uplink massive mimo signals
CN108494452B (en) Multi-user mixed beam forming algorithm in millimeter wave large-scale MIMO-OFDM system and implementation device
CN109194375B (en) FD-MIMO multi-cell downlink interference coordination method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TA01 Transfer of patent application right

Effective date of registration: 20180321

Address after: 518000 Guangdong city of Shenzhen province Nanshan District Guangdong streets High-tech Industrial Park in the Southern District of Virtual University Park

Applicant after: RESEARCH & DEVELOPMENT INSTITUTE OF NORTHWESTERN POLYTECHNICAL University IN SHENZHEN

Applicant after: Northwestern Polytechnical University

Address before: 710072 Xi'an friendship West Road, Shaanxi, No. 127

Applicant before: Northwestern Polytechnical University

TA01 Transfer of patent application right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180410

CF01 Termination of patent right due to non-payment of annual fee