CN105043387A - Personal indoor positioning system based on inertial navigation aiding geomagnetism - Google Patents
Personal indoor positioning system based on inertial navigation aiding geomagnetism Download PDFInfo
- Publication number
- CN105043387A CN105043387A CN201510364767.7A CN201510364767A CN105043387A CN 105043387 A CN105043387 A CN 105043387A CN 201510364767 A CN201510364767 A CN 201510364767A CN 105043387 A CN105043387 A CN 105043387A
- Authority
- CN
- China
- Prior art keywords
- geomagnetic
- mobile phone
- carrier
- inertial navigation
- indoor positioning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000005516 engineering process Methods 0.000 claims abstract description 8
- 230000005358 geomagnetic field Effects 0.000 claims description 10
- 230000001133 acceleration Effects 0.000 claims description 9
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 238000005314 correlation function Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 241000282994 Cervidae Species 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/165—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/04—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means
- G01C21/08—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means involving use of the magnetic field of the earth
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
- G01C21/206—Instruments for performing navigational calculations specially adapted for indoor navigation
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Navigation (AREA)
Abstract
本发明涉及一种基于惯导辅助地磁的个人室内定位系统,利用地球磁场在不同点的差异性,基于Android平台的智能手机,选择合适的地磁匹配算法即可以实现不依赖于外部设备的个人室内定位,利用惯性导航技术获得移动个体的相对位置,然后进行局部搜索并通过MSD地磁定位算法匹配最佳磁场点,以获取较准确的移动个体所处地点参数,从而实现手机室内定位功能。本发明通过惯导辅助地磁的组合定位方式有效提高了地磁信息匹配效率,能获得较高的室内定位的精度,仅需手机内置的传感器设备,不依赖于外部架设额外设备,即能实现个人室内的定位,使用便利、且成本小易于推广。
The invention relates to a personal indoor positioning system based on inertial navigation assisted geomagnetism. By using the difference of the earth's magnetic field at different points, a smart phone based on the Android platform can realize a personal indoor positioning system that does not depend on external devices by selecting a suitable geomagnetic matching algorithm. Positioning, using inertial navigation technology to obtain the relative position of the mobile individual, and then perform a local search and match the best magnetic field point through the MSD geomagnetic positioning algorithm to obtain more accurate location parameters of the mobile individual, thereby realizing the indoor positioning function of the mobile phone. The present invention effectively improves the matching efficiency of geomagnetic information through the combination positioning method of inertial navigation and assisted geomagnetism, and can obtain higher indoor positioning accuracy. Positioning, easy to use, low cost and easy to promote.
Description
技术领域technical field
本发明专利涉及手机室内定位领域,具体涉及一种基于惯导辅助地磁的个人室内定位系统。The patent of the present invention relates to the field of mobile phone indoor positioning, in particular to a personal indoor positioning system based on inertial navigation-assisted geomagnetism.
背景技术Background technique
随着科技的飞速发展,关于移动定位技术方向的研究在近些年取得了很大的进展,包括GPS室内定位、光跟追定位、蓝牙定位、Wifi室内定位、Zigbee室内定位等等,具体主要包括GoogleMap、高德地图、GoogleMap、寻鹿等等,但是这些定位方式均需要另外架设相应设备,如GPS定位需要卫星,Wifi定位需要架设足够的Wifi节点,Zigbee室内定位需要在室内至少铺设三个以上的Zigbee节点构成无线传感模块。但是,上述定位方式需要构建复杂的外围硬件基础设备和硬件辅助设备,费用非常大,不利于广泛使用。With the rapid development of science and technology, research on the direction of mobile positioning technology has made great progress in recent years, including GPS indoor positioning, optical tracking positioning, Bluetooth positioning, Wifi indoor positioning, Zigbee indoor positioning, etc. Including GoogleMap, Gaode map, GoogleMap, deer hunting, etc., but these positioning methods require additional corresponding equipment, such as GPS positioning requires satellites, Wifi positioning needs to set up enough Wifi nodes, and Zigbee indoor positioning requires at least three indoor positioning. The above Zigbee nodes constitute a wireless sensor module. However, the above-mentioned positioning method needs to build complex peripheral hardware infrastructure and hardware auxiliary equipment, and the cost is very high, which is not conducive to widespread use.
发明内容Contents of the invention
本发明要解决的技术问题是针对上述技术问题,提供一种基于惯导辅助地磁的个人室内定位系统,不需构建复杂的外围硬件基础设备,也不需改变智能手机结构,仅仅依赖普通智能手机即可获得较好的室内定位精度,能够大幅减少额外硬件辅助设备带来的昂贵费用,用户使用起来安全可靠,简单方便,经济便捷。The technical problem to be solved by the present invention is to provide a personal indoor positioning system based on inertial navigation assisted geomagnetism, which does not need to build complex peripheral hardware infrastructure, nor does it need to change the structure of smart phones, and only relies on ordinary smart phones It can obtain better indoor positioning accuracy, and can greatly reduce the expensive cost of additional hardware auxiliary equipment. It is safe, reliable, simple, convenient, and economical for users to use.
为解决上述技术问题,本发明采用如下技术方案:In order to solve the problems of the technologies described above, the present invention adopts the following technical solutions:
一种基于惯导辅助地磁的个人室内定位系统,设置在移动载体上;其特征在于:主要包括一个基于Android平台的智能手机,所述智能手机内置陀螺仪、加速计、磁力计;智能手机通过所述陀螺仪、加速计、磁力计分别得到载体的旋转角、位移、方位角,然后通过测量载体所在区域内的地磁信息,构建手机内部地磁基准图;在移动载体移动过程中,利用惯性导航技术进行相对定位,获得载体在三维空间中的相对位置,然后通过MSD地磁匹配算法匹配出移动载体的最佳所处地点信息。A personal indoor positioning system based on inertial navigation-assisted geomagnetism, which is arranged on a mobile carrier; it is characterized in that: it mainly includes a smart phone based on the Android platform, and the smart phone has a built-in gyroscope, an accelerometer, and a magnetometer; The gyroscope, accelerometer, and magnetometer respectively obtain the rotation angle, displacement, and azimuth of the carrier, and then construct the internal geomagnetic reference map of the mobile phone by measuring the geomagnetic information in the area where the carrier is located; The technology performs relative positioning to obtain the relative position of the carrier in three-dimensional space, and then matches the best location information of the mobile carrier through the MSD geomagnetic matching algorithm.
上述技术方案中,所述的基于惯导辅助地磁的个人室内定位系统定位工作包括如下步骤:In the above technical solution, the positioning work of the personal indoor positioning system based on inertial navigation assisted geomagnetism includes the following steps:
步骤S1:通过手机内置磁力计对载体所在区域的地磁数据进行扫描,获得区域的地磁基准图信息并存储在手机中,构建手机内部地磁基准图,同时根据实际场景按比例绘制手机平面地图;Step S1: Use the built-in magnetometer of the mobile phone to scan the geomagnetic data of the area where the carrier is located, obtain the geomagnetic reference map information of the area and store it in the mobile phone, construct the internal geomagnetic reference map of the mobile phone, and draw a flat map of the mobile phone in proportion to the actual scene;
步骤S2:移动载体开始移动,当载体运动到室内定位环境下时,由惯性导航系统中定位得到载体的相对位置,基于这个相对位置从地磁基准图中搜索出一个新的局域地磁基准图;Step S2: The mobile carrier starts to move. When the carrier moves into the indoor positioning environment, the relative position of the carrier is obtained from the positioning of the inertial navigation system, and a new local geomagnetic reference map is searched from the geomagnetic reference map based on the relative position;
步骤S3:由手机内置磁力计实时测量载体所处位置的磁矢量;并将磁矢量从三维量转化为二维量;Step S3: The built-in magnetometer of the mobile phone measures the magnetic vector at the position of the carrier in real time; and converts the magnetic vector from a three-dimensional quantity to a two-dimensional quantity;
步骤S4:手机将测量转化后的磁矢量与局域地磁基准图进行MSD地磁匹配算法匹配,地磁匹配算法处理后的数据存储到智能手机中,然后将载体所在位置显示在手机平面地图上,从而实现智能手机实时显示载体的位置。Step S4: The mobile phone uses the MSD geomagnetic matching algorithm to match the measured and transformed magnetic vector with the local geomagnetic reference map. The data processed by the geomagnetic matching algorithm is stored in the smart phone, and then the location of the carrier is displayed on the flat map of the mobile phone, thereby Realize the real-time display of the position of the carrier by the smart phone.
上述技术方案中,在步骤S1前,智能手机需要进行数据获取,主要包括磁力计、陀螺仪和加速度计的数据获取。In the above technical solution, before step S1, the smart phone needs to acquire data, mainly including data acquisition of magnetometer, gyroscope and accelerometer.
上述技术方案中,步骤S2中,所述相对位置与手机内置加速度计关系如下:In the above technical solution, in step S2, the relationship between the relative position and the built-in accelerometer of the mobile phone is as follows:
其中v0,vm分别表示t0,tm时刻手机线速度,a为手机一个方向上的加速度,为t0到tm的平均速度,Δs为手机的相对位移。Among them, v 0 and v m represent the linear velocity of the mobile phone at time t 0 and t m respectively, a is the acceleration in one direction of the mobile phone, is the average speed from t 0 to t m , and Δs is the relative displacement of the mobile phone.
上述技术方案中,步骤S3中,磁力计测得的磁场磁矢量的大小与方向的关系如下:In the above technical solution, in step S3, the relationship between the magnitude and direction of the magnetic field magnetic vector measured by the magnetometer is as follows:
M(r,t)=Mm(r,t)+Mc(r)+Md(r,t)M(r,t)=M m (r,t)+M c (r)+M d (r,t)
式中,M表示磁场总强度,Mm表示主地磁场、Mc表示地壳地磁场,Md表示干扰地磁场;r表示载体所处位置,t表示时间;In the formula, M represents the total strength of the magnetic field, M m represents the main geomagnetic field, M c represents the crustal geomagnetic field, M d represents the disturbing geomagnetic field; r represents the position of the carrier, and t represents the time;
将磁矢量从三维量转化为二维量的过程中:M、H、φ四要素与M在地球坐标系三个轴上投影Mx,My,Mz的关系如下:In the process of converting the magnetic vector from a three-dimensional quantity to a two-dimensional quantity: M, H, The relationship between the four elements of φ and the projection Mx, My, and Mz of M on the three axes of the earth coordinate system is as follows:
式中,磁场总强度用M表示,将它投射到东北平面得到H,称作水平强度;将H投射到东西向轴,得到东西向场强Mx;同理,将H投射到南北向轴,得到南北向场强My;其表示磁偏角,φ表示磁倾角。In the formula, the total strength of the magnetic field is represented by M, which is projected to the northeast plane to obtain H, which is called the horizontal strength; project H to the east-west axis to obtain the east-west field strength Mx; similarly, project H to the north-south axis, Get the north-south field strength My; its Indicates magnetic declination, φ indicates magnetic inclination.
上述技术方案中,步骤S4中将测量磁矢量与局域地磁基准图进行匹配时,使用地磁匹配算法均方差MSD获得绝对位置,其地磁匹配均方差MSD获取关系式如下:In the above technical solution, when the measured magnetic vector is matched with the local geomagnetic reference map in step S4, the absolute position is obtained by using the geomagnetic matching algorithm mean square deviation MSD, and the geomagnetic matching mean square deviation MSD acquisition relationship is as follows:
上式中的D(u,v)为地磁匹配相关函数,Nuv+i表示基准数据库的位置(u,v+i)上的特征量,mi表示实时测量的第i个特征量,N表示相关数据的总点数。D(u,v) in the above formula is the correlation function of geomagnetic matching, N uv+i represents the feature quantity on the position (u,v+i) of the reference database, m i represents the i-th feature quantity measured in real time, N Indicates the total number of points for the related data.
由此,本发明区别于传统的室内定位方式,不需要构建复杂的外围硬件基础设备,能在不改变智能手机结构、不依赖于外部架设相应设备的基础上,仅利用惯导辅助MSD(MeanSquareDeviation)地磁定位算法和手机内置的传感器设备便能达到一个较高精度的定位功效。也即用户只需要一部内置传感器设备的Android智能手机,利用地球提供的固有地磁场信息,即可实现室内定位。用户使用起来安全可靠,简单方便,经济便捷。进一步的,本发明利用惯性导航技术辅助MSD地磁定位算法,缩小了地磁基准图的匹配范围,减少地磁匹配计算量,能获得较好的室内定位精度,此方式适用于大型购物商场、会展中心以及大型地下停车库等的室内定位,定为精度可以达到1.0M~2.0M,其商业市场价值巨大。Therefore, the present invention is different from traditional indoor positioning methods, does not need to build complex peripheral hardware infrastructure, and can only use inertial navigation to assist MSD (MeanSquareDeviation ) geomagnetic positioning algorithm and the built-in sensor device of the mobile phone can achieve a higher precision positioning effect. That is to say, users only need an Android smart phone with a built-in sensor device, and use the inherent geomagnetic field information provided by the earth to realize indoor positioning. It is safe and reliable for users to use, simple and convenient, economical and convenient. Further, the present invention uses inertial navigation technology to assist the MSD geomagnetic positioning algorithm, which reduces the matching range of the geomagnetic reference map, reduces the calculation amount of geomagnetic matching, and can obtain better indoor positioning accuracy. This method is suitable for large shopping malls, convention centers and For indoor positioning of large underground parking garages, etc., the accuracy can reach 1.0M to 2.0M, and its commercial market value is huge.
附图说明Description of drawings
图1是本发明基于惯导辅助地磁的个人室内定位系统原理图;Fig. 1 is the schematic diagram of the personal indoor positioning system based on inertial navigation assisted geomagnetism of the present invention;
图2是本发明涉及的地磁匹配定位系统框图;Fig. 2 is a block diagram of the geomagnetic matching positioning system involved in the present invention;
图3是本发明惯导辅助MSD算法定位流程图;Fig. 3 is the positioning flow chart of the inertial navigation aided MSD algorithm of the present invention;
图4是本发明涉及的地磁物理量关系图。Fig. 4 is a relationship diagram of geomagnetic physical quantities involved in the present invention.
具体实施方式Detailed ways
为了进一步说明本发明的技术方案,对照附图1-4对本发明进行详细的说明。In order to further illustrate the technical solution of the present invention, the present invention is described in detail with reference to accompanying drawings 1-4.
本发明涉及的基于惯导辅助地磁的个人室内定位系统,用于载体在室内运动时的实时定位,包括一个设置在移动载体上的Android智能手机(具有高速多核或单核的CPU处理器),所述移动载体为能够携带Android智能手机的移动个体,能够自主或被动移(若移动载体为人或可移动的不带智能设备的物体,则由人或可移动物体控制手机移动,若移动载体为移动智能体,则手机由智能体控制移动且能与手机实现通讯);所述智能手机配备有陀螺仪、加速传感器、地磁传感器,其中陀螺仪(Gyroscope、GYRO-Sensor)也叫地感器,传统结构是内部有个陀螺,三轴陀螺仪的工作原理是通过感知三维坐标系内陀螺转子的垂直轴与设备之间的夹角,并计算角速度,通过夹角和角速度来判别物体在三维空间的运动状态。三轴陀螺仪可以同时感知上、下、左、右、前、后等6个方向(合成方向同样可分解为三轴坐标),最终可判断出设备的移动轨迹和加速度;加速传感器(Accelerometer、G-Sensor)也叫重力感应器,通过感知载体在某个轴向上的受力情况来感知沿地表垂直方向上的加速度,实际上是可以感知任意方向上的加速度;地磁传感器用于感知载体磁场强度和方向,还能定位载体的方位,其实磁力计的工作原理跟指南针的工作原理在很多方面都很类似,可以感知出当前载体与东南西北四个方向上的夹角。The personal indoor positioning system based on inertial navigation assisted geomagnetism that the present invention relates to is used for the real-time positioning of the carrier when it moves indoors, including an Android smart phone (with a high-speed multi-core or single-core CPU processor) arranged on the mobile carrier, The mobile carrier is a mobile individual capable of carrying an Android smart phone, and can be moved autonomously or passively (if the mobile carrier is a person or a movable object without a smart device, the mobile phone is controlled by the person or the movable object to move, if the mobile carrier is mobile smart body, the mobile phone is controlled by the smart body and can communicate with the mobile phone); the smart phone is equipped with a gyroscope, an acceleration sensor, and a geomagnetic sensor, wherein the gyroscope (Gyroscope, GYRO-Sensor) is also called a ground sensor, The traditional structure is that there is a gyro inside. The working principle of the three-axis gyroscope is to perceive the angle between the vertical axis of the gyro rotor and the equipment in the three-dimensional coordinate system, and calculate the angular velocity, and judge the object in three-dimensional space through the angle and angular velocity. state of motion. The three-axis gyroscope can sense six directions of up, down, left, right, front, and back at the same time (the synthetic direction can also be decomposed into three-axis coordinates), and finally can judge the movement trajectory and acceleration of the device; the acceleration sensor (Accelerometer, G-Sensor) is also called a gravity sensor. It senses the acceleration along the vertical direction of the ground surface by sensing the force of the carrier on a certain axis. In fact, it can sense the acceleration in any direction; the geomagnetic sensor is used to sense the carrier. The strength and direction of the magnetic field can also locate the bearing of the carrier. In fact, the working principle of the magnetometer is similar to that of the compass in many aspects. It can sense the angle between the current carrier and the four directions of east, west, north and south.
本发明中均在Android智能手机上实现,本发明的惯导辅助地磁定位系统主要分为地磁采集模块、惯性导航系统、地磁定位匹配算法模块。地磁采集模块主要完成地磁传感器模块数据读取以及预处理工作,通过手机自带的高精度的三轴磁力计对区域的地磁数据进行扫描,获得区域的地磁基准图信息,并上传到手机;惯性导航系统原理图如图1所示(对应图1进行描述),由图1可知,根据手机加速度计及手机中的陀螺仪分别获取移动载体的3个线加速度数值和3个角速度数值,然后将手机加速度进行坐标变换,将手机角速度进行姿态计算,经过卡尔曼滤波,导航计算,即可得到手机及移动载体所在的位置、速度、姿态等导航信息。In the present invention, all are implemented on Android smart phones. The inertial navigation assisted geomagnetic positioning system of the present invention is mainly divided into a geomagnetic acquisition module, an inertial navigation system, and a geomagnetic positioning matching algorithm module. The geomagnetic acquisition module mainly completes the data reading and preprocessing of the geomagnetic sensor module, scans the geomagnetic data of the region through the high-precision three-axis magnetometer that comes with the mobile phone, obtains the geomagnetic reference map information of the region, and uploads it to the mobile phone; The schematic diagram of the navigation system is shown in Figure 1 (corresponding to Figure 1 for description). It can be seen from Figure 1 that, according to the mobile phone accelerometer and the gyroscope in the mobile phone, the three linear acceleration values and three angular velocity values of the mobile carrier are respectively obtained, and then the The acceleration of the mobile phone is used for coordinate transformation, and the angular velocity of the mobile phone is used for attitude calculation. After Kalman filtering and navigation calculation, the navigation information such as the position, speed, and attitude of the mobile phone and the mobile carrier can be obtained.
地磁匹配定位系统框图如图2所示,由图2可知,导航时,首先把预先测量好的地磁信息存储在手机上,构成数字地磁基准图,并同时根据实际场景按比例绘制手机平面地图。当载体运动到特定匹配区域时,由手机磁传感器测量所处位置的磁场特征,经载体运动一段时间后,测量得到一系列实时磁场特征值,简称测量序列。把测量序列与基准图进行相应的匹配,找出基准图中与测量序列最相匹配的位置序列,以此作为载体的位置估计信息。The block diagram of the geomagnetic matching and positioning system is shown in Figure 2. It can be seen from Figure 2 that when navigating, the pre-measured geomagnetic information is first stored on the mobile phone to form a digital geomagnetic reference map, and at the same time, the plane map of the mobile phone is drawn in proportion to the actual scene. When the carrier moves to a specific matching area, the magnetic sensor of the mobile phone measures the magnetic field characteristics of the location. After the carrier moves for a period of time, a series of real-time magnetic field characteristic values are measured, referred to as the measurement sequence. Correspondingly match the measurement sequence with the reference image, and find out the position sequence that best matches the measurement sequence in the reference image, and use it as the position estimation information of the carrier.
图3是惯导辅助MSD算法定位流程图,主要包括以下步骤:Figure 3 is a flow chart of inertial navigation-assisted MSD algorithm positioning, which mainly includes the following steps:
步骤S1:智能手机传感器数据获取,主要包括磁力计、陀螺仪和加速度计的数据获取。Step S1: acquisition of sensor data of the smart phone, mainly including data acquisition of magnetometer, gyroscope and accelerometer.
步骤S2:通过手机自带的高精度的三轴磁力计对区域的地磁数据进行扫描,获得区域的地磁基准图信息,并在手机中存储,构建手机内部地磁基准图,同时根据实际场景按比例绘制手机平面地图;Step S2: Use the high-precision three-axis magnetometer that comes with the mobile phone to scan the geomagnetic data of the area, obtain the geomagnetic reference map information of the area, and store it in the mobile phone to construct the internal geomagnetic reference map of the mobile phone, and scale it according to the actual scene Draw a flat map of the mobile phone;
步骤S3:当载体运动到室内定位环境下时,由惯性导航系统得到定位的相对位置,基于这个相对位置能从地磁基准图中搜索出一个新的局域地磁基准图;Step S3: When the carrier moves into the indoor positioning environment, the relative position of the positioning is obtained by the inertial navigation system, and based on this relative position, a new local geomagnetic reference map can be searched from the geomagnetic reference map;
步骤S4:由手机内置磁传感器实时地测量所处位置的磁矢量,由传感器测得的磁场的大小与方向的关系如下:Step S4: Measure the magnetic vector at the location in real time by the built-in magnetic sensor of the mobile phone. The relationship between the magnitude and direction of the magnetic field measured by the sensor is as follows:
M(r,t)=Mm(r,t)+Mc(r)+Md(r,t)M(r,t)=M m (r,t)+M c (r)+M d (r,t)
式中,M表示磁场总强度,Mm表示主地磁场、Mc表示地壳地磁场,Md表示干扰地磁场;In the formula, M represents the total strength of the magnetic field, M m represents the main geomagnetic field, M c represents the crustal geomagnetic field, and M d represents the disturbing geomagnetic field;
然后,通过姿态解算将地磁矢量分解到地球坐标系的三个方向,X轴方向磁场分量近似为零可忽略,即可将地磁矢量从三维量转化为二维量,地磁物理量关系图如图4,M、H、φ四要素与M在三个轴上投影Mx,My,Mz的关系如下,各物理量的表示如图4所示:Then, the geomagnetic vector is decomposed into the three directions of the earth coordinate system through the attitude calculation. The magnetic field component in the X-axis direction is approximately zero and can be ignored. The geomagnetic vector can be converted from a three-dimensional quantity to a two-dimensional quantity. The relationship diagram of the geomagnetic physical quantity is shown in the figure 4, M, H, The relationship between the four elements of φ and the projections of Mx, My, and Mz on the three axes of M is as follows, and the representation of each physical quantity is shown in Figure 4:
式中,磁场总场强用M表示,将它投射到东北平面得到H,称作水平强度;将H投射到东西向轴,得到东西向场强Mx;同理,将H投射到南北向轴,得到南北向场强My;其中表示磁偏角,φ表示磁倾角;In the formula, the total field strength of the magnetic field is represented by M, which is projected to the northeast plane to obtain H, which is called the horizontal strength; project H to the east-west axis to obtain the east-west field strength Mx; similarly, project H to the north-south axis , get the north-south field strength My; where Indicates magnetic declination, φ indicates magnetic inclination;
步骤S5:将测量磁矢量与局域地磁基准图进行相应的匹配,使用地磁匹配算法均方差MSD获得绝对位置,其地磁匹配均方差算法如下:Step S5: Match the measured magnetic vector with the local geomagnetic reference map, and use the geomagnetic matching algorithm mean square error MSD to obtain the absolute position. The geomagnetic matching mean square error algorithm is as follows:
上式中的D(u,v)为地磁匹配相关函数,Nuv+i表示基准数据库的位置(u,v+i)上的特征量,mi表示实时测量的第i个特征量,N表示相关数据的总点数。D(u,v) in the above formula is the correlation function of geomagnetic matching, N uv+i represents the feature quantity on the position (u,v+i) of the reference database, m i represents the i-th feature quantity measured in real time, N Indicates the total number of points for the related data.
步骤S6:将处理后的位置数据换算到手机平面地图上,从而实现手机用户实时显示自身的位置。Step S6: Convert the processed location data to the flat map of the mobile phone, so that the mobile phone user can display his/her own location in real time.
综上,本发明利用惯性导航技术对移动个体进行位置预估量,获得一个估量位置,然后进行局部搜索并通过MSD地磁定位算法匹配最佳磁场点,以获取较准确的移动个体所处地点参数,从而实现手机室内定位功能,区别于传统的室内定位方式,不需要构建复杂的外围硬件基础设备,用户使用起来安全可靠,简单方便,经济便捷,具有经济与实用价值。In summary, the present invention uses inertial navigation technology to estimate the position of the mobile individual to obtain an estimated position, then perform a local search and match the best magnetic field point through the MSD geomagnetic positioning algorithm to obtain more accurate location parameters of the mobile individual , so as to realize the indoor positioning function of the mobile phone, which is different from the traditional indoor positioning method and does not need to build complex peripheral hardware infrastructure. It is safe, reliable, simple, convenient, economical and convenient for users to use, and has economic and practical value.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510364767.7A CN105043387A (en) | 2015-06-26 | 2015-06-26 | Personal indoor positioning system based on inertial navigation aiding geomagnetism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510364767.7A CN105043387A (en) | 2015-06-26 | 2015-06-26 | Personal indoor positioning system based on inertial navigation aiding geomagnetism |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105043387A true CN105043387A (en) | 2015-11-11 |
Family
ID=54450121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510364767.7A Pending CN105043387A (en) | 2015-06-26 | 2015-06-26 | Personal indoor positioning system based on inertial navigation aiding geomagnetism |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105043387A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105547301A (en) * | 2016-02-25 | 2016-05-04 | 华南理工大学 | Indoor map construction method and device based on geomagnetism |
CN105783924A (en) * | 2016-01-29 | 2016-07-20 | 广东工业大学 | Indoor positioning method based on magnetic field intensity |
CN106248107A (en) * | 2016-09-22 | 2016-12-21 | 中国电子科技集团公司第二十二研究所 | A kind of flight path based on indoor earth magnetism path matching infers calibration steps and device |
CN106705958A (en) * | 2016-12-30 | 2017-05-24 | 中国科学院深圳先进技术研究院 | Indoor positioning method and device based on geomagnetic field |
CN107179079A (en) * | 2017-05-29 | 2017-09-19 | 桂林电子科技大学 | The indoor orientation method merged based on PDR with earth magnetism |
CN107421546A (en) * | 2017-08-25 | 2017-12-01 | 北京麦钉艾特科技有限公司 | A kind of passive combined positioning method based on space environment magnetic signature |
CN107543541A (en) * | 2017-08-25 | 2018-01-05 | 北京麦钉艾特科技有限公司 | A kind of ground magnetic positioning method of suitable indoor free movement carrier |
CN107607119A (en) * | 2017-08-25 | 2018-01-19 | 北京麦钉艾特科技有限公司 | A kind of passive integrated positioning device based on space environment magnetic signature |
CN107976186A (en) * | 2017-10-26 | 2018-05-01 | 西安电子科技大学 | Relative positioning method without anchor point |
CN108871301A (en) * | 2018-07-18 | 2018-11-23 | 哈尔滨工业大学 | Magnetic field orientation measurement method |
CN109029430A (en) * | 2018-09-27 | 2018-12-18 | 北京华航无线电测量研究所 | A kind of consistency decision method and device based on vehicle-mounted earth magnetism location navigation |
CN109084766A (en) * | 2018-08-28 | 2018-12-25 | 桂林电子科技大学 | A kind of interior unmanned plane positioning system and method |
CN109579836A (en) * | 2018-11-21 | 2019-04-05 | 阳光凯讯(北京)科技有限公司 | A kind of indoor pedestrian's bearing calibration method based on MEMS inertial navigation |
WO2019084935A1 (en) * | 2017-11-03 | 2019-05-09 | 深圳市沃特沃德股份有限公司 | Parking lot positioning method, apparatus and system |
CN109916396A (en) * | 2019-04-04 | 2019-06-21 | 南京邮电大学 | An indoor positioning method based on multi-dimensional geomagnetic information |
US10697778B2 (en) | 2016-09-07 | 2020-06-30 | Microsoft Technology Licensing, Llc | Indoor navigation |
CN112097807A (en) * | 2020-09-17 | 2020-12-18 | 浙江锐鹰传感技术有限公司 | Wire-saving encoder and processing method thereof |
CN112461232A (en) * | 2020-11-21 | 2021-03-09 | 中北大学 | Magnetic field and inertia combined indoor positioning and motion tracking system and implementation method thereof |
CN112461223A (en) * | 2020-11-10 | 2021-03-09 | 武汉大学 | Magnetometer zero-bias independent magnetic field fingerprint database generation method |
CN112710324A (en) * | 2021-03-29 | 2021-04-27 | 广东新中望信息科技有限公司 | Block chain traceability technology-based geomagnetic positioning and intelligent terminal construction method |
US11085772B2 (en) | 2016-09-07 | 2021-08-10 | Microsoft Technology Licensing, Llc | Indoor navigation |
CN114719851A (en) * | 2022-03-09 | 2022-07-08 | 恒德科技有限公司 | Intelligent inspection system and method for park |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1530024A1 (en) * | 2003-11-08 | 2005-05-11 | Samsung Electronics Co., Ltd. | Motion estimation method and system for mobile body |
CN101354253A (en) * | 2008-09-19 | 2009-01-28 | 北京航空航天大学 | A Geomagnetic Aided Navigation Method Based on Matching Degree |
CN201955092U (en) * | 2011-03-15 | 2011-08-31 | 滨州学院 | Platform type inertial navigation device based on geomagnetic assistance |
CN102322858A (en) * | 2011-08-22 | 2012-01-18 | 南京航空航天大学 | Geomagnetic matching navigation method for geomagnetic-strapdown inertial navigation integrated navigation system |
CN103115624A (en) * | 2013-01-24 | 2013-05-22 | 南京航空航天大学 | Terrestrial magnetism diurnal variation correction method based on terrestrial magnetism matching |
CN103363988A (en) * | 2013-07-24 | 2013-10-23 | 武汉诚迈科技有限公司 | Method for realizing geomagnetic indoor positioning and navigation by utilization of smartphone sensors |
CN104215238A (en) * | 2014-08-21 | 2014-12-17 | 北京空间飞行器总体设计部 | Indoor positioning method of intelligent mobile phone |
-
2015
- 2015-06-26 CN CN201510364767.7A patent/CN105043387A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1530024A1 (en) * | 2003-11-08 | 2005-05-11 | Samsung Electronics Co., Ltd. | Motion estimation method and system for mobile body |
CN101354253A (en) * | 2008-09-19 | 2009-01-28 | 北京航空航天大学 | A Geomagnetic Aided Navigation Method Based on Matching Degree |
CN201955092U (en) * | 2011-03-15 | 2011-08-31 | 滨州学院 | Platform type inertial navigation device based on geomagnetic assistance |
CN102322858A (en) * | 2011-08-22 | 2012-01-18 | 南京航空航天大学 | Geomagnetic matching navigation method for geomagnetic-strapdown inertial navigation integrated navigation system |
CN103115624A (en) * | 2013-01-24 | 2013-05-22 | 南京航空航天大学 | Terrestrial magnetism diurnal variation correction method based on terrestrial magnetism matching |
CN103363988A (en) * | 2013-07-24 | 2013-10-23 | 武汉诚迈科技有限公司 | Method for realizing geomagnetic indoor positioning and navigation by utilization of smartphone sensors |
CN104215238A (en) * | 2014-08-21 | 2014-12-17 | 北京空间飞行器总体设计部 | Indoor positioning method of intelligent mobile phone |
Non-Patent Citations (6)
Title |
---|
中国地球物理学会: "《中国地球物理2011》", 31 October 2011 * |
张晓明等: "一种快速载体磁场补偿方法研究", 《中北大学学报(自然科学版)》 * |
李季等: "载体干扰磁场补偿方法", 《国防科技大学》 * |
杨立溪: "《惯性技术手册》", 31 December 2013 * |
王向磊等: "地磁匹配导航算法研究", 《测绘工程》 * |
谢仕民等: "地磁匹配技术及其基本匹配算法仿真研究", 《航天控制》 * |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105783924A (en) * | 2016-01-29 | 2016-07-20 | 广东工业大学 | Indoor positioning method based on magnetic field intensity |
CN105547301B (en) * | 2016-02-25 | 2018-09-14 | 华南理工大学 | Indoor map construction method based on earth magnetism and device |
CN105547301A (en) * | 2016-02-25 | 2016-05-04 | 华南理工大学 | Indoor map construction method and device based on geomagnetism |
US11085772B2 (en) | 2016-09-07 | 2021-08-10 | Microsoft Technology Licensing, Llc | Indoor navigation |
US10697778B2 (en) | 2016-09-07 | 2020-06-30 | Microsoft Technology Licensing, Llc | Indoor navigation |
CN106248107A (en) * | 2016-09-22 | 2016-12-21 | 中国电子科技集团公司第二十二研究所 | A kind of flight path based on indoor earth magnetism path matching infers calibration steps and device |
CN106248107B (en) * | 2016-09-22 | 2019-03-12 | 中国电子科技集团公司第二十二研究所 | A track inference calibration method and device based on indoor geomagnetic track matching |
CN106705958A (en) * | 2016-12-30 | 2017-05-24 | 中国科学院深圳先进技术研究院 | Indoor positioning method and device based on geomagnetic field |
CN107179079A (en) * | 2017-05-29 | 2017-09-19 | 桂林电子科技大学 | The indoor orientation method merged based on PDR with earth magnetism |
CN107607119A (en) * | 2017-08-25 | 2018-01-19 | 北京麦钉艾特科技有限公司 | A kind of passive integrated positioning device based on space environment magnetic signature |
CN107543541A (en) * | 2017-08-25 | 2018-01-05 | 北京麦钉艾特科技有限公司 | A kind of ground magnetic positioning method of suitable indoor free movement carrier |
CN107543541B (en) * | 2017-08-25 | 2019-11-08 | 北京麦钉艾特科技有限公司 | A kind of ground magnetic positioning method of suitable indoor free movement carrier |
CN107421546A (en) * | 2017-08-25 | 2017-12-01 | 北京麦钉艾特科技有限公司 | A kind of passive combined positioning method based on space environment magnetic signature |
CN107976186A (en) * | 2017-10-26 | 2018-05-01 | 西安电子科技大学 | Relative positioning method without anchor point |
CN107976186B (en) * | 2017-10-26 | 2019-08-13 | 西安电子科技大学 | Relative positioning method without anchor point |
WO2019084935A1 (en) * | 2017-11-03 | 2019-05-09 | 深圳市沃特沃德股份有限公司 | Parking lot positioning method, apparatus and system |
CN108871301B (en) * | 2018-07-18 | 2021-03-23 | 哈尔滨工业大学 | Magnetic field azimuth measuring method |
CN108871301A (en) * | 2018-07-18 | 2018-11-23 | 哈尔滨工业大学 | Magnetic field orientation measurement method |
CN109084766A (en) * | 2018-08-28 | 2018-12-25 | 桂林电子科技大学 | A kind of interior unmanned plane positioning system and method |
CN109029430A (en) * | 2018-09-27 | 2018-12-18 | 北京华航无线电测量研究所 | A kind of consistency decision method and device based on vehicle-mounted earth magnetism location navigation |
CN109579836A (en) * | 2018-11-21 | 2019-04-05 | 阳光凯讯(北京)科技有限公司 | A kind of indoor pedestrian's bearing calibration method based on MEMS inertial navigation |
CN109579836B (en) * | 2018-11-21 | 2022-09-06 | 阳光凯讯(北京)科技有限公司 | Indoor pedestrian orientation calibration method based on MEMS inertial navigation |
CN109916396A (en) * | 2019-04-04 | 2019-06-21 | 南京邮电大学 | An indoor positioning method based on multi-dimensional geomagnetic information |
CN109916396B (en) * | 2019-04-04 | 2023-08-08 | 南京邮电大学 | Indoor positioning method based on multidimensional geomagnetic information |
CN112097807A (en) * | 2020-09-17 | 2020-12-18 | 浙江锐鹰传感技术有限公司 | Wire-saving encoder and processing method thereof |
CN112461223A (en) * | 2020-11-10 | 2021-03-09 | 武汉大学 | Magnetometer zero-bias independent magnetic field fingerprint database generation method |
CN112461223B (en) * | 2020-11-10 | 2021-08-03 | 武汉大学 | A Method for Generating Magnetic Field Fingerprint Library Independent of Magnetometer Bias |
CN112461232A (en) * | 2020-11-21 | 2021-03-09 | 中北大学 | Magnetic field and inertia combined indoor positioning and motion tracking system and implementation method thereof |
CN112461232B (en) * | 2020-11-21 | 2022-04-12 | 中北大学 | Magnetic field and inertia combined indoor positioning and motion tracking method and implementation system |
CN112710324A (en) * | 2021-03-29 | 2021-04-27 | 广东新中望信息科技有限公司 | Block chain traceability technology-based geomagnetic positioning and intelligent terminal construction method |
CN114719851A (en) * | 2022-03-09 | 2022-07-08 | 恒德科技有限公司 | Intelligent inspection system and method for park |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105043387A (en) | Personal indoor positioning system based on inertial navigation aiding geomagnetism | |
Zhuang et al. | Tightly-coupled integration of WiFi and MEMS sensors on handheld devices for indoor pedestrian navigation | |
CN103759730B (en) | The collaborative navigation system of a kind of pedestrian based on navigation information two-way fusion and intelligent mobile carrier and air navigation aid thereof | |
CN109163735B (en) | A forward-forward backtracking initial alignment method for rocking base | |
CN107504971A (en) | A kind of indoor orientation method and system based on PDR and earth magnetism | |
Wu et al. | Human mobility enhances global positioning accuracy for mobile phone localization | |
CN106979780B (en) | A real-time attitude measurement method for unmanned vehicles | |
Zahran et al. | A new velocity meter based on Hall effect sensors for UAV indoor navigation | |
CN103196445B (en) | Based on the carrier posture measuring method of the earth magnetism supplementary inertial of matching technique | |
CN106017463A (en) | Aircraft positioning method based on positioning and sensing device | |
CN102829785A (en) | Air vehicle full-parameter navigation method based on sequence image and reference image matching | |
CN103308045A (en) | Real-time positioning system and method of moving object in three-dimensional space | |
Zhou et al. | Wi-Fi RTT/encoder/INS-based robot indoor localization using smartphones | |
CN103389808B (en) | A kind of space mouse and the method obtaining space mouse displacement | |
CN104266648A (en) | Indoor location system based on Android platform MARG sensor | |
CN111121758B (en) | Rapid modeling and credible positioning method for indoor magnetic map | |
CN110057356A (en) | Vehicle positioning method and device in a kind of tunnel | |
CN106767770B (en) | User walking direction detection and tracking method based on portable intelligent device | |
Tian et al. | Pedestrian navigation system using MEMS sensors for heading drift and altitude error correction | |
CN106979779A (en) | A kind of unmanned vehicle real-time attitude measuring method | |
CN113532477B (en) | Riding stopwatch equipment and initial posture automatic calibration method of riding stopwatch | |
CN106092098A (en) | A kind of carrier navigation attitude measuring method based on gyro and inclinator | |
Kang et al. | Smartphone indoor positioning system based on geomagnetic field | |
Syed et al. | Real-time, continuous and reliable consumer indoor/outdoor localization for smartphones | |
Wu et al. | Footprints elicit the truth: Improving global positioning accuracy via local mobility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151111 |