CN105022402A - Method for determining shortest time of coupled rigid-body spacecraft rapid maneuver - Google Patents

Method for determining shortest time of coupled rigid-body spacecraft rapid maneuver Download PDF

Info

Publication number
CN105022402A
CN105022402A CN201510515288.0A CN201510515288A CN105022402A CN 105022402 A CN105022402 A CN 105022402A CN 201510515288 A CN201510515288 A CN 201510515288A CN 105022402 A CN105022402 A CN 105022402A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
msup
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510515288.0A
Other languages
Chinese (zh)
Other versions
CN105022402B (en
Inventor
耿云海
黄思萌
侯志立
李东柏
叶东
陈雪芹
张刚
方向
李海勤
史明明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201510515288.0A priority Critical patent/CN105022402B/en
Publication of CN105022402A publication Critical patent/CN105022402A/en
Application granted granted Critical
Publication of CN105022402B publication Critical patent/CN105022402B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The invention relates to a method for determining the shortest time of coupled rigid-body spacecraft rapid maneuver, and aims to solve problems of small effective operating range and long maneuvering time of a non-contact actuator of an existing undisturbed load satellite. The method is implemented through the following technical scheme which comprises the steps of 1, establishing a load platform coordinate system O<s>x<a>y<a>z<a> and a service platform coordinate system O<b>x<b>y<b>z<b>, and marking the load platform coordinate system O<s>x<a>y<a>z<a> and the service platform coordinate system O<b>x<b>y<b>z<b> as an Sa system and an Sb system respectively; 2, writing rotation inertia matrixes of a load platform and a service platform in regards to a system mass center of the coupled rigid-body spacecraft; 3, writing an attitude kinematics equation and an angular momentum conservation equation of the coupled rigid-body spacecraft; 4, calculating an Euler axis e and a rotation angle Phi<f>; 5, writing expressions of the angular acceleration Phi<..>(t), the angular speed Phi<.>(t) and the angle degree Phi(t); 6, writing expressions of an attitude quaternion q<m0> and an attitude quaternion q<m> of the load platform, an attitude matrix C<ao> of the load platform , an attitude matrix C<bo> of the service platform, the attitude angular speed Omega<al><a> of the load platform, the attitude angular speed Omega<bl><b> of the service platform, the attitude angular acceleration Omega<.><al><a> of the load platform and the attitude angular acceleration Omega<.><bl><a> of the service platform; 7, acquiring T<e><a>, T<w><b> and H<w><b> in regards to Phi<..>max, Phi<.>max and t; and 8, solving the constrained shortest maneuvering time by using a Matlab optimization toolbox according to the rotation angle Phi<f>, the T<e><a>, the T<w><b> and the H<w><b>. The method provided by the invention is applied to the field of spacecrafts.

Description

Method for determining shortest time of fast maneuver of dual-rigid-body spacecraft
Technical Field
The invention relates to a method for determining the shortest time of rapid maneuvering of a dual-rigid-body spacecraft.
Background
The invention is provided for the rapid maneuver of the satellite without disturbance load. The concept of "undisturbed loading" satellites is proposed by nelson pedreior and applied to satellites with high precision pointing and high stability control requirements. The satellite is a double rigid body spacecraft, which is composed of a load platform and a service platform, wherein a non-contact actuator controls the attitude of the load platform, an additional executing mechanism (such as a reaction wheel and the like) controls the attitude of the service platform, and the non-contact actuator can isolate the additional executing mechanism and the vibration of the external environment interference acting on the service platform, so that the effective load can realize high-precision pointing and high-stability control. However, since the effective working range of the contactless actuator is only a few millimeters, the attitude of the service platform must track the attitude of the load platform, and in the process of large-angle maneuvering, the service platform and the load platform are maneuvered as a whole, which is equivalent to maneuvering a single rigid body satellite, and the maneuvering time is mainly limited by an additional execution mechanism and is long. For an undisturbed load satellite carrying a large payload, the existing configuration cannot meet the requirement of quick maneuvering.
Disclosure of Invention
The invention provides a method for determining the shortest time for the quick maneuvering of a double-rigid-body spacecraft, which aims to solve the problems that the effective working range and maneuvering time of a non-contact actuator of the existing undisturbed load satellite are long, and the quick maneuvering of the undisturbed load satellite carrying a large effective load cannot be met.
The above-mentioned invention purpose is realized through the following technical scheme:
step one, establishing a load platform coordinate system OsxayazaAnd service platform coordinate system ObxbybzbThe coordinate system of the load platform is denoted as SaThe coordinate system of the service platform is marked as SbWherein O issLocated in the center of the spherical hinge, ObLocated in the center of mass of the service platform, OaIs the center of mass of the load platform, OcThe center of mass of the dual rigid spacecraft system is located at the origin of coordinates of a load platform coordinate systemsLoad platform and garmentThe service platform forms a dual rigid body spacecraft, and the load platform is connected with the service platform through a spherical hinge;
step two, according to the S obtained in the step oneaSystem and SbWriting a rotational inertia matrix of a load platform and a service platform about a mass center of a dual rigid spacecraft system;
writing an attitude kinematics equation of the dual rigid spacecraft and an angular momentum conservation equation of the dual rigid spacecraft according to the rotational inertia matrix of the load platform and the service platform obtained in the step two, which is relative to the system centroid of the dual rigid spacecraft;
step four, calculating the Euler axis e and the rotation angle phi of the load platform from the initial attitude maneuver to the target attitudef
Step five, obtaining the rotation angle phi according to the step fourfWriting angular acceleration of the load platform tracking trajectoryAngular velocityAnd an expression for the angle Φ (t);
sixthly, according to the Euler axis e obtained in the fourth step and the angular acceleration of the tracking track of the load platform obtained in the fifth stepAngular velocityAnd an expression of the angle phi (t) is used for writing a quaternion q of the attitude of the load platformm0And q ismAttitude matrix C of load platformaoAttitude matrix C of service platformboAttitude angular velocity of load platformAttitude angular velocity of service platformAttitude angular acceleration of a load platformAnd attitude angular acceleration of the service platformThe expression of (1);
step seven, the step fiveAnd Φ (t), and C in step sixaoCboAndsubstituting into the attitude dynamics equation of the dual rigid body spacecraft and the angular momentum conservation equation of the dual rigid body spacecraft in the step three to obtain the equation aboutAnd of tAnd
step eight, obtaining the rotation angle phi according to the step fourfStep sevenAndthe shortest maneuver time with constraints was solved using the Matlab optimization toolkit.
Effects of the invention
The invention provides a double-rigid-body spacecraft attitude control system for disaster emergency monitoring, which is characterized in that the double-rigid-body spacecraft is composed of a load platform and a service platform, wherein the load platform carries a payload, the service platform carries an actuating mechanism, and the load platform and the service platform are connected through a spherical hinge. The significance of the research on the dual rigid body spacecraft is as follows: (1) the load platform can carry more payload; (2) the actuating mechanism of the double-rigid-body spacecraft is provided with the motor and the flywheel, and compared with a single-rigid-body spacecraft with the same mass and rotational inertia, the double-rigid-body spacecraft has higher maneuvering speed; (3) the load platform is separated from the service platform, so that the influence of the vibration of the actuating mechanism on the effective load can be reduced. Since one of the main tasks of the dual rigid body spacecraft is to maneuver the payload platform carrying the payload quickly, there is no requirement on the attitude of the service platform carrying the actuators. The invention selects the condition that the loading platform is quickly maneuvered and the service platform keeps the orientation to the ground.
The method has the advantages that the rapid maneuvering of the dual rigid body spacecraft is realized, the spherical hinge driven by the motor is added between the load platform and the service platform, the limitation of the effective working range of the non-contact actuator is removed, and the load platform and the service platform can perform relative attitude motion with a larger angle; by introducing two time-varying rotational inertia matrixes, a detailed attitude dynamics equation of the dual rigid body spacecraft is given, by introducing reasonable hypothesis, two sub-rigid bodies with serious coupling are decoupled, expressions of a target function and a constraint function of the time optimal problem are given, the shortest maneuvering time and the corresponding maximum angular acceleration and maximum angular velocity can be conveniently solved by using a Matlab optimization tool box, in the process of large-angle attitude maneuver of the load platform, as the attitude of the service platform does not need to be tracked, namely, the whole satellite is not required to be maneuvered, only the load platform part is maneuvered, the maneuvering time can be greatly shortened, the prior art needs to move the load platform and the service platform simultaneously, and the quick maneuvering method provided by the patent can shorten the maneuvering time by 50% on the basis of the prior art on the assumption that the quality of the load platform is close to that of the service platform. The invention selects the conditions that the load platform is quickly maneuvered and the service platform keeps the orientation to the ground, and meets the problem of quick maneuvering of undisturbed load satellites carrying large-scale effective loads.
Drawings
FIG. 1 is a flow chart of the present invention;
FIG. 2 is a schematic diagram of the coordinate system in the second embodiment, wherein OEIs the center of mass of the earth, OcIs the center of mass, O, of the dual rigid body spacecraft systemaIs the center of mass of the load platform, ObAs the center of mass of the service platform, OsIs the center of mass of the spherical hinge, [ ia ja ka]TIs SaCoordinate basis of system, iaIs SaZ-axis of system, jaIs SaX-axis of the system, kaIs SaThe y-axis of the system, T is transposed, [ i ]b jb kb]TIs SbCoordinate basis of system, ibIs SbX-axis of the system, jbIs SbY-axis of the system, kbIs SbZ-axis of system, dmaIs a load platform mass infinitesimal dmbAs a service platform quality element, RaIs composed of OEPoint to OaVector of (2), RbIs composed of OEPoint to ObVector of (A), RcIs composed of OEPoint to OcVector of (a), raIs composed of OEDirection dmaVector of (a), rbIs composed of OEDirection dmbVector of (d)1Is composed of OsPoint to OaVector of (d)2Is composed of ObPoint to OsVector of (a), p1Is composed of OaPoint to OcVector of (a), p2Is composed of ObPoint to OcVector of (a), q1Is composed of OsDirection dmaVector of (a), q2Is composed of OsDirection dmbThe vector of (a);
FIG. 3 is a schematic diagram of a track traced by the loading platform according to the sixth embodiment, where t0As the moment of start of maneuver, t1For the acceleration end time, t2At the end of the uniform speed, tfIn order to be the time of the end of the maneuver,the angular velocity of the trajectory is tracked for the load platform,the maximum angular acceleration of the tracked trajectory for the load platform,the maximum angular velocity of the tracking trajectory for the load platform,tracking angular acceleration of the trajectory for the load platform;
FIG. 4 is a graph of the attitude angular acceleration of the loading platform illustrated in example 1, in degrees/sec;
FIG. 5 is a graph of the torque modulus of the motor shown in example 1, wherein Nm is Nm;
FIG. 6 is a graph showing the moment module value of the flywheel shown in embodiment 1;
FIG. 7 is a graph showing the angular momentum of the flywheel shown in embodiment 1.
Detailed Description
The first embodiment is as follows: the embodiment is described with reference to fig. 1, and the method for determining the shortest time for the fast maneuver of the dual rigid body spacecraft specifically comprises the following steps:
step one, establishing a load platform coordinate system OsxayazaAnd service platform coordinate system ObxbybzbThe coordinate system of the load platform is denoted as SaThe coordinate system of the service platform is marked as SbWherein O issLocated in the center of the spherical hinge, ObLocated in the center of mass of the service platform, OaIs the center of mass of the load platform, OcThe center of mass of the dual rigid spacecraft system is located at the origin of coordinates of a load platform coordinate systemsThe load platform and the service platform form a double rigid body spacecraft, and are connected through a spherical hinge;
step two, according to the S obtained in the step oneaSystem and SbWriting a rotational inertia matrix of a load platform and a service platform about a mass center of a dual rigid spacecraft system;
writing an attitude kinematics equation of the dual rigid spacecraft and an angular momentum conservation equation of the dual rigid spacecraft according to the rotational inertia matrix of the load platform and the service platform obtained in the step two, which is relative to the system centroid of the dual rigid spacecraft;
step four, calculating the Euler axis e and the rotation angle phi of the load platform from the initial attitude maneuver to the target attitudef
Step five, obtaining the rotation angle phi according to the step fourfWriting angular acceleration of the load platform tracking trajectoryAngular velocityAnd an expression for the angle Φ (t);
sixthly, according to the Euler axis e obtained in the fourth step and the angular acceleration of the tracking track of the load platform obtained in the fifth stepAngular velocityAnd an expression of the angle phi (t) is used for writing a quaternion q of the attitude of the load platformm0And q ismAttitude matrix C of load platformaoAttitude matrix C of service platformboAttitude angular velocity of load platformAttitude angular velocity of service platformAttitude angular acceleration of a load platformAnd attitude angular acceleration of the service platformThe expression of (1);
step seven, based on a zero momentum system, neglecting the disturbance moment, and combining the step fiveAnd Φ (t), and C in step sixaoCboAndsubstituting into the attitude dynamics equation of the dual rigid body spacecraft and the angular momentum conservation equation of the dual rigid body spacecraft in the step three to obtain the equation aboutAnd of tAnd
step eight, obtaining the rotation angle phi according to the step fourfStep sevenAndthe shortest maneuver time with constraints was solved using the Matlab optimization toolkit.
The second embodiment is as follows: the present embodiment is described with reference to fig. 2, and the present embodiment is different from the first embodiment in that: establishing a load platform coordinate system O in the step onesxayazaAnd service platform coordinate system ObxbybzbThe coordinate system of the load platform is denoted as SaThe coordinate system of the service platform is marked as SbWherein O issLocated in the center of the spherical hinge, ObLocated in the center of mass of the service platform, OaIs the center of mass of the load platform, OcThe center of mass of the dual rigid spacecraft system is located at the origin of coordinates of a load platform coordinate systemsThe load platform and the service platform form a double rigid body spacecraft, and are connected through a spherical hinge; the specific process is as follows:
establishing a load platform coordinate system OsxayazaAnd service platform coordinate system ObxbybzbLoad platform coordinate system OsxayazaIs marked as SaThe coordinate system of the service platform is marked as SbWherein O issIs the center of the spherical hinge, ObAs the center of mass, x, of the service platformaIs a load platform coordinate system x-axis, yaIs the y-axis, z, of the load platform coordinate systemaIs a z-axis, x, of a coordinate system of the load platformbAs a service platform coordinate system xAxis, ybAs the service platform coordinate system y-axis, zbServing as a z axis of a coordinate system of the service platform; o isaIs the center of mass of the load platform, OcThe coordinate origin of the coordinate system of the loading platform is not positioned at O for the mass center of the dual rigid body spacecraft system and the attitude kinetic equation of the dual rigid body spacecraft is convenient to be subsequently derivedaIs located at Os
Other steps and parameters are the same as those in the first embodiment.
The third concrete implementation mode: the present embodiment differs from the first or second embodiment in that: s obtained in the step two according to the step oneaSystem and SbWriting a rotational inertia matrix of a load platform and a service platform about a mass center of a dual rigid spacecraft system; the specific process is as follows:
load platform with respect to OcThe angular momentum vector of (a) is:
in the formula, dmaIs a micro-element of mass of the load platform, q1Is composed of OsDirection dmaVector of (a), p1Is composed of OaPoint to OcVector of (v)aIIs dmaThe absolute velocity vector of (a) is,is ObAbsolute velocity vector of (1)1For load platforms with respect to OsInertial dyadic of (H)aFor load platforms with respect to OcAngular momentum vector of d1Is composed of OsPoint to OaVector of (a), ωaIIs SaAbsolute angular velocity vector of the system, ωbIIs SbAbsolute angular velocity vector of the system, d2Is composed of OsPoint to ObA vector of (a);
service platform with respect to OcThe angular momentum vector of (a) is:
in the formula, dmbAs quality elements of the service platform, q2Is composed of ObDirection dmbVector of (a), p2Is composed of ObPoint to OcVector of (v)bIIs dmbAbsolute velocity vector of (1)2For service platform with respect to ObInertial dyadic of (H)bFor service platform with respect to OcAngular momentum vector of, omegabIIs SbAn absolute angular velocity vector of the system;
double rigid body spacecraft system with respect to OcThe total angular momentum of (a) is:
in the formula,is ObAbsolute velocity vector of (1), HwIs the angular momentum vector of the flywheel, H is the dual rigid body spacecraft system with respect to OcThe angular momentum vector of (a);
because m isap1+mbp2Is equal to 0, and p2-p1=d1+d2Therefore, it is
p 1 = - m b m a + m b ( d 1 + d 2 ) - - - ( 29 )
p 2 = m a m a + m b ( d 1 + d 2 ) - - - ( 30 )
By substituting formula (29) and formula (30) for formula (28), a
In the formula, E is a unit inertial vector;
load platform and service platform with respect to OcThe inertial vectors of (a) are respectively:
in the formula IaFor load platforms with respect to OcInertial dyadic of (I)bFor service platform with respect to OcThe inertial dyadic of (c);
then the formula (31) can be expressed as
H=Ia·ωaI+Ib·ωbI+Hw (34)
IaAt SaThe component matrix under the system is the load platform with respect to OcThe moment of inertia matrix of (a):
<math> <mrow> <msubsup> <mi>I</mi> <mi>a</mi> <mi>a</mi> </msubsup> <mo>=</mo> <msubsup> <mi>I</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>-</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <mo>&lsqb;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <mo>&rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>35</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula,for load platforms with respect to OcThe matrix of the moment of inertia of (a),for load platforms with respect to OsThe rotational inertia matrix of maMass of the load platform, mbIn order to provide the quality of the service platform,is composed of OsPoint to OaThe component array of the vector of (a),is composed of OsPoint to ObComponent array of vectors of (3), CabIs SaIs relative to SbAttitude matrix of system, CbaIs SbIs relative to SaThe attitude matrix of the system is determined,is composed ofThe cross-multiplication matrix of (a) is,is composed ofA cross-product matrix of;
Ibat SbThe component matrix under the system is the service platform with respect to OcThe moment of inertia matrix of (a):
<math> <mrow> <msubsup> <mi>I</mi> <mi>b</mi> <mi>b</mi> </msubsup> <mo>=</mo> <msubsup> <mi>I</mi> <mn>2</mn> <mi>b</mi> </msubsup> <mo>-</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <mo>&lsqb;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>&rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>36</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, the superscripts a and b are vectors or vectors in the direction of SaSystem and SbAn array or matrix of components under the system,for service platform with respect to OcThe matrix of the moment of inertia of (a),for service platform with respect to ObA rotational inertia matrix of;
and isAndrespectively, of first order derivatives of
<math> <mrow> <msubsup> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> <mi>a</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>&lsqb;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msub> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msub> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> <mo>&rsqb;</mo> </mrow> <mo>&times;</mo> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>37</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> <mi>b</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>&lsqb;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>&rsqb;</mo> </mrow> <mo>&times;</mo> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>38</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula,is SaAbsolute angular velocity vector of the system is at SaAn array of components under the system is provided,is SbAbsolute angular velocity vector of the system is at SbAn array of components under the system is provided,is composed ofThe cross-multiplication matrix of (a) is,is composed ofCross-product matrix of (a).
Other steps and parameters are the same as those in the first or second embodiment.
The fourth concrete implementation mode: the present embodiment differs from the first, second or third embodiment in that: writing an attitude kinematics equation of the dual rigid body spacecraft and an angular momentum conservation equation of the dual rigid body spacecraft according to the rotational inertia matrix of the load platform and the service platform obtained in the second step in the third step on the mass center of the dual rigid body spacecraft system; the specific process is as follows:
writing an attitude kinematics equation and an angular momentum conservation equation of the dual rigid body spacecraft according to the rotational inertia matrix of the load platform and the service platform about the system centroid of the dual rigid body spacecraft, which is obtained in the step two:
the attitude kinematic equation of the dual rigid body spacecraft is shown in formulas (3) and (4):
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <mo>&lsqb;</mo> <msubsup> <mi>I</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>-</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <mo>&rsqb;</mo> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>-</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>=</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>T</mi> <mi>e</mi> <mi>a</mi> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mrow> <mi>d</mi> <mi>a</mi> </mrow> <mi>a</mi> </msubsup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>I</mi> <mn>1</mn> <mi>a</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <mo>{</mo> <msub> <mi>&mu;m</mi> <mi>a</mi> </msub> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>o</mi> </mrow> </msub> <mrow> <mo>(</mo> <mfrac> <msubsup> <mi>R</mi> <mi>c</mi> <mi>o</mi> </msubsup> <mrow> <msup> <msub> <mi>R</mi> <mi>c</mi> </msub> <mn>3</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mfrac> <msubsup> <mi>R</mi> <mi>a</mi> <mi>o</mi> </msubsup> <mrow> <msup> <msub> <mi>R</mi> <mi>a</mi> </msub> <mn>3</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <mfenced open = '[' close = ']'> <mtable> <mtr> <mtd> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <msubsup> <mi>I</mi> <mi>a</mi> <mi>a</mi> </msubsup> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>+</mo> <msubsup> <mi>I</mi> <mi>b</mi> <mi>b</mi> </msubsup> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>=</mo> <msubsup> <mi>T</mi> <mi>w</mi> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mi>d</mi> <mi>b</mi> </msubsup> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>{</mo> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <mo>&lsqb;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>I</mi> <mi>a</mi> <mi>a</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> <mi>a</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>&rsqb;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>I</mi> <mi>b</mi> <mi>b</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> <mi>b</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>H</mi> <mi>w</mi> <mi>b</mi> </msubsup> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
the angular momentum conservation equation of the dual rigid body spacecraft is shown as the formula (5):
<math> <mrow> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <msubsup> <mi>I</mi> <mi>a</mi> <mi>a</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>+</mo> <msubsup> <mi>I</mi> <mi>b</mi> <mi>b</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mi>H</mi> <mi>w</mi> <mi>b</mi> </msubsup> <mo>=</mo> <msubsup> <mi>H</mi> <mn>0</mn> <mi>b</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula,is composed ofThe derivative of (a) of (b),is composed ofThe derivative of (a) of (b),is composed ofThe derivative of (a) of (b),is composed ofThe upper corner mark o is a component array or a component matrix of the vector or the vector parallel under the orbit coordinate system of the dual rigid body spacecraft,is SaThe component array of the absolute angular velocity vector of the system,is SbComponent array of absolute angular velocity vectors of the system, CaoIs SaIs the attitude matrix of the relative orbit system,is a coordinate array of the motor moment vector,is a coordinate array of the moment vector of the flywheel,is a component array of disturbance moment vectors acting on the load platform,is a component array of disturbance moment vectors acting on the dual rigid body spacecraft system,is an array of components of the flywheel angular momentum vector,is a component array of angular momentum vectors of a dual rigid body spacecraft system, mu is a gravitational constant,is a component array of vectors pointing from the centroid to the center of mass of the load platform,is a component array of vectors pointing from the centroid to the centroid of the dual rigid-body spacecraft system, RcIs composed ofOf a mold of RaIs composed ofThe die of (a) is used,is composed ofThe cross-multiplication matrix of (a) is,is composed ofA cross-product matrix of;
load platform around OaThe kinematic equation of the rotating posture is as follows:
in the formula,as a vector or dyadic at SaDerivative of system, TeAs motor torque vector, TbaMoment vector, T, acting on load platform for service platformdaDisturbance moment vector, omega, acting on the load platformaIIs SaAn absolute angular velocity vector of the system;
resultant force acting on the load platform force F acting on the load platform by the service platformbaAnd the interference force F acted on the load platform by the external environmentdaComposition according to Newton's second law, having
F b a + F d a = m a d I 2 R a dt 2 = m a d I 2 ( R c - p 1 ) dt 2 - - - ( 43 )
In the formula,as derivatives of vectors or dyadics in the inertial system, RaTo point to O from the earth centeraVector of (2), RcTo point to O from the earth centercVector of (a), p1Is composed of OaPoint to OcA vector of (a);
based on a two-body system of earth-spacecraft, having
<math> <mrow> <mfrac> <mrow> <msup> <msub> <mi>d</mi> <mi>I</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>|</mo> <msub> <mi>R</mi> <mi>c</mi> </msub> <mo>|</mo> </mrow> </mrow> <mrow> <msup> <mi>dt</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <mfrac> <mi>&mu;</mi> <msup> <mrow> <mo>|</mo> <msub> <mi>R</mi> <mi>c</mi> </msub> <mo>|</mo> </mrow> <mn>3</mn> </msup> </mfrac> <msub> <mi>R</mi> <mi>c</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>44</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein μ is an earth gravity constant; | RcL is RcA modulus value of (d);
because FdaIs gravity, so take
<math> <mrow> <msub> <mi>F</mi> <mrow> <mi>d</mi> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>&mu;m</mi> <mi>a</mi> </msub> </mrow> <msup> <mrow> <mo>|</mo> <msub> <mi>R</mi> <mi>a</mi> </msub> <mo>|</mo> </mrow> <mn>3</mn> </msup> </mfrac> <msub> <mi>R</mi> <mi>a</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>45</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, | RaL is RaA modulus value of (d);
by substituting formula (29), formula (44) and formula (45) for formula (43), the compound is obtained
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&mu;m</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mi>a</mi> </msub> <msup> <mrow> <mo>|</mo> <msub> <mi>R</mi> <mi>a</mi> </msub> <mo>|</mo> </mrow> <mn>3</mn> </msup> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>R</mi> <mi>c</mi> </msub> <msup> <mrow> <mo>|</mo> <msub> <mi>R</mi> <mi>c</mi> </msub> <mo>|</mo> </mrow> <mn>3</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <mo>&lsqb;</mo> <msub> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> </msub> <mo>&times;</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>d</mi> <mi>a</mi> </msub> <msub> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>&times;</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> </msub> <mo>&times;</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>d</mi> <mi>b</mi> </msub> <msub> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>&times;</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>46</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula,as a vector or dyadic at SbA derivative of the system;
then will Tba=-d1×FbaSubstitution of formula (42) to obtain a load platform winding OaKinematic equation of attitude of rotation:
the above formula is at SaIs represented by the following formula
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <mo>&lsqb;</mo> <msubsup> <mi>I</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>-</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <mo>&rsqb;</mo> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>-</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>=</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>T</mi> <mi>e</mi> <mi>a</mi> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mrow> <mi>d</mi> <mi>a</mi> </mrow> <mi>a</mi> </msubsup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>I</mi> <mn>1</mn> <mi>a</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <mo>{</mo> <msub> <mi>&mu;m</mi> <mi>a</mi> </msub> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>o</mi> </mrow> </msub> <mrow> <mo>(</mo> <mfrac> <msubsup> <mi>R</mi> <mi>c</mi> <mi>o</mi> </msubsup> <msup> <mrow> <mo>|</mo> <msub> <mi>R</mi> <mi>c</mi> </msub> <mo>|</mo> </mrow> <mn>3</mn> </msup> </mfrac> <mo>-</mo> <mfrac> <msubsup> <mi>R</mi> <mi>a</mi> <mi>o</mi> </msubsup> <msup> <mrow> <mo>|</mo> <msub> <mi>R</mi> <mi>a</mi> </msub> <mo>|</mo> </mrow> <mn>3</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <mfenced open = '[' close = ']'> <mtable> <mtr> <mtd> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>48</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula,is composed ofThe cross-multiplication matrix of (a) is,is composed ofThe cross-multiplication matrix of (a) is,is SaAbsolute angular velocity vector of the system is at SaAn array of components under the system is provided,is SbAbsolute angular velocity vector of the system is at SbAn array of components under the system is provided,is composed ofCross multiplication moment ofThe number of the arrays is determined,is composed ofThe cross-multiplication matrix of (a) is,is a component array of a vector pointing to the center of mass of the loading platform from the center of the spherical hinge,is a component array of vectors pointing from the center of the spherical hinge to the center of mass of the service platform,is composed ofThe derivative of (a) of (b),is composed ofThe derivative of (a) of (b),for motor torque vector at SaAn array of components under the system is provided,for disturbance torque vector at SaA component array under the array;
derivation is carried out on the formula (34) to obtain a double rigid system winding OcKinematic equation of attitude of rotation:
in the formula,Twas moment vector of flywheel, TdFor acting on disturbance moment vector H of dual rigid body spacecraft systemwIs a flywheel angular momentum vector, omegaaIIs SaAbsolute angular velocity vector of the system, ωbIIs SbAbsolute angular velocity vector of the system, HwIs the angular momentum vector of the flywheel, IaFor load platforms with respect to OcInertial dyadic of (I)bFor service platform with respect to OcThe inertial dyadic of (c);
formula (49) at SbThe following component formula:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <msubsup> <mi>I</mi> <mi>a</mi> <mi>a</mi> </msubsup> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>+</mo> <msubsup> <mi>I</mi> <mi>b</mi> <mi>b</mi> </msubsup> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>=</mo> <msubsup> <mi>T</mi> <mi>w</mi> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mi>d</mi> <mi>b</mi> </msubsup> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>{</mo> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <mo>&lsqb;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>I</mi> <mi>a</mi> <mi>a</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> <mi>a</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>&rsqb;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>I</mi> <mi>b</mi> <mi>b</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> <mi>b</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>H</mi> <mi>w</mi> <mi>b</mi> </msubsup> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>50</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, CbaIs SbIs relative to SaThe attitude matrix of the system is determined,is IaAt SaA matrix of the components of the image data,is IbAt SbA matrix of the components of the image data,is TwAt SbAn array of components under the system is provided,is TdAt SbAn array of components under the system is provided,is composed ofThe derivative of (a) of (b),is composed ofThe derivative of (a) of (b),is HwAt SbA component array under the array;
formula (34) at SbIs represented by the following formula
<math> <mrow> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <msubsup> <mi>I</mi> <mi>a</mi> <mi>a</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>+</mo> <msubsup> <mi>I</mi> <mi>b</mi> <mi>b</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mi>H</mi> <mi>w</mi> <mi>b</mi> </msubsup> <mo>=</mo> <msubsup> <mi>H</mi> <mn>0</mn> <mi>b</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>41</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula,the total angular momentum vector of the dual rigid body spacecraft is at SbA component array under the array;
other steps and parameters are the same as those in the first, second or third embodiment.
The fifth concrete implementation mode: the difference between this embodiment and the first, second, third or fourth embodiment is that: calculating the Euler axis e and the rotation angle phi of the load platform from the initial attitude maneuver to the target attitude in the fourth stepf(ii) a The specific process is as follows:
Φf=2arccosqm0 (6)
<math> <mrow> <mi>e</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mfrac> <msub> <mi>&Phi;</mi> <mi>f</mi> </msub> <mn>2</mn> </mfrac> </mrow> </mfrac> <msub> <mi>q</mi> <mi>m</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, qm0Quaternion Q for maneuvering load platform from initial attitude to target attitudemMark part of (a), qmQuaternion Q for maneuvering load platform from initial attitude to target attitudemSagittal portion of, Qm=[qm0 qm]TIs a four-dimensional vector with the expression:
<math> <mrow> <msub> <mi>Q</mi> <mi>m</mi> </msub> <mo>=</mo> <msup> <msub> <mi>Q</mi> <mn>0</mn> </msub> <mo>*</mo> </msup> <mo>&CircleTimes;</mo> <msub> <mi>Q</mi> <mi>f</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, Q0Is the initial attitude quaternion, Q, of the load platformfIs a target attitude quaternion, Q, of the load platformmQuaternions for the target pose, transposes the quaternions,for quaternion multiplication, T is the transpose of the array;
other steps and parameters are the same as those in the first, second, third or fourth embodiments.
The sixth specific implementation mode: the present embodiment is described with reference to fig. 3, and the present embodiment is different from the first, second, third, fourth, or fifth embodiment in that: the corner phi obtained in the step five according to the step fourfWriting angular acceleration of the load platform tracking trajectoryAngular velocityAnd an expression for the angle Φ (t); the specific process is as follows:
let phi (t)0)=0,Φ(tf)=Φf
<math> <mrow> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>&le;</mo> <mi>t</mi> <mo>&le;</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>&lt;</mo> <mi>t</mi> <mo>&lt;</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>&le;</mo> <mi>t</mi> <mo>&le;</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>&le;</mo> <mi>t</mi> <mo>&le;</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>&lt;</mo> <mi>t</mi> <mo>&lt;</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mi>max</mi> </msub> <mo>-</mo> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>&le;</mo> <mi>t</mi> <mo>&le;</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>&Phi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mi>max</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>&le;</mo> <mi>t</mi> <mo>&le;</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mi>max</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mi>max</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>&lt;</mo> <mi>t</mi> <mo>&lt;</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mi>max</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mi>max</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mi>max</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>&le;</mo> <mi>t</mi> <mo>&le;</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula,the angular acceleration of the trajectory is tracked for the load platform,the angular velocity of the track tracked by the load platform, phi (t) is the angle of the track tracked by the load platform,the maximum angular acceleration of the tracked trajectory for the load platform,maximum angular velocity, t, of the track for the load platform0As the moment of start of maneuver, t1For the acceleration end time, t2At the end of the uniform speed, tfT is time in seconds as the maneuvering ending time.
Other steps and parameters are the same as those in the first, second, third, fourth or fifth embodiment.
The seventh embodiment: the difference between this embodiment and the first, second, third, fourth, fifth or sixth embodiment is that: in the sixth step, the angular acceleration of the tracking track of the load platform obtained in the fifth step and the Euler axis e obtained in the fourth stepAngular velocityAnd an expression of the angle phi (t) is used for writing a quaternion q of the attitude of the load platformm0And q ismAttitude matrix C of load platformaoAttitude matrix C of service platformboAttitude angular velocity of load platformAttitude angular velocity of service platformAttitude angular acceleration of a load platformAnd attitude angular acceleration of the service platformThe expression of (1); the specific process is as follows:
assuming that the load platform tracks the track of the load platform, the service platform is stable;
then the platform attitude quaternion is loaded, as in equation (12) (13):
<math> <mrow> <msub> <mi>q</mi> <mrow> <mi>m</mi> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mfrac> <mrow> <mi>&Phi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>q</mi> <mi>m</mi> </msub> <mo>=</mo> <mi>e</mi> <mi> </mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mfrac> <mrow> <mi>&Phi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
attitude matrix of the load platform, as in equation (14):
Cao=qmqm T+[qm0E-(qm)×]2 (14)
attitude angular velocity of the load platform, as in equation (15):
<math> <mrow> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>=</mo> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>e</mi> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>o</mi> </mrow> </msub> <msubsup> <mi>&omega;</mi> <mrow> <mi>o</mi> <mi>I</mi> </mrow> <mi>o</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
attitude angular acceleration of the load platform, as in equation (16):
<math> <mrow> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>=</mo> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>e</mi> <mo>-</mo> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>o</mi> </mrow> </msub> <msubsup> <mi>&omega;</mi> <mrow> <mi>o</mi> <mi>I</mi> </mrow> <mi>o</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
the attitude matrix of the service platform is as shown in formula (17):
Cbo=E (17)
attitude angular velocity of the service platform, as in equation (18):
<math> <mrow> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>=</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>o</mi> <mi>I</mi> </mrow> <mi>o</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
attitude angular acceleration of the service platform, as in equation (19):
<math> <mrow> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, qm0Quaternion Q for maneuvering load platform from initial attitude to target attitudemMark part of (a), qmQuaternion Q for maneuvering load platform from initial attitude to target attitudemSagittal portion of, CboIs SbAttitude matrix of the relative orbital system, CobFor the track system to oppose SbAn attitude matrix of the system, E is an identity matrix, E is an Euler axis of a tracking track of the load platform, qm TIs qmTranspose of (q)m)×Is qmThe cross-multiplication matrix of (a) is,is a coordinate array of orbital angular velocity vectors in the spacecraft orbital system, e×Is a cross-multiplication matrix of e, phi (t) is the angle of the load platform tracking track,the angular velocity of the trajectory is tracked for the load platform,for load platformAngular acceleration of the tracking track, CboIs SbIs relative to SoA pose matrix of the system;
other steps and parameters are the same as those of the first, second, third, fourth, fifth or sixth embodiment.
The specific implementation mode is eight: the difference between this embodiment and the first, second, third, fourth, fifth, sixth or seventh embodiment is that: step seven is based on a zero momentum system, interference torque is ignored, and step five is carried outAnd Φ (t), and C in step sixaoCboAndsubstituting into the attitude dynamics equation of the dual rigid body spacecraft and the angular momentum conservation equation of the dual rigid body spacecraft in the step three to obtain the equation aboutAnd of tAndthe specific process is as follows:
q in the sixth stepm0And q ismSubstitution into CaoObtaining C for phi (t)aoThen, mixing CaoSubstitution intoAndin (1) get aboutAnd phi (t)And toAnd phi (t)Finally, C is putao CboAndsubstituting into the attitude dynamics equation of the dual rigid body spacecraft and the angular momentum conservation equation of the dual rigid body spacecraft in the step three,can be usedAnd t represents;can be usedAnd t represents;can be used And t represents, get aboutAnd phi (t)And
in the formula,is a component array of the motor moment vector,is a component array of the flywheel moment vector,is a component array of the flywheel angular momentum vector;
wherein,maximum angular acceleration of a load platform tracking trajectoryA function of,Maximum angular velocity for tracking a trajectory for a load platformAs a function of (a) or (b),as a function of time t.
Other steps and parameters are the same as those of the first, second, third, fourth, fifth, sixth or seventh embodiments.
The specific implementation method nine: the difference between this embodiment and the first, second, third, fourth, fifth, sixth, seventh or eighth embodiment is that: the corner phi obtained in the step eight according to the step fourfStep sevenAndsolving the shortest maneuvering time containing constraints by using a Matlab optimization tool box; the specific process is as follows:
solving the minimum value of the constraint by using a Matlab optimization tool box, wherein the variable isAndthe objective function is maneuver time:
<math> <mrow> <mi>&Delta;</mi> <mi>t</mi> <mo>=</mo> <mfrac> <msub> <mi>&Phi;</mi> <mi>f</mi> </msub> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mfrac> <mo>+</mo> <mfrac> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
the constraint function is:
<math> <mrow> <mo>|</mo> <msubsup> <mi>T</mi> <mi>e</mi> <mi>a</mi> </msubsup> <mo>|</mo> <mo>&le;</mo> <msub> <mi>T</mi> <mrow> <mi>e</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>|</mo> <msubsup> <mi>T</mi> <mi>w</mi> <mi>b</mi> </msubsup> <mo>|</mo> <mo>&le;</mo> <msub> <mi>T</mi> <mrow> <mi>w</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>|</mo> <msubsup> <mi>H</mi> <mi>w</mi> <mi>b</mi> </msubsup> <mo>|</mo> <mo>&le;</mo> <msub> <mi>H</mi> <mrow> <mi>w</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, TemaxIs the minimum envelope radius of the motor torque, TwmaxIs the minimum enveloping radius of the flywheel moment, HwmaxIs the minimum enveloping radius of the angular momentum of the flywheel, phifIs the turning angle, deltat is the maneuvering time,is a component array of the motor moment vector,is a component array of the flywheel moment vector,is a component array of the flywheel angular momentum vector;
and obtaining the shortest maneuvering time according to the target function and the constraint function.
Other steps and parameters are the same as those of the first, second, third, fourth, fifth, sixth, seventh or eighth embodiments.
Examples
The beneficial effects of the invention are verified by adopting the following experiments:
example 1
The method for determining the shortest time for the rapid maneuver of the dual rigid body spacecraft is specifically carried out according to the following steps:
step one, establishing a load platform coordinate system OsxayazaAnd service platform coordinate system ObxbybzbThe coordinate system of the load platform is denoted as SaThe coordinate system of the service platform is marked as SbWherein O issLocated in the center of the spherical hinge, ObLocated in the center of mass of the service platform, OaIs the center of mass of the load platform, OcThe center of mass of the dual rigid spacecraft system is located at the origin of coordinates of a load platform coordinate systemsThe load platform and the service platform form a double rigid body spacecraft, and are connected through a spherical hinge;
step two, according to the S obtained in the step oneaSystem and SbWriting a rotational inertia matrix of a load platform and a service platform about a mass center of a dual rigid spacecraft system;
writing an attitude kinematics equation of the dual rigid spacecraft and an angular momentum conservation equation of the dual rigid spacecraft according to the rotational inertia matrix of the load platform and the service platform obtained in the step two, which is relative to the system centroid of the dual rigid spacecraft;
step four, calculating the Euler axis e and the rotation angle phi of the load platform from the initial attitude maneuver to the target attitudef
Step five, obtaining the rotation angle phi according to the step fourfWriting angular acceleration of the load platform tracking trajectoryAngular velocityAnd an expression for the angle Φ (t);
sixthly, according to the Euler axis e obtained in the fourth step and the angular acceleration of the tracking track of the load platform obtained in the fifth stepAngular velocityAnd an expression of the angle phi (t) is used for writing a quaternion q of the attitude of the load platformm0And q ismAttitude matrix C of load platformaoAttitude matrix C of service platformboAttitude angular velocity of load platformAttitude angular velocity of service platformAttitude angular acceleration of a load platformAnd attitude angular acceleration of the service platformThe expression of (1);
step seven, based on a zero momentum system, neglecting the disturbance moment, and combining the step fiveAnd Φ (t), and C in step sixao CboAndsubstituting into the attitude dynamics equation of the dual rigid body spacecraft and the angular momentum conservation equation of the dual rigid body spacecraft in the step three to obtain the equation aboutAnd of tAnd
step eight, obtaining the rotation angle phi according to the step fourfStep sevenAndsolving the shortest maneuvering time containing constraints by using a Matlab optimization tool box;
the rotational inertia matrixes of the load platform and the service platform are respectively
<math> <mrow> <msub> <mi>I</mi> <mn>1</mn> </msub> <mo>=</mo> <mfenced open = '[' close = ']'> <mtable> <mtr> <mtd> <mn>2000</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>10</mn> </mrow> </mtd> <mtd> <mn>15</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>10</mn> </mrow> </mtd> <mtd> <mn>1000</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>20</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>15</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>20</mn> </mrow> </mtd> <mtd> <mn>3000</mn> </mtd> </mtr> </mtable> </mfenced> <mi>k</mi> <mi>g</mi> <mo>&CenterDot;</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mi>I</mi> <mn>2</mn> </msub> <mo>=</mo> <mfenced open = '[' close = ']'> <mtable> <mtr> <mtd> <mn>2500</mn> </mtd> <mtd> <mn>12</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>5</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>12</mn> </mtd> <mtd> <mn>2000</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>10</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>5</mn> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mn>10</mn> </mrow> </mtd> <mtd> <mn>3200</mn> </mtd> </mtr> </mtable> </mfenced> <mi>k</mi> <mi>g</mi> <mo>&CenterDot;</mo> <msup> <mi>m</mi> <mn>2</mn> </msup> <mo>.</mo> </mrow> </math>
Mass of the load platform is ma500kg, the mass of the service platform is mb=600kg。 d 1 a = 0 0 1 T m , d 2 b = 0 0 1 T m . Angular velocity of the track omegao0.0011rad/s, the position of the mass center of the load platform relative to the center of the earth is <math> <mrow> <msubsup> <mi>R</mi> <mi>a</mi> <mi>o</mi> </msubsup> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mn>7</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> <mo>+</mo> <mn>0.5</mn> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mi>m</mi> <mo>,</mo> </mrow> </math> The position of the mass center of the dual rigid body spacecraft system relative to the geocentric is <math> <mrow> <msubsup> <mi>R</mi> <mi>c</mi> <mi>o</mi> </msubsup> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mn>1</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mi>m</mi> <mo>.</mo> </mrow> </math> The maneuver starting time is t0100s, the initial angular velocity of the load platform is <math> <mrow> <msubsup> <mi>&omega;</mi> <mi>ao</mi> <mi>a</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mi>oT</mi> </msup> <mo>/</mo> <mi>s</mi> <mo>,</mo> </mrow> </math> Target angular velocity of <math> <mrow> <msubsup> <mi>&omega;</mi> <mi>ao</mi> <mi>a</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mi>oT</mi> </msup> <mo>/</mo> <mi>s</mi> <mo>.</mo> </mrow> </math> The initial attitude of the loading platform is [ 000 ] to ground]oTWith the target pose to ground [ 50712 ]]oTThen the Euler axis is e ═ 0.96000.23000.1599]TTarget turning angle of phif51.0603. The service platform keeps three-axis stability to the ground in the whole maneuvering process. The error of attitude angle measurement is three-axis 5 × 10-4o(3 sigma), the attitude angular velocity measurement error is three-axis 10-4oS (3. sigma.). The interference moments acting on the load platform and the dual rigid body spacecraft system are respectively
<math> <mrow> <msubsup> <mi>T</mi> <mrow> <mi>d</mi> <mi>a</mi> </mrow> <mi>a</mi> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mfenced open = '[' close = ']'> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>o</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0.75</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>o</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>o</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = '[' close = ']'> <mtable> <mtr> <mtd> <mrow> <mn>0.5</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0.5</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0.5</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> <mo>)</mo> </mrow> <mi>N</mi> <mi>m</mi> <mo>,</mo> </mrow> </math>
<math> <mrow> <msubsup> <mi>T</mi> <mi>d</mi> <mi>b</mi> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mfenced open = '[' close = ']'> <mtable> <mtr> <mtd> <mrow> <mn>2</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>o</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1.5</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>o</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>o</mi> </msub> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mfenced open = '[' close = ']'> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mrow> <mo>-</mo> <mn>4</mn> </mrow> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> <mo>)</mo> </mrow> <mi>N</mi> <mi>m</mi> <mo>.</mo> </mrow> </math>
In the controller, the self-oscillation angular frequency omega is takenn0.2rad/s, damping ratio ξ 0.9, then KP=ωn 2=0.04,KD=2ξωn0.36. The flywheel adopts the four-oblique-installation structure, the maximum torque that the flywheel can provide is 0.4Nm, the maximum angular momentum is 32Nm multiplied by s, and the maximum torque that the motor can provide is 0.5 Nm.
According to the method of the invention, the maximum angular acceleration is determinedMaximum angular velocityThe maneuvering time Δ t is 151.8272 s. Simulation diagrams are shown in fig. 4, 5, 6 and 7;
as can be seen from the simulation diagrams of FIG. 4, FIG. 5, FIG. 6 and FIG. 7, the moment of the flywheel reaches the upper limit, and the moment of the motor and the angular momentum of the flywheel do not reach the upper limit, which is illustratedAndthe value of (1) satisfies the constraints of motor moment, flywheel moment and flywheel angular momentum, and the maneuvering time optimization method is feasible. The maneuver time cannot be made faster because the upper flywheel torque limit is relatively small.

Claims (9)

1. A method for determining the shortest time of the rapid maneuver of a dual rigid body spacecraft is characterized in that the method for determining the shortest time of the rapid maneuver of the dual rigid body spacecraft is specifically carried out according to the following steps:
step one, establishing a load platform coordinate system OsxayazaAnd service platform coordinate system ObxbybzbThe coordinate system of the load platform is denoted as SaThe coordinate system of the service platform is marked as SbWherein O issLocated in the center of the spherical hinge, ObLocated in the center of mass of the service platform, OaIs the center of mass of the load platform, OcThe center of mass of the dual rigid spacecraft system is located at the origin of coordinates of a load platform coordinate systemsThe load platform and the service platform form a double rigid body spacecraft, and are connected through a spherical hinge;
step two, according to the S obtained in the step oneaSystem and SbWriting a rotational inertia matrix of a load platform and a service platform about a mass center of a dual rigid spacecraft system;
writing an attitude kinematics equation of the dual rigid spacecraft and an angular momentum conservation equation of the dual rigid spacecraft according to the rotational inertia matrix of the load platform and the service platform obtained in the step two, which is relative to the system centroid of the dual rigid spacecraft;
step four, calculating the Euler axis e and the rotation angle phi of the load platform from the initial attitude maneuver to the target attitudef
Step five, obtaining the rotation angle phi according to the step fourfWriting angular acceleration of the load platform tracking trajectoryAngular velocityAnd an expression for the angle Φ (t);
sixthly, according to the Euler axis e obtained in the fourth step and the angular acceleration of the tracking track of the load platform obtained in the fifth stepAngular velocityAnd an expression of the angle phi (t) is used for writing a quaternion q of the attitude of the load platformm0And q ismAttitude matrix C of load platformaoAttitude matrix C of service platformboAttitude angular velocity of load platformAttitude angular velocity of service platformAttitude angular acceleration of a load platformAnd attitude angular acceleration of the service platformThe expression of (1);
step seven, the step fiveAnd Φ (t), and C in step sixaoCboAndsubstituting into the attitude dynamics equation of the dual rigid body spacecraft and the angular momentum conservation equation of the dual rigid body spacecraft in the step three to obtain the equation aboutAnd of tAnd
step eight, obtaining the rotation angle phi according to the step fourfStep sevenAndthe shortest maneuver time with constraints was solved using the Matlab optimization toolkit.
2. The method for determining the shortest time for a fast maneuver of a dual rigid body spacecraft as claimed in claim 1, wherein the first step is to establish a load platform coordinate system OsxayazaAnd service platform coordinate system ObxbybzbThe coordinate system of the load platform is denoted as SaThe coordinate system of the service platform is marked as SbWherein O issLocated in the center of the spherical hinge, ObLocated in the center of mass of the service platform, OaIs the center of mass of the load platform, OcThe center of mass of the dual rigid spacecraft system is located at the origin of coordinates of a load platform coordinate systemsThe load platform and the service platform form a double rigid body spacecraft, and are connected through a spherical hinge;
the specific process is as follows:
establishing a load platform coordinate system OsxayazaAnd service platform coordinate system ObxbybzbLoad platform coordinate system OsxayazaIs marked as SaThe coordinate system of the service platform is marked as SbWherein O issIs the center of the spherical hinge, ObAs the center of mass, x, of the service platformaIs a load platform coordinate system x-axis, yaIs the y-axis, z, of the load platform coordinate systemaIs a z-axis, x, of a coordinate system of the load platformbServing platform coordinate system x-axis, ybAs the service platform coordinate system y-axis, zbServing as a z axis of a coordinate system of the service platform; o isaIs the center of mass of the load platform, OcThe center of mass of the dual rigid spacecraft system is located at the origin of coordinates of a load platform coordinate systems
3. The method for determining the shortest time for a fast maneuver of a dual rigid body spacecraft as claimed in claim 2, wherein S obtained in the first step is used in the second stepaSystem and SbWriting a rotational inertia matrix of a load platform and a service platform about a mass center of a dual rigid spacecraft system; the specific process is as follows:
load platform with respect to OcThe angular momentum vector of (a) is:
in the formula, dmaIs a micro-element of mass of the load platform, q1Is composed of OsDirection dmaVector of (a), p1Is composed of OaPoint to OcVector of (v)aIIs dmaThe absolute velocity vector of (a) is,is ObThe absolute velocity vector of (a) is,for load platforms with respect to OsInertial dyadic of (H)aFor load platforms with respect to OcAngular momentum vector of d1Is composed of OsPoint to OaVector of (a), ωaIIs SaAbsolute angular velocity vector of the system, ωbIIs SbAbsolute angular velocity vector of the system, d2Is composed of OsPoint to ObA vector of (a);
service platform with respect to OcThe angular momentum vector of (a) is:
in the formula, dmbAs quality elements of the service platform, q2Is composed of ObDirection dmbVector of (a), p2Is composed of ObPoint to OcVector of (v)bIIs dmbThe absolute velocity vector of (a) is,for service platform with respect to ObInertial dyadic of (H)bFor service platform with respect to OcAngular momentum vector of, omegabIIs SbAn absolute angular velocity vector of the system;
double rigid body spacecraft system with respect to OcThe total angular momentum of (a) is:
in the formula,is ObAbsolute velocity vector of (1), HwIs the angular momentum vector of the flywheel, H is the dual rigid body spacecraft system with respect to OcThe angular momentum vector of (a);
because m isap1+mbp2Is equal to 0, and p2-p1=d1+d2Therefore, it is
p 1 = - m b m a + m b ( d 1 + d 2 ) - - - ( 29 )
p 2 = m a m a + m b ( d 1 + d 2 ) - - - ( 30 )
By substituting formula (29) and formula (30) for formula (28), a
In the formula,is unit inertial dyadic;
load platform and service platform with respect to OcThe inertial vectors of (a) are respectively:
in the formula,for load platforms with respect to OcThe inertial vector of (a) is,for service platform with respect to OcThe inertial dyadic of (c);
then the formula (31) can be expressed as
At SaThe component matrix under the system is the load platform with respect to OcThe moment of inertia matrix of (a):
<math> <mrow> <msubsup> <mi>I</mi> <mi>a</mi> <mi>a</mi> </msubsup> <mo>=</mo> <msubsup> <mi>I</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>-</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <mo>&lsqb;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <mo>&rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>35</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula,for load platforms with respect to OcThe matrix of the moment of inertia of (a),for load platforms with respect to OsThe rotational inertia matrix of maMass of the load platform, mbIn order to provide the quality of the service platform,is composed of OsPoint to OaThe component array of the vector of (a),is composed of OsPoint to ObComponent array of vectors of (3), CabIs SaIs relative to SbAttitude matrix of system, CbaIs SbIs relative to SaThe attitude matrix of the system is determined,is composed ofThe cross-multiplication matrix of (a) is,is composed ofA cross-product matrix of;
at SbThe component matrix under the system is the service platform with respect to OcThe moment of inertia matrix of (a):
<math> <mrow> <msubsup> <mi>I</mi> <mi>b</mi> <mi>b</mi> </msubsup> <mo>=</mo> <msubsup> <mi>I</mi> <mn>2</mn> <mi>b</mi> </msubsup> <mo>-</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <mo>&lsqb;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msub> <mo>&rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>36</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, the superscripts a and b are vectors or vectors in the direction of SaSystem and SbAn array or matrix of components under the system,for service platform with respect to OcThe matrix of the moment of inertia of (a),for service platform with respect to ObA rotational inertia matrix of;
and isAndrespectively, of first order derivatives of
<math> <mrow> <msubsup> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> <mi>a</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>&lsqb;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msub> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msub> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> <mo>&rsqb;</mo> </mrow> <mo>&times;</mo> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>37</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> <mi>b</mi> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>&lsqb;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>&rsqb;</mo> </mrow> <mo>&times;</mo> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>38</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula,is SaAbsolute angular velocity vector of the system is at SaAn array of components under the system is provided,is SbAbsolute angular velocity vector of the system is at SbAn array of components under the system is provided,is composed ofThe cross-multiplication matrix of (a) is,is composed ofCross-product matrix of (a).
4. The method for determining the shortest time for the rapid maneuver of the dual rigid body spacecraft according to the claim 3, wherein the attitude kinematics equation of the dual rigid body spacecraft and the angular momentum conservation equation of the dual rigid body spacecraft are written according to the rotational inertia matrix of the load platform and the service platform obtained in the step two about the centroid of the dual rigid body spacecraft system in the step three; the specific process is as follows:
writing an attitude kinematics equation and an angular momentum conservation equation of the dual rigid body spacecraft according to the rotational inertia matrix of the load platform and the service platform about the system centroid of the dual rigid body spacecraft, which is obtained in the step two:
the attitude kinematic equation of the dual rigid body spacecraft is shown in formulas (3) and (4):
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <mo>&lsqb;</mo> <msubsup> <mi>I</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>-</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <mo>&rsqb;</mo> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>-</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>2</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>=</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>T</mi> <mi>e</mi> <mi>a</mi> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mrow> <mi>d</mi> <mi>a</mi> </mrow> <mi>a</mi> </msubsup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>I</mi> <mn>1</mn> <mi>a</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <mo>{</mo> <msub> <mi>&mu;m</mi> <mi>a</mi> </msub> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>o</mi> </mrow> </msub> <mrow> <mo>(</mo> <mfrac> <msubsup> <mi>R</mi> <mi>c</mi> <mi>o</mi> </msubsup> <mrow> <msup> <msub> <mi>R</mi> <mi>c</mi> </msub> <mn>3</mn> </msup> </mrow> </mfrac> <mo>-</mo> <mfrac> <msubsup> <mi>R</mi> <mi>a</mi> <mi>o</mi> </msubsup> <mrow> <msup> <msub> <mi>R</mi> <mi>a</mi> </msub> <mn>3</mn> </msup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <mfenced open = '[' close = ']'> <mtable> <mtr> <mtd> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <msubsup> <mi>I</mi> <mi>a</mi> <mi>a</mi> </msubsup> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>+</mo> <msubsup> <mi>I</mi> <mi>b</mi> <mi>b</mi> </msubsup> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>=</mo> <msubsup> <mi>T</mi> <mi>w</mi> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mi>d</mi> <mi>b</mi> </msubsup> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>{</mo> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <mo>&lsqb;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>I</mi> <mi>a</mi> <mi>a</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> <mi>a</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>&rsqb;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>I</mi> <mi>b</mi> <mi>b</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> <mi>b</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>H</mi> <mi>w</mi> <mi>b</mi> </msubsup> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> </math>
the angular momentum conservation equation of the dual rigid body spacecraft is shown as the formula (5):
<math> <mrow> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <msubsup> <mi>I</mi> <mi>a</mi> <mi>a</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>+</mo> <msubsup> <mi>I</mi> <mi>b</mi> <mi>b</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mi>H</mi> <mi>w</mi> <mi>b</mi> </msubsup> <mo>=</mo> <msubsup> <mi>H</mi> <mn>0</mn> <mi>b</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula,is composed ofThe derivative of (a) of (b),is composed ofThe derivative of (a) of (b),is composed ofThe derivative of (a) of (b),is composed ofThe upper corner mark o is a component array or a component matrix of the vector or the vector parallel under the orbit coordinate system of the dual rigid body spacecraft,is SaThe component array of the absolute angular velocity vector of the system,is SbComponent array of absolute angular velocity vectors of the system, CaoIs SaIs the attitude matrix of the relative orbit system,is a coordinate array of the motor moment vector,is a coordinate array of the moment vector of the flywheel,is a component array of disturbance moment vectors acting on the load platform,is a component array of disturbance moment vectors acting on the dual rigid body spacecraft system,is an array of components of the flywheel angular momentum vector,is a component array of angular momentum vectors of a dual rigid body spacecraft system, mu is a gravitational constant,is a component array of vectors pointing from the centroid to the center of mass of the load platform,is a component array of vectors pointing from the centroid to the centroid of the dual rigid-body spacecraft system, RcIs composed ofOf a mold of RaIs composed ofThe die of (a) is used,is composed ofThe cross-multiplication matrix of (a) is,is composed ofA cross-product matrix of;
load platform around OaThe kinematic equation of the rotating posture is as follows:
in the formula,as a vector or dyadic at SaDerivative of system, TeAs motor torque vector, TbaMoment vector, T, acting on load platform for service platformdaDisturbance moment vector, omega, acting on the load platformaIIs SaAn absolute angular velocity vector of the system;
resultant force acting on the load platform force F acting on the load platform by the service platformbaAnd the interference force F acted on the load platform by the external environmentdaComposition according to Newton's second law, having
F b a + F d a = m a d I 2 R a dt 2 = m a d I 2 ( R c - p 1 ) dt 2 - - - ( 43 )
In the formula,as derivatives of vectors or dyadics in the inertial system, RaTo point to O from the earth centeraVector of (2), RcTo point to O from the earth centercVector of (a), p1Is composed of OaPoint to OcA vector of (a);
based on a two-body system of earth-spacecraft, having
<math> <mrow> <mfrac> <mrow> <msup> <msub> <mi>d</mi> <mi>I</mi> </msub> <mn>2</mn> </msup> <mrow> <mo>|</mo> <msub> <mi>R</mi> <mi>c</mi> </msub> <mo>|</mo> </mrow> </mrow> <mrow> <msup> <mi>dt</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>=</mo> <mo>-</mo> <mfrac> <mi>&mu;</mi> <msup> <mrow> <mo>|</mo> <msub> <mi>R</mi> <mi>c</mi> </msub> <mo>|</mo> </mrow> <mn>3</mn> </msup> </mfrac> <msub> <mi>R</mi> <mi>c</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>44</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein μ is an earth gravity constant; | RcL is RcA modulus value of (d);
because FdaIs gravity, so take
<math> <mrow> <msub> <mi>F</mi> <mrow> <mi>d</mi> <mi>a</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <msub> <mi>&mu;m</mi> <mi>a</mi> </msub> </mrow> <msup> <mrow> <mo>|</mo> <msub> <mi>R</mi> <mi>a</mi> </msub> <mo>|</mo> </mrow> <mn>3</mn> </msup> </mfrac> <msub> <mi>R</mi> <mi>a</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>45</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, | RaL is RaA modulus value of (d);
by substituting formula (29), formula (44) and formula (45) for formula (43), the compound is obtained
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>F</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&mu;m</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>R</mi> <mi>a</mi> </msub> <msup> <mrow> <mo>|</mo> <msub> <mi>R</mi> <mi>a</mi> </msub> <mo>|</mo> </mrow> <mn>3</mn> </msup> </mfrac> <mo>-</mo> <mfrac> <msub> <mi>R</mi> <mi>c</mi> </msub> <msup> <mrow> <mo>|</mo> <msub> <mi>R</mi> <mi>c</mi> </msub> <mo>|</mo> </mrow> <mn>3</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <mo>&lsqb;</mo> <msub> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> </msub> <mo>&times;</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>d</mi> <mi>a</mi> </msub> <msub> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>&times;</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> </msub> <mo>&times;</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> </msub> <mo>&times;</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>d</mi> <mi>b</mi> </msub> <msub> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>&times;</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>46</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula,as a vector or dyadic at SbA derivative of the system;
then will Tba=-d1×FbaSubstitution of formula (42) to obtain a load platform winding OaKinematic equation of attitude of rotation:
the above formula is at SaIs tied downIs measured by
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <mo>&lsqb;</mo> <msubsup> <mi>I</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>-</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <mo>&rsqb;</mo> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>-</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>=</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>T</mi> <mi>e</mi> <mi>a</mi> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mrow> <mi>d</mi> <mi>a</mi> </mrow> <mi>a</mi> </msubsup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>I</mi> <mn>1</mn> <mi>a</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <mo>{</mo> <msub> <mi>&mu;m</mi> <mi>a</mi> </msub> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>o</mi> </mrow> </msub> <mrow> <mo>(</mo> <mfrac> <msubsup> <mi>R</mi> <mi>c</mi> <mi>o</mi> </msubsup> <msup> <mrow> <mo>|</mo> <msub> <mi>R</mi> <mi>c</mi> </msub> <mo>|</mo> </mrow> <mn>3</mn> </msup> </mfrac> <mo>-</mo> <mfrac> <msubsup> <mi>R</mi> <mi>a</mi> <mi>o</mi> </msubsup> <msup> <mrow> <mo>|</mo> <msub> <mi>R</mi> <mi>a</mi> </msub> <mo>|</mo> </mrow> <mn>3</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> <mrow> <msub> <mi>m</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>m</mi> <mi>b</mi> </msub> </mrow> </mfrac> <mfenced open = '[' close = ']'> <mtable> <mtr> <mtd> <mrow> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>d</mi> <mn>1</mn> <mi>a</mi> </msubsup> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msub> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>d</mi> <mn>2</mn> <mi>b</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>48</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula,is composed ofThe cross-multiplication matrix of (a) is,is composed ofThe cross-multiplication matrix of (a) is,is SaAbsolute angular velocity vector of the system is at SaAn array of components under the system is provided,is SbAbsolute angular velocity vector of the system is at SbAn array of components under the system is provided,is composed ofThe cross-multiplication matrix of (a) is,is composed ofThe cross-multiplication matrix of (a) is,is a component array of a vector pointing to the center of mass of the loading platform from the center of the spherical hinge,is a component array of vectors pointing from the center of the spherical hinge to the center of mass of the service platform,is composed ofThe derivative of (a) of (b),is composed ofThe derivative of (a) of (b),for motor torque vector at SaAn array of components under the system is provided,for disturbance torque vector at SaA component array under the array;
derivation is carried out on the formula (34) to obtain a double rigid system winding OcKinematic equation of attitude of rotation:
in the formula, TwAs moment vector of flywheel, TdFor acting on disturbance moment vector H of dual rigid body spacecraft systemwIs a flywheel angular momentum vector, omegaaIIs SaAbsolute angular velocity vector of the system, ωbIIs SbAbsolute angular velocity vector of the system, HwIs the angular momentum vector of the flywheel,for load platforms with respect to OcThe inertial vector of (a) is,for service platform with respect to OcThe inertial dyadic of (c);
formula (49) at SbThe following component formula:
<math> <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <msubsup> <mi>I</mi> <mi>a</mi> <mi>a</mi> </msubsup> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>+</mo> <msubsup> <mi>I</mi> <mi>b</mi> <mi>b</mi> </msubsup> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>=</mo> <msubsup> <mi>T</mi> <mi>w</mi> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mi>T</mi> <mi>d</mi> <mi>b</mi> </msubsup> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>{</mo> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <mo>&lsqb;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>I</mi> <mi>a</mi> <mi>a</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>a</mi> <mi>a</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>&rsqb;</mo> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>I</mi> <mi>b</mi> <mi>b</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>I</mi> <mo>&CenterDot;</mo> </mover> <mi>b</mi> <mi>b</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>)</mo> </mrow> <mo>&times;</mo> </msup> <msubsup> <mi>H</mi> <mi>w</mi> <mi>b</mi> </msubsup> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>50</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, CbaIs SbIs relative to SaThe attitude matrix of the system is determined,is composed ofAt SaA matrix of the components of the image data,is composed ofAt SbA matrix of the components of the image data,is TwAt SbAn array of components under the system is provided,is TdAt SbAn array of components under the system is provided,is composed ofThe derivative of (a) of (b),is composed ofThe derivative of (a) of (b),is HwAt SbA component array under the array;
formula (34) at SbIs represented by the following formula
<math> <mrow> <msub> <mi>C</mi> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msub> <msubsup> <mi>I</mi> <mi>a</mi> <mi>a</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>+</mo> <msubsup> <mi>I</mi> <mi>b</mi> <mi>b</mi> </msubsup> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <msubsup> <mi>H</mi> <mi>w</mi> <mi>b</mi> </msubsup> <mo>=</mo> <msubsup> <mi>H</mi> <mn>0</mn> <mi>b</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>41</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula,the total angular momentum vector of the dual rigid body spacecraft is at SbAn array of underlying components.
5. The method for determining the shortest time for the fast maneuver of a dual rigid body spacecraft as claimed in claim 4, wherein the fourth step is to calculate the Euler axis e and the rotation angle Φ of the load platform from the initial attitude to the target attitudef(ii) a The specific process is as follows:
Φf=2arccosqm0 (6)
<math> <mrow> <mi>e</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mfrac> <msub> <mi>&Phi;</mi> <mi>f</mi> </msub> <mn>2</mn> </mfrac> </mrow> </mfrac> <msub> <mi>q</mi> <mi>m</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, qm0Quaternion Q for maneuvering load platform from initial attitude to target attitudemMark part of (a), qmQuaternion Q for maneuvering load platform from initial attitude to target attitudemSagittal portion of, Qm=[qm0 qm]TIs a four-dimensional vector with the expression:
<math> <mrow> <msub> <mi>Q</mi> <mi>m</mi> </msub> <mo>=</mo> <msup> <msub> <mi>Q</mi> <mn>0</mn> </msub> <mo>*</mo> </msup> <mo>&CircleTimes;</mo> <msub> <mi>Q</mi> <mi>f</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, Q0Is the initial attitude quaternion, Q, of the load platformfIs a target attitude quaternion, Q, of the load platformmQuaternions for the target pose, transposes the quaternions,for quaternion multiplication, T is the transpose of the array.
6. The method for determining the shortest time for a fast maneuver of a dual rigid body spacecraft as claimed in claim 5, wherein the turning angle Φ obtained in the fifth step according to the fourth stepfWriting angular acceleration of the load platform tracking trajectoryAngular velocityAnd an expression for the angle Φ (t); the specific process is as follows:
let phi (t)0)=0,Φ(tf)=Φf
<math> <mrow> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>&le;</mo> <mi>t</mi> <mo>&le;</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>&lt;</mo> <mi>t</mi> <mo>&lt;</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>&le;</mo> <mi>t</mi> <mo>&le;</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>&le;</mo> <mi>t</mi> <mo>&le;</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>&lt;</mo> <mi>t</mi> <mo>&lt;</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>&le;</mo> <mi>t</mi> <mo>&le;</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>&Phi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = '{' close = ''> <mtable> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mi>max</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>&le;</mo> <mi>t</mi> <mo>&le;</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mi>max</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mi>max</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>&lt;</mo> <mi>t</mi> <mo>&lt;</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mi>max</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mi>max</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mi>max</mi> </msub> <msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>-</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> <mtd> <mrow> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>&le;</mo> <mi>t</mi> <mo>&le;</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula,the angular acceleration of the trajectory is tracked for the load platform,the angular velocity of the track tracked by the load platform, phi (t) is the angle of the track tracked by the load platform,the maximum angular acceleration of the tracked trajectory for the load platform,maximum angular velocity, t, of the track for the load platform0As the moment of start of maneuver, t1For the acceleration end time, t2At the end of the uniform speed, tfT is time in seconds as the maneuvering ending time.
7. Root of herbaceous plantThe method for determining the shortest time for a fast maneuver of a dual rigid body spacecraft as claimed in claim 6, wherein the angular acceleration of the tracking trajectory of the loading platform obtained in the sixth step is obtained according to the Euler axis e obtained in the fourth step and the angular acceleration of the tracking trajectory of the loading platform obtained in the fifth stepAngular velocityAnd an expression of the angle phi (t) is used for writing a quaternion q of the attitude of the load platformm0And q ismAttitude matrix C of load platformaoAttitude matrix C of service platformboAttitude angular velocity of load platformAttitude angular velocity of service platformAttitude angular acceleration of a load platformAnd attitude angular acceleration of the service platformThe expression of (1); the specific process is as follows:
assuming that the load platform tracks the track of the load platform, the service platform is stable;
then the platform attitude quaternion is loaded, as in equation (12) (13):
<math> <mrow> <msub> <mi>q</mi> <mrow> <mi>m</mi> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mfrac> <mrow> <mi>&Phi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>q</mi> <mi>m</mi> </msub> <mo>=</mo> <mi>e</mi> <mi> </mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mfrac> <mrow> <mi>&Phi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
attitude matrix of the load platform, as in equation (14):
Cao=qmqm T+[qm0E-(qm)×]2 (14)
attitude angular velocity of the load platform, as in equation (15):
<math> <mrow> <msubsup> <mi>&omega;</mi> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>=</mo> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>e</mi> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>o</mi> </mrow> </msub> <msubsup> <mi>&omega;</mi> <mrow> <mi>o</mi> <mi>I</mi> </mrow> <mi>o</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> </math>
attitude angular acceleration of the load platform, as in equation (16):
<math> <mrow> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>a</mi> <mi>I</mi> </mrow> <mi>a</mi> </msubsup> <mo>=</mo> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mi>e</mi> <mo>-</mo> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mo>&times;</mo> </msup> <msub> <mi>C</mi> <mrow> <mi>a</mi> <mi>o</mi> </mrow> </msub> <msubsup> <mi>&omega;</mi> <mrow> <mi>o</mi> <mi>I</mi> </mrow> <mi>o</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
the attitude matrix of the service platform is as shown in formula (17):
Cbo=E (17)
attitude angular velocity of the service platform, as in equation (18):
<math> <mrow> <msubsup> <mi>&omega;</mi> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>=</mo> <msubsup> <mi>&omega;</mi> <mrow> <mi>o</mi> <mi>I</mi> </mrow> <mi>o</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
attitude angular acceleration of the service platform, as in equation (19):
<math> <mrow> <msubsup> <mover> <mi>&omega;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>b</mi> <mi>I</mi> </mrow> <mi>b</mi> </msubsup> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, qm0Quaternion Q for maneuvering load platform from initial attitude to target attitudemMark part of (a), qmQuaternion Q for maneuvering load platform from initial attitude to target attitudemSagittal portion of, CboIs SbAttitude matrix of the relative orbital system, CobFor the track system to oppose SbAn attitude matrix of the system, E is an identity matrix, E is an Euler axis of a tracking track of the load platform, qm TIs qmTranspose of (q)m)×Is qmThe cross-multiplication matrix of (a) is,is a coordinate array of orbital angular velocity vectors in the spacecraft orbital system, e×Is a cross-multiplication matrix of e, phi (t) is the angle of the load platform tracking track,the angular velocity of the trajectory is tracked for the load platform,angular acceleration of the track for the load platform, CboIs SbIs relative to SoAn attitude matrix of the system.
8. The method for determining the shortest time for a fast maneuver of a dual rigid body spacecraft of claim 7, wherein the seventh step is the fifth stepAnd Φ (t), and C in step sixaoCboAndsubstituting into the attitude dynamics equation of the dual rigid body spacecraft and the angular momentum conservation equation of the dual rigid body spacecraft in the step three to obtain the equation aboutAnd of tAndthe specific process is as follows:
q in the sixth stepm0And q ismSubstitution into CaoObtaining C for phi (t)aoThen, mixing CaoSubstitution intoAndin (1) get aboutAnd phi (t)And toAnd phi (t)Finally, C is putao CboAndsubstituting into the attitude dynamics equation of the dual rigid body spacecraft and the angular momentum conservation equation of the dual rigid body spacecraft in the step three to obtain the equation aboutAnd phi (t)And
in the formula,is a component array of the motor moment vector,is a component array of the flywheel moment vector,is a component array of the flywheel angular momentum vector;
wherein,to be loadedMaximum angular acceleration of load platform tracking trackA function of,Maximum angular velocity for tracking a trajectory for a load platformAs a function of (a) or (b),as a function of time t.
9. The method for determining the shortest time for a fast maneuver of a dual rigid body spacecraft as claimed in claim 8, wherein the turning angle Φ obtained in step eight according to step four is determinedfStep sevenAndsolving the shortest maneuvering time containing constraints by using a Matlab optimization tool box; the specific process is as follows:
solving the minimum value of the constraint by using a Matlab optimization tool box, wherein the variable isAndthe objective function is maneuver time:
<math> <mrow> <mi>&Delta;</mi> <mi>t</mi> <mo>=</mo> <mfrac> <msub> <mi>&Phi;</mi> <mi>f</mi> </msub> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mfrac> <mo>+</mo> <mfrac> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <msub> <mover> <mi>&Phi;</mi> <mo>&CenterDot;&CenterDot;</mo> </mover> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
the constraint function is:
<math> <mrow> <mo>|</mo> <msubsup> <mi>T</mi> <mi>e</mi> <mi>a</mi> </msubsup> <mo>|</mo> <mo>&le;</mo> <msub> <mi>T</mi> <mrow> <mi>e</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>|</mo> <msubsup> <mi>T</mi> <mi>w</mi> <mi>b</mi> </msubsup> <mo>|</mo> <mo>&le;</mo> <msub> <mi>T</mi> <mrow> <mi>w</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <mo>|</mo> <msubsup> <mi>H</mi> <mi>w</mi> <mi>b</mi> </msubsup> <mo>|</mo> <mo>&le;</mo> <msub> <mi>H</mi> <mrow> <mi>w</mi> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow> </math>
in the formula, TemaxIs the minimum envelope radius of the motor torque, TwmaxIs the minimum enveloping radius of the flywheel moment, HwmaxIs the minimum enveloping radius of the angular momentum of the flywheel, phifIs the turning angle, Δ t is the maneuvering time,is a component array of the motor moment vector,is a component array of the flywheel moment vector,is a component array of the flywheel angular momentum vector;
and obtaining the shortest maneuvering time according to the target function and the constraint function.
CN201510515288.0A 2015-08-20 2015-08-20 The shortest time of a kind of pair of rigid body spacecraft fast reserve determines method Active CN105022402B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510515288.0A CN105022402B (en) 2015-08-20 2015-08-20 The shortest time of a kind of pair of rigid body spacecraft fast reserve determines method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510515288.0A CN105022402B (en) 2015-08-20 2015-08-20 The shortest time of a kind of pair of rigid body spacecraft fast reserve determines method

Publications (2)

Publication Number Publication Date
CN105022402A true CN105022402A (en) 2015-11-04
CN105022402B CN105022402B (en) 2017-11-03

Family

ID=54412442

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510515288.0A Active CN105022402B (en) 2015-08-20 2015-08-20 The shortest time of a kind of pair of rigid body spacecraft fast reserve determines method

Country Status (1)

Country Link
CN (1) CN105022402B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107870063A (en) * 2017-09-21 2018-04-03 深圳航天东方红海特卫星有限公司 Spacecraft rotary inertia inflight measurement method based on the conservation of momentum
CN108646775A (en) * 2018-06-08 2018-10-12 北京控制工程研究所 One kind three surpassing the quick motor-driven and fast and stable control method of platform
CN108657468A (en) * 2018-04-20 2018-10-16 北京控制工程研究所 A kind of momenttum wheel driving moment distribution method with maximum angular momentum envelope
CN109033604A (en) * 2018-07-18 2018-12-18 哈尔滨工业大学 The determination method of stress at satellite dynamics modeling and bearing containing spin load
CN109774977A (en) * 2019-03-28 2019-05-21 上海微小卫星工程中心 A kind of time optimal satellite attitude rapid maneuver method based on quaternary number
CN111413995A (en) * 2020-03-24 2020-07-14 北京科技大学 Method and system for tracking relative position and synchronously controlling posture between double rigid body characteristic points
CN108762073B (en) * 2018-05-23 2021-07-13 北京控制工程研究所 Control law design method for active pointing hyperstatic platform

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068218A (en) * 1997-05-14 2000-05-30 Hughes Electronics Corporation Agile, spinning spacecraft with sun-steerable solar cell array and method
US6360996B1 (en) * 2000-02-24 2002-03-26 Hughes Electronics Corporation Steering control for skewed scissors pair CMG clusters
US20080046138A1 (en) * 2004-12-15 2008-02-21 The Boeing Company Method for compensating star motion induced error in a stellar inertial attitude determination system
EP2316736A1 (en) * 2009-11-03 2011-05-04 Honeywell International Inc. Methods and systems for imposing a momentum boundary while reorienting an agile vehicle with control moment gyroscopes
US20110169689A1 (en) * 2005-11-23 2011-07-14 The Boeing Company Ultra-tightly coupled gps and inertial navigation system for agile platforms
CN102865866A (en) * 2012-10-22 2013-01-09 哈尔滨工业大学 Satellite attitude determination method and attitude determination error analytical method based on two star sensors
US8640994B1 (en) * 2010-09-27 2014-02-04 The Boeing Company Agile dedicated spacecraft for spinning microwave imagers and sounders
CN104462810A (en) * 2014-12-05 2015-03-25 哈尔滨工业大学 SDRE parameter adjustment method suitable for attitude maneuver and tracking control of wheel-controlled satellites

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068218A (en) * 1997-05-14 2000-05-30 Hughes Electronics Corporation Agile, spinning spacecraft with sun-steerable solar cell array and method
US6360996B1 (en) * 2000-02-24 2002-03-26 Hughes Electronics Corporation Steering control for skewed scissors pair CMG clusters
US20080046138A1 (en) * 2004-12-15 2008-02-21 The Boeing Company Method for compensating star motion induced error in a stellar inertial attitude determination system
US20110169689A1 (en) * 2005-11-23 2011-07-14 The Boeing Company Ultra-tightly coupled gps and inertial navigation system for agile platforms
EP2316736A1 (en) * 2009-11-03 2011-05-04 Honeywell International Inc. Methods and systems for imposing a momentum boundary while reorienting an agile vehicle with control moment gyroscopes
US8640994B1 (en) * 2010-09-27 2014-02-04 The Boeing Company Agile dedicated spacecraft for spinning microwave imagers and sounders
CN102865866A (en) * 2012-10-22 2013-01-09 哈尔滨工业大学 Satellite attitude determination method and attitude determination error analytical method based on two star sensors
CN104462810A (en) * 2014-12-05 2015-03-25 哈尔滨工业大学 SDRE parameter adjustment method suitable for attitude maneuver and tracking control of wheel-controlled satellites

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAI SUN 等: "Mission Planning and Action Planning for Agile Earth-Observing Satellite with genetic Algorithm", 《JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY ( NEW SERIES)》 *
赵浩: "双体卫星在指向控制中的建模与仿真研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107870063A (en) * 2017-09-21 2018-04-03 深圳航天东方红海特卫星有限公司 Spacecraft rotary inertia inflight measurement method based on the conservation of momentum
CN107870063B (en) * 2017-09-21 2020-01-03 深圳航天东方红海特卫星有限公司 Spacecraft rotational inertia on-orbit measurement method based on momentum conservation
CN108657468A (en) * 2018-04-20 2018-10-16 北京控制工程研究所 A kind of momenttum wheel driving moment distribution method with maximum angular momentum envelope
CN108657468B (en) * 2018-04-20 2020-08-14 北京控制工程研究所 Momentum wheel driving moment distribution method with maximum angular momentum envelope
CN108762073B (en) * 2018-05-23 2021-07-13 北京控制工程研究所 Control law design method for active pointing hyperstatic platform
CN108646775A (en) * 2018-06-08 2018-10-12 北京控制工程研究所 One kind three surpassing the quick motor-driven and fast and stable control method of platform
CN108646775B (en) * 2018-06-08 2021-03-26 北京控制工程研究所 Three-super-platform agile maneuvering and rapid stable control method
CN109033604A (en) * 2018-07-18 2018-12-18 哈尔滨工业大学 The determination method of stress at satellite dynamics modeling and bearing containing spin load
CN109774977A (en) * 2019-03-28 2019-05-21 上海微小卫星工程中心 A kind of time optimal satellite attitude rapid maneuver method based on quaternary number
CN111413995A (en) * 2020-03-24 2020-07-14 北京科技大学 Method and system for tracking relative position and synchronously controlling posture between double rigid body characteristic points

Also Published As

Publication number Publication date
CN105022402B (en) 2017-11-03

Similar Documents

Publication Publication Date Title
CN105022402B (en) The shortest time of a kind of pair of rigid body spacecraft fast reserve determines method
Wang et al. Coordinated stabilization of tumbling targets using tethered space manipulators
Ma et al. On-orbit identification of inertia properties of spacecraft using a robotic arm
Jiang et al. Hexrotor uav platform enabling dextrous interaction with structures-flight test
Carignan et al. The reaction stabilization of on-orbit robots
Rastegari et al. Multiple impedance control of space free-flying robots via virtual linkages
Xu et al. On-orbit identifying the inertia parameters of space robotic systems using simple equivalent dynamics
CN103076807B (en) A kind of control method of drive lacking flexible spacecraft attitude stabilization
CN104570742A (en) Feedforward PID (proportion, integration and differentiation) control based rapid high-precision relative pointing control method of noncoplanar rendezvous orbit
CN106289641A (en) Spacecraft centroid position and rotary inertia parametric joint discrimination method
Cyril et al. Postcapture dynamics of a spacecraft-manipulator-payload system
Han et al. Combined spacecraft stabilization control after multiple impacts during the capture of a tumbling target by a space robot
Carpenter et al. Reducing base reactions with gyroscopic actuation of space-robotic systems
Xu et al. Modeling and planning of a space robot for capturing tumbling target by approaching the dynamic closest point
CN106094853B (en) A kind of control method of Upper Stage Orbit Transformation section vectored thrust
Brown et al. Energetics of control moment gyroscopes as joint actuators
CN106020224B (en) A kind of probabilistic Upper Stage vectored thrust control method of consideration centroid position
Kalaycioglu et al. Dual arm coordination of redundant space manipulators mounted on a spacecraft
CN115229792B (en) Terminal sliding mode self-adaptive control method for dynamic grabbing of flight operation robot
Darabi et al. Coupled rotational and translational modeling of two satellites connected by a tether and their robust attitude control using optimal offset approach
Liu et al. Compensator-based 6-DOF control for probe asteroid-orbital-frame hovering with actuator limitations
Muraleedharan et al. Omnidirectional locomotion control of a pendulum driven spherical robot
CN113060309B (en) Space target parameter identification method under double-arm capture based on dynamic model
Xu et al. A practical and effective method for identifying the complete inertia parameters of space robots
Shen et al. Translational and rotational maneuvers of an underactuated space robot using prismatic actuators

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant