CN105018828B - 一种钒铁合金的制备方法 - Google Patents

一种钒铁合金的制备方法 Download PDF

Info

Publication number
CN105018828B
CN105018828B CN201510496769.1A CN201510496769A CN105018828B CN 105018828 B CN105018828 B CN 105018828B CN 201510496769 A CN201510496769 A CN 201510496769A CN 105018828 B CN105018828 B CN 105018828B
Authority
CN
China
Prior art keywords
phase
vanadium
slag
compound
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510496769.1A
Other languages
English (en)
Other versions
CN105018828A (zh
Inventor
余彬
鲜勇
孙朝晖
景涵
唐红建
杜光超
王唐林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Original Assignee
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd filed Critical Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority to CN201510496769.1A priority Critical patent/CN105018828B/zh
Publication of CN105018828A publication Critical patent/CN105018828A/zh
Application granted granted Critical
Publication of CN105018828B publication Critical patent/CN105018828B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明涉及一种钒铁合金制备方法,属于冶金领域,具体涉及钒铁的制备方法。本发明的方法以含钒氧化物的混合物为原料,采用分三期加料和分两次出渣的方法,按各第一、二、三期分别配制混合料,分期将配制的混合料加入到电炉中进行冶炼,第一期和第二期冶炼完毕后分别出渣一次;所述钒氧化物包括V2O3和V2O5,V2O3和V2O5质量比为7:1~0:8。该方法不仅能够降低渣中钒损失,提高钒铁冶炼收率,还能够降低铝耗,具有很好的应用前景。

Description

一种钒铁合金的制备方法
技术领域
本发明属于冶金领域,具体涉及钒铁合金的制备方法。
背景技术
钒铁合金被广泛应用于含钒微合金钢中,它具有细晶强化和沉淀强化的双重强化机制,从而降低过热敏感性,提高钢材的强度以及耐磨性。广泛应用于建筑、航空航天、路桥等行业。钒铁合金的生产主要有硅热还原法、铝热还原法及碳热还原法等热还原法。由于铝的还原活性较强,还原过程发热量大,铝热还原应用最为广泛。当前钒铁生产企业冶炼主要含钒原料以V2O5为主,随着新技术及新工艺的开发,国内外少数几家企业逐渐掌握了以V2O3为原料电铝热法制备钒铁合金的方法。以钒计重量的钒氧化物为标准,采用V2O3为原料的钒铁冶炼过程理论上比使用V2O5降低铝耗达40%,降低产渣量40%,在大幅降低生产成本的同时,减少了大渣量导致的钒损失。
世界上多采用铝热一步法冶炼钒铁,将混合料加入冶炼炉中,进行高温铝热还原,待反应完毕,出渣出铁,冷凝分层,得到沉淀合金饼和冶炼渣。虽然此方法冶炼工艺简单,但钒收率相对偏低,产品质量完全受控于原料品质和配料精确度。随着冶炼设备大型化、自动化,使得单炉多期加料,分次出渣成为可能,促进了两步铝热法钒铁冶炼工艺的提出与推广。与传统工艺相比,两步法工艺第一步混料时配铝量高于理论计算值(配铝系数大于1.0),能够改变铝热反应平衡,加速冶炼贫渣时间,从提高钒氧化物的还原率,得到钒含量更低的贫渣;出掉大部分渣后,加入配铝系数较低的V2O5混合料进行第二步精炼工艺,消耗掉合金相中过剩的铝,从而获得合格钒铁合金产品和部分钒含量较高的富渣。
为了能够兼顾以V2O5为原料冶炼钒铁放热量大、冶炼效率高,以及以V2O3为原料冶炼钒铁耗铝量低、产渣量少的冶炼特点,并优化上游产业链结构,采用混合钒氧化物进行多个配铝系数条件下的两步法冶炼操作。
(1)、专利CN 101724752 A介绍了一种中钒铁的冶炼方法:将底料成分为6.5~8.5份V2O3,3.5~4份铝,1.5~2份石灰,以及2.5~3份铁混合并冶炼,反应平稳后加入20~40份V2O5,15~40份V2O3,23~28份铝,10~13份石灰,4~5份萤石,30~40份铁的主料进行精炼。该发明充分利用了反应热,简化了工艺过程,降低了炉渣粘度,钒铁冶炼收率稳步提高达96%以上。但是该方法前期采用低价钒氧化物冶炼热量不足,导致熔渣性能恶化;同时萤石的加入会在一定程度上加速炉衬侵蚀;
(2)、专利CN101100720 A将含钒物料(偏钒酸钙、焦钒酸钙、正钒酸钙中的至少一种,全钒品位为24%~43%)100份、铝粉23~28份,铁质料23~27份混合后冶炼。该发明工艺冶炼的钒铁质量好,钒回收率高,冶炼过程中不产生废水污染,适应高经济价值、低环境污染的新型工业需要。但由于钒酸钙全钒品位偏低,产出率不高,不利于高效节能的冶炼目的,加大了工业化难度;
(3)、专利CN 102115821 A提供的一种钒铁冶炼方法,将15wt%~35wt%的石灰,15wt%~35wt%的铝以及余量的V2O5和/或V2O5混合后,加入预定量的铁,冶炼渣中钒含量低于0.2wt%时出渣,出渣量占总渣量的85%~90%,再将精炼料加入电炉进行精练操作,该发明方法能够得到97%~99%的钒回收率,并能降低能耗。但该工艺渣中钒含量控制难度大,并且仍然没能从根本上解决钒铁冶炼收率和配铝量之间的矛盾。
从上述公开的技术来看,目前钒铁冶炼主要采用铝热还原法,主要涉及到钒氧化物铝热反应的一步还原过程。本工艺以V2O5和V2O5混和钒氧化物为原料,通过多次加料,两次出渣,调整配铝量等手段进行钒铁合金的制备,具有热利用率高,缩短单位质量冶炼时间,并能大幅降低钒在渣中的损失,提高钒铁的冶炼收率。
发明内容
本发明的目的在于提供一种以混合钒氧化物为原料进行钒铁制备的方法。为实现上述目的,本发明采用技术方案为一种钒铁合金的制备方法。
该方法包括以下步骤:
以含钒氧化物的混合物为原料,采用分三期加料和分两次出渣的方法,按各第一、二、三期分别配制混合料,分期将配制的混合料加入到电炉中进行冶炼,第一期和第二期冶炼完毕后分别出渣一次;所述含钒氧化物为V2O3和V2O5,V2O3和V2O5质量比为7:1~0:8。
其中,上述方法中第一、二、三期加料时各期的混合料中使用含钒氧化物的质量比为4:3:1。
其中,上述方法中第一、二、三期混合料中的石灰配入量与钒的氧化物质量比各为1~3:10。
其中,上述方法中第一、二、三期混合料中的铁配入量与钒的氧化物质量比各为11~13:20。
其中,上述方法中铝的配入量按如下规则:第一期和第二期混合料中的配铝系数各为1.05~1.25;在保证三期混合料中的总配铝系数为1~1.05的前提下,第三期混合料的配铝系数为0~1.0。
其中,上述方法中第一期和第二期混合料的配铝系数相同。
其中,上述方法中当第一期和第二期混合料的配铝系数都分别为1.05、1.10、1.15或1.20时,渣中的钒含量分别控制到1.5%~2.5%、1.0%~1.8%、0.4%~1.0%或0.1%~0.6%后分别进行出渣操作。
其中,上述方法中当前两期出渣结束后,加入第三期混合料进行电弧精炼,当渣中钒含量降低到2.5%以下时,出炉浇铸。
其中,上述方法中的电炉为电弧炉。优选使用倾翻电弧炉。
进一步的,本发明方法包括以下步骤:
a、将按配比要求称量好的合格钒氧化物与铝、铁、石灰于混料罐中按冶炼期次分别进行混料,混料后按加料顺序分罐运至冶炼区;
b、第一期和第二期电弧冶炼:将第一期冶炼混合料加入倾翻电炉,通电引弧,待反应完全,渣中钒含量达到控制标准时,第一次出渣;
出渣结束后加入第二期冶炼混合料,当钒含量降低到预定目标值时,第二次出渣。
c、第二期出渣操作结束后,加入第三期混合料进行精炼操作,当渣中钒含量降低到一定水平且稳定不变时倾翻炉体,渣铁同出。
d、出炉浇铸,待合金和精炼渣冷凝分层后,得成分合格的钒铁锭。
本发明有益效果在于:
(1)通过改变钒氧化物原料配比,可以兼顾V2O5冶炼钒铁放热量大、冶炼效率高,V2O3冶炼钒铁耗铝量低、产渣量少的特点;
(2)冶炼前期提高配铝量,能够改善冶炼动力学和热力学条件,在加快铝热反应的同时,促进反应平衡向合金生成物方向移动,降低钒在渣中的损失;钒冶炼收率可达98.26%,有效的提高了钒的收率。
(3)多期冶炼、两次出渣的冶炼方式能够提高的设备热利用率和单位产品的生产效率。
具体实施方式
下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限制在所述的实施例范围之中。
本发明方法具体可按以下方法实施:
a、将称量好的合格钒氧化物与铝、铁、石灰于混料罐中按冶炼期次进行混料,混料后按加料顺序分罐运至冶炼区;
b、第一期和第二期电弧冶炼:将第一期冶炼混合料加入倾翻电炉,通电引弧,待反应完全,渣中钒含量达到控制标准时,第一次出渣;出渣结束后加入第二期冶炼混合料,当钒含量降低到预定目标值时,第二次出渣;
c、第二期出渣操作结束后,加入第三期混合料进行精炼操作,当渣中钒含量降低到一定水平且稳定不变时倾翻炉体,渣铁同出;
d、出炉浇铸,待合金和精炼渣冷凝分层后,得成分合格的钒铁锭。
即是采用混合钒氧化物(V2O5或者V2O3与V2O5的混合物)为原料,采用多期加料和多次出渣的方法,分三期将混合料加入到倾翻电弧炉中进行冶炼,每期氧化钒的质量比为4:3:1。
第一期和第二期冶炼完毕后分别出渣一次。冶炼各期石灰配入量与钒氧化物质量比为1~3:10,铁配入量与钒氧化物质量比为11~13:20。铝的配入量按如下规则:第一期和第二期原料配铝系数(理论配铝量的倍数)相同,且变化范围为1.05~1.25;配铝系数为1.05,1.10,1.15和1.20时,贫渣钒含量分别控制到1.5%~2.5%,1.0%~1.8%,0.4%~1.0%和0.1%~0.6%,后进行出渣操作;在保证单炉总配铝系数为1~1.05的前提下,第三期原料配铝系数为0~1.0,当前两期出渣结束后,加入第三期混合料进行电弧精炼,当渣中钒含量降低到2.5%以下时,出炉浇铸。配铝系数是针对两种钒氧化物的统一系数,实际配铝量按照使用V2O3和V2O5的质量分别计算。
以下使用实施例对本发明进行更进一步的具体说明:
本发明实施例中所用主要冶炼原料成分要求如表1所示。
表1 原料成分要求
原料 成分要求
V2O3 TV>62.0%,S≤0.04%,P≤0.04%,C≤0.04%
V2O5(片钒) V2O5≥97.0%,S≤0.05%,P≤0.05%,粒度≤55×55×5mm
Al>99.5%,Fe<0.20%,Cu≤0.02%
石灰 CaO≥85%,S≤0.03%,C≤0.40%,P≤0.03%,SiO2≤2.0%,粒度30~50mm
TFe>97%,C≤0.30%,P≤0.03%,Si≤0.04%
实施例1
以V2O5作为冶炼原料(共160份)时,第一期和第二期配铝系数为1.05,第三期原料配铝系数为1.0,石灰配入量与钒氧化物质量比为1.5:10,铁配入量与钒氧化物质量比为11:20。对符合原料成分要求的V2O5、铝、铁、石灰进行混料,分3期加料,加料顺序为4:3:1,进行两次出渣和一次出铁操作。第一期冶炼原料加入V2O580份,铝41份,铁44份,石灰12份;第二期原料为V2O560份,铝30份,铁屑33份,石灰9份;第三期原料组成为V2O520份,铝10份,铁屑11份,石灰3份。前两次出渣渣量分别为76份和65份,贫渣钒含量分别为2.03%和2.09%,出铁前渣中钒含量为2.26%。单炉冶炼通电时间180min,钒冶炼收率95.79%,铝耗81份。对出炉冷却后的钒铁合金进行成分分析结果显示,合金中钒、铝含量分别为51.6wt%,铝含量为1.4wt%,碳、硅、磷、硫、锰等成分均符合FeV50-A国家标准。
实施例2
V2O3和V2O5配比为7:1(V2O3140份;V2O520份),第一期和第二期原料配铝系数1.05,第三期原料配铝系数为1.0,石灰配入量与钒氧化物质量比为1.5:10,铁配入量与钒氧化物质量比为13:20,并按要求进行混料。第一期加入V2O520份,V2O360份,铝34份,铁49份,石灰16份;第二期加入V2O360份,铝21份,铁39份,石灰9份;第三期原料组成为V2O520份,铝10份,铁屑11份,石灰3份。前两次出渣量分别为71份和52份,渣中钒含量分别为1.73%和1.87%;第三期出铁前渣中钒含量为2.02%。单炉冶炼通电时间220min,较单独使用V2O5延长40min,钒冶炼收率96.24%,铝耗65份。钒铁合金成分分析结果显示,合金中钒、铝含量分别为钒51.3wt%,铝含量为0.9wt%,碳、硅、磷、硫、锰等成分均符合FeV50-A国家标准。
实施例3
V2O3和V2O5配比为6:2(V2O3120份;V2O540份),前两期配铝系数调整为1.10,第三期配铝系数为0.80,石灰配入量与钒氧化物质量比为2:10。第一期加入V2O520份,V2O360份,铝35份,铁50份,石灰16份;第二期加入V2O360份,铝20份,铁38份,石灰9份;第三期加入V2O520份,铝8份,铁11份,石灰5份。前两次出渣渣量分别为71份和51份,渣中钒含量分别为0.85%和0.73%;第三期出铁前渣中钒含量为1.85%,渣中平均钒含量1.24%。单炉贫渣时间165min,精炼时间47min,冶炼总时间212min,较单独使用V2O5延长32min,钒冶炼收率97.71%,铝耗63份。合金铝含量为0.8%,合金钒含量51.2%,碳、硅、磷、硫、锰等成分均符合FeV50-A国家标准。
实施例4
V2O3和V2O5配比为6:2(V2O3120份;V2O540份),前两期配铝系数为1.20,第三期配铝系数为0.30,石灰配入量与钒氧化物质量比为2:10。第一期加入V2O520份,V2O360份,铝36份,铁50份,石灰16份;第二期加入V2O360份,铝24份,铁39份,石灰9份;第三期加入V2O520份,铝3份,铁11份,石灰5份。前两次出渣量分别为71份和48份,渣中钒含量分别为0.37%和0.48%;第三期出铁前渣中钒含量为1.79%,渣中平均钒含量0.88%。单炉贫渣时间146min,精炼时间94min,冶炼总时间240min,较单独使用V2O5延长60min,钒冶炼收率98.26%,铝耗63份。合金铝含量为0.2%,合金钒含量51.6%,碳、硅、磷、硫、锰等成分均符合FeV50-A国家标准。

Claims (4)

1.一种钒铁合金的制备方法,其特征在于包括以下步骤:
以含钒氧化物的混合物为原料,采用分三期加料和分两次出渣的方法,按各第一、二、三期分别配制混合料,分期将配制的混合料加入到电炉中进行冶炼,电炉为倾翻电弧炉;第一期和第二期冶炼完毕后分别出渣一次;当前两期出渣结束后,加入第三期混合料进行电弧精炼,当渣中钒含量降低到2.5%以下时,出炉浇铸;
所述含钒氧化物包括V2O3和V2O5,V2O3和V2O5质量比为7:1~0:8;
所述第一、二、三期加料时各期的混合料中使用的含钒氧化物的质量比为4:3:1;
铝的配入量按如下规则:第一期和第二期原料配铝系数各为1.05~1.25;在保证三期的总配铝系数为1~1.05的前提下,第三期混合料的配铝系数为0~1.0;
所述第一、二、三期混合料中的石灰配入量与钒的氧化物质量比各为1~3:10;
所述第一、二、三期混合料中的铁配入量与钒的氧化物质量比各为11~13:20。
2.根据权利要求1所述的一种钒铁合金的制备方法,其特征在于:第一期和第二期混合料配铝系数相同。
3.根据权利要求2所述的一种钒铁合金的制备方法,其特征在于:当第一期和第二期混合料配铝系数都分别为1.05、1.10、1.15或1.20时,渣中的钒含量分别控制到1.5%~2.5%、1.0%~1.8%、0.4%~1.0%或0.1%~0.6%后分别进行出渣操作。
4.根据权利要求3所述的一种钒铁合金的制备方法,其特征在于包括如下步骤:
a、将按配比要求称量好的合格钒氧化物与铝、铁、石灰于混料罐中按冶炼期次分别进行混料,混料后按加料顺序分罐运至冶炼区;
b、第一期和第二期电弧冶炼:将第一期冶炼混合料加入倾翻电炉,通电引弧,待反应完全,渣中钒含量达到控制标准时,第一次出渣;
出渣结束后加入第二期冶炼混合料,当钒含量降低到预定目标值时,第二次出渣;
c、第二期出渣操作结束后,加入第三期混合料进行精炼操作,当渣中钒含量降低到2.5%以下且稳定不变时倾翻炉体,渣铁同出;
d、出炉浇铸,待合金和精炼渣冷凝分层后,得成分合格的钒铁锭。
CN201510496769.1A 2015-08-13 2015-08-13 一种钒铁合金的制备方法 Active CN105018828B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510496769.1A CN105018828B (zh) 2015-08-13 2015-08-13 一种钒铁合金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510496769.1A CN105018828B (zh) 2015-08-13 2015-08-13 一种钒铁合金的制备方法

Publications (2)

Publication Number Publication Date
CN105018828A CN105018828A (zh) 2015-11-04
CN105018828B true CN105018828B (zh) 2017-09-08

Family

ID=54409124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510496769.1A Active CN105018828B (zh) 2015-08-13 2015-08-13 一种钒铁合金的制备方法

Country Status (1)

Country Link
CN (1) CN105018828B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105886787B (zh) * 2016-05-13 2018-02-23 攀钢集团攀枝花钢铁研究院有限公司 一种从含钒刚玉渣中回收钒的方法
CN106011601B (zh) * 2016-07-07 2017-12-22 攀钢集团攀枝花钢铁研究院有限公司 冶炼钒铁的炉外精炼方法
CN106435222A (zh) * 2016-10-08 2017-02-22 牛益庆 一种硅铝还原钒铁的冶炼方法
CN106435223A (zh) * 2016-10-12 2017-02-22 攀钢集团攀枝花钢铁研究院有限公司 利用倾翻炉电铝热法制备低铝中钒铁的制备方法
CN107354327A (zh) * 2017-07-21 2017-11-17 湖南众鑫新材料科技股份有限公司 一种高钒铁的高效生产工艺
CN107760887A (zh) * 2017-10-30 2018-03-06 攀钢集团攀枝花钢铁研究院有限公司 一种利用倾翻炉冶炼低铝中钒铁的方法
CN107964599B (zh) * 2017-11-30 2020-02-04 攀钢集团攀枝花钢铁研究院有限公司 能够提高钒收率的直筒炉钒铁冶炼方法
CN109182886B (zh) * 2018-09-27 2020-09-25 成都先进金属材料产业技术研究院有限公司 降低钒铁冶炼炉渣中残留钒含量的方法
CN110747359B (zh) * 2019-10-25 2021-08-24 攀钢集团钒钛资源股份有限公司 钒铁的冶炼方法
CN111254344B (zh) * 2020-03-06 2021-03-19 攀钢集团攀枝花钢铁研究院有限公司 钒铁合金的制备方法
CN115369210A (zh) * 2022-09-02 2022-11-22 攀钢集团西昌钒制品科技有限公司 一种大型倾翻炉冶炼钒铁渣中钒含量控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1343795A (zh) * 2000-09-21 2002-04-10 攀枝花攀宏钒制品有限公司 V2O3电铝热法冶炼FeV50工艺
CN101724752A (zh) * 2009-12-29 2010-06-09 四川省川威集团有限公司 中钒铁的冶炼方法
CN102115821A (zh) * 2010-09-13 2011-07-06 攀钢集团钢铁钒钛股份有限公司 冶炼钒铁的方法
CN103031484A (zh) * 2011-09-30 2013-04-10 攀钢集团有限公司 一种冶炼钒铁的方法
CN104532105A (zh) * 2015-01-04 2015-04-22 攀钢集团攀枝花钢铁研究院有限公司 倾翻炉电铝热法制备钒铁的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1343795A (zh) * 2000-09-21 2002-04-10 攀枝花攀宏钒制品有限公司 V2O3电铝热法冶炼FeV50工艺
CN101724752A (zh) * 2009-12-29 2010-06-09 四川省川威集团有限公司 中钒铁的冶炼方法
CN102115821A (zh) * 2010-09-13 2011-07-06 攀钢集团钢铁钒钛股份有限公司 冶炼钒铁的方法
CN103031484A (zh) * 2011-09-30 2013-04-10 攀钢集团有限公司 一种冶炼钒铁的方法
CN104532105A (zh) * 2015-01-04 2015-04-22 攀钢集团攀枝花钢铁研究院有限公司 倾翻炉电铝热法制备钒铁的方法

Also Published As

Publication number Publication date
CN105018828A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
CN105018828B (zh) 一种钒铁合金的制备方法
CN102517472B (zh) 高钛低硅的钛硅铁合金及其制备方法
CN104532105B (zh) 倾翻炉电铝热法制备钒铁的方法
CN101724752B (zh) 中钒铁的冶炼方法
CN100469932C (zh) 一种v2o5直接合金化炼钢工艺
CN101724751B (zh) 高钒铁的冶炼方法
CN109825704B (zh) 钒铁合金的冶炼方法
CN105483314B (zh) 一种提高转炉终点残锰含量的控制方法
CN103397208B (zh) 一种电铝热法冶炼钒铁的工艺
CN105567966B (zh) 倾翻炉冶炼钒铁的方法
CN103045928A (zh) 电铝热法生产钒铁的方法
CN106544467A (zh) 一种高铁水比例电炉冶炼中高合金低磷钢方法
CN104141025B (zh) 电铝热法钒铁浇铸脱铝的方法
CN105256153B (zh) 氧化钛精矿冶炼钛渣的方法
CN106086608B (zh) 一种利用碳锰熔渣生产低碳锰硅合金的方法
CN109182886B (zh) 降低钒铁冶炼炉渣中残留钒含量的方法
CN107964599B (zh) 能够提高钒收率的直筒炉钒铁冶炼方法
CN102559984B (zh) 一种双渣法高拉碳出钢生产高碳钢的方法
CN102936635B (zh) 一种从含钛铁精矿中提取铁和钛的方法
CN108411063A (zh) 一种低铁水比例条件下电炉冶炼低磷钢的方法
CN103421923B (zh) 一种含钒铁水的冶炼方法
CN104087703B (zh) 一种钒钛矿金属化球团的冶炼方法
CN103468856A (zh) 一种钢的钼合金化方法
CN103627846A (zh) 氧化钼直接合金化炼钢的方法
CN110747359B (zh) 钒铁的冶炼方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant