CN105015769A - Multi-rotor craft - Google Patents

Multi-rotor craft Download PDF

Info

Publication number
CN105015769A
CN105015769A CN201510531441.9A CN201510531441A CN105015769A CN 105015769 A CN105015769 A CN 105015769A CN 201510531441 A CN201510531441 A CN 201510531441A CN 105015769 A CN105015769 A CN 105015769A
Authority
CN
China
Prior art keywords
rotor
synchronous pulley
engine
rotating shaft
secondary gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510531441.9A
Other languages
Chinese (zh)
Inventor
钱凡烽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xu Bonan
Original Assignee
Xu Bonan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xu Bonan filed Critical Xu Bonan
Priority to CN201510531441.9A priority Critical patent/CN105015769A/en
Publication of CN105015769A publication Critical patent/CN105015769A/en
Pending legal-status Critical Current

Links

Abstract

The invention belongs to the technical field of aviation products, particularly relates to a multi-rotor craft and at least solves the problems that much energy is consumed and the weight carrying capability and the endurance of a multi-shaft rotor craft are limited due to the fact that multiple motors are adopted for driving. The multi-rotor craft comprises an engine and a power distribution and drive system, wherein the power distribution and drive system is used for transmitting drive power of the engine to multiple rotor assemblies to drive the multiple rotor assemblies to rotate simultaneously, so that the multi-shaft rotors are driven, and the weight and the energy loss of the craft can be reduced.

Description

A kind of multi-rotor aerocraft
Technical field
The present invention relates to aeronautical product technical field, be specifically related to a kind of multi-rotor aerocraft.
Background technology
Multiaxis multi-rotor aerocraft operates on it control by wireless remote control system and independent flight control system, to realize landing, all around flight, acceleration and deceleration and the direction controlling etc. of aircraft.Manipulative capability, stability, effectively mission payload and cruise duration are the important indicators investigating multiaxis multi-rotor aerocraft, and under identical manipulative capability and stability condition, user pursues larger effective mission payload and long-time duration flight ability.
Existing multiaxis rotor craft product adopts every axle individual drive, controls to realize flight control by the rotating speed of every axis drive motor.As the four popular rotor aerial photography aircraft that are in great demand on the market, be all every axle individual drive, realize flight by the drive motor controlling every axle.But, use multiple motor-driven mode can consume more energy, thus limit load-carrying ability and the cruise duration of multiaxis rotor craft; Meanwhile, the speed changed due to motor speed will be slower than the speed changing pitch, makes the power limited of drive motor, and response characteristic is difficult to improve.
Summary of the invention
The object of this invention is to provide a kind of multi-rotor aerocraft, to solve above-mentioned at least one technical matters.
Technical scheme of the present invention is:
A kind of multi-rotor aerocraft, comprise engine, multiple rotor assembly and flight control system, the quantity of described engine is one, and described multi-rotor aerocraft also comprises:
Power distribution driving system, for the propulsive effort of described engine being passed to respectively multiple described rotor assembly, rotates to drive multiple described rotor assembly simultaneously.
Alternatively, the quantity of described rotor assembly is four, is arranged in parallel along same level;
Described power distribution driving system comprises:
An one-level gear, is fixedly installed on the output shaft of described engine;
Four secondary gears, the circumference along same circumference distributes, and along described circumferentially arbitrary neighborhood two described secondary gears between be meshed, described one-level gear engages with secondary gear described in one of them;
Four the first synchronous pulleys, corresponding with four described secondary gear positions, each described first synchronous pulley is coaxially fixed with corresponding described secondary gear by first rotating shaft, and described first shaft axis respectively with the dead in line of described first synchronous pulley and described secondary gear;
Four the second synchronous pulleys, each described second synchronous pulley is connected with a described rotor assembly, and for driving described rotor assembly to rotate, and each described second synchronous pulley is connected with described first synchronous pulley by belt.
Alternatively, described one-level gear between four described secondary gears, and engages with secondary gear described in one of them.
Alternatively, described engine is positioned at described secondary gear tip position.
Alternatively, each described first synchronous pulley is positioned at the bottom of coupled described secondary gear.
Alternatively, described engine is the dynamic engine of oil.
Alternatively, described rotor assembly comprises:
Second rotating shaft, is fixedly installed on described second synchronous pulley axle center place;
Rotor mounting clamp pedestal, is fixedly installed on one end end of described second rotating shaft away from described second synchronous pulley;
Two rotor mounting clamps, symmetry is arranged on described rotor mounting clamp pedestal, and all rotates along described rotor mounting clamp pedestal place axis, and two described rotor mounting clamps are projected with first hanger respectively along contrary direction;
Rotor, is arranged on described rotor mounting clamp;
Pushing disk, to be enclosed within described second rotating shaft and between described rotor mounting clamp pedestal and described second synchronous pulley, on described pushing disk, overhanging two symmetrical the second hangers, are hinged with connecting rod between each described first hanger and described second lug of respective side.
Alternatively, described flight control system comprises four Servo-controllers, and each Servo-controller slides in described second rotating shaft for driving a described pushing disk.
Beneficial effect of the present invention:
In multi-rotor aerocraft of the present invention, only arrange an engine, single engine realizes the driving to multiaxis rotor by power distribution driving system, can decrease aircraft own wt and energy loss.
Accompanying drawing explanation
Fig. 1 is the structural representation of multi-rotor aerocraft of the present invention;
Fig. 2 is that multi-rotor aerocraft medium power of the present invention distributes driveline components enlarged diagram;
Fig. 3 is rotor assembly part enlarged diagram in multi-rotor aerocraft of the present invention.
Detailed description of the invention
Here will be described exemplary embodiment in detail, its sample table shows in the accompanying drawings.When description below relates to accompanying drawing, unless otherwise indicated, the same numbers in different accompanying drawing represents same or analogous key element.
As shown in Figure 1 to Figure 3, a kind of multi-rotor aerocraft provided by the invention, comprises multiple rotor assembly, flight control system, an engine 1 and power distribution driving system etc.
Power distribution driving system is used for the propulsive effort of engine 1 to be passed to multiple rotor assembly respectively, to drive multiple rotor assembly to rotate simultaneously, thus drives aircraft flight; Realize the driving to multiaxis rotor by means of only an engine 1, aircraft own wt and energy loss can be decreased.
In multi-rotor aerocraft of the present invention, rotor assembly can comprise multiple, and preferred even number, such as four, six, eight etc.; In the present embodiment, the quantity of rotor assembly is four, is arranged in parallel along same level, and can arrange according to the structure of known multiple four rotor wing unmanned aerial vehicles.
Power distribution driving system comprises one-level gear 2, secondary gear 3, first synchronous pulley 4, second synchronous pulley 6 and belt etc.
One-level gear 2 is one, is fixedly installed on the output shaft of engine 1.Wherein, engine 1 can be electronic or oily dynamic engine; In the present embodiment, adopt the dynamic engine of oil to drive four rotor assemblies, effective mission payload can be increased, extend the flight time, be particularly useful for long-time and remote job.
Four secondary gears 3 distribute along the circumference of same circumference, and are meshed between two secondary gears 3 circumferentially going up arbitrary neighborhood, and one-level gear 2 engages with one of them secondary gear 3.Drive a secondary gear 3 to rotate by this one-level gear 2, then drive other three secondary gears 3 to rotate by this secondary gear 3; And, according to the connection structure of four secondary gears 3, wherein two separately secondary gear 3 for rotating clockwise, two other separately secondary gear 3 for rotating counterclockwise, thus the reactive torque power that himself rotates generation can be eliminated, avoiding aircraft to spin cannot directed fly.
Further, engine 1 can be arranged on secondary gear 3 top or bottom position, and one-level gear 2 can be arranged on the lateral surface of the entirety that four secondary gears 3 are formed, or is arranged in the space of the centre portion that four secondary gears 3 surround; In the present embodiment, engine 1 is arranged on secondary gear 3 tip position, and one-level gear 2 is arranged in the space of the centre portion that four secondary gears 3 surround, and engages with one of them secondary gear 3.
First synchronous pulley 4 is four, corresponding with four secondary gear 3 positions; Each first synchronous pulley 4 is coaxially fixed with corresponding secondary gear 3 by first rotating shaft 5, and the first rotating shaft 5 axis respectively with the dead in line of the first synchronous pulley 4 and secondary gear 3.
Further first synchronous pulley 4 can be arranged on secondary gear 3 top or bottom position equally, in the present embodiment, is be arranged on bottom secondary gear 3; In multi-rotor aerocraft of the present invention, engine 1 and the first synchronous pulley 4 are separately positioned on secondary gear 3 top and bottom, and make aircraft integral structure compacter, volume is less.
Second synchronous pulley 6 comprises four equally, and each second synchronous pulley 6 is connected with a rotor assembly, and for driving rotor assembly to rotate, and each second synchronous pulley 6 is connected by the first synchronous pulley 4 that belt is corresponding with.By adopting the mode of belt pulley and belt pulley to drive the work of rotor assembly, external interference can be prevented to be passed to engine by rotor, ensureing the stability of the dynamic engine work of oil.Further, bel-drivenn mechanism, can make to be folded to mainframe lower end by outward extending four support verticals of mainframe, thus reduces the space size of air vehicle overall, convenient transport and carrying.
Rotor assembly of the present invention comprises the parts such as the second rotating shaft 7, rotor mounting clamp pedestal 8, rotor mounting clamp 9 and pushing disk 11.
Second rotating shaft 7 is fixedly installed on the second synchronous pulley 6 axle center place, follows the second synchronous pulley 6 synchronous axial system.
Rotor mounting clamp pedestal 8 is fixedly installed on one end end of the second rotating shaft 7 away from the second synchronous pulley 6; Rotor mounting clamp 9 comprises two, and symmetry is arranged on rotor mounting clamp pedestal 8, and all rotates along rotor mounting clamp pedestal 8 place axis, and two rotor mounting clamps 8 are projected with first hanger 10 respectively along contrary direction; Rotor mounting clamp 9 is provided with rotor, drives rotor to rotate at its axis direction by rotor mounting clamp 9.
Pushing disk 11 to be enclosed within the second rotating shaft 7 and between rotor mounting clamp pedestal 8 and the second synchronous pulley 6, and on pushing disk 11, overhanging two symmetrical the second hangers 12, are hinged with connecting rod 13 between each first hanger 10 and the second lug 12 of respective side.
Flight control system of the present invention comprises four Servo-controller (not shown) and flight control desk (not shown), and each Servo-controller slides in the second rotating shaft 7 along the vertical direction for driving a pushing disk 11.Servo-controller can drive pushing disk 11 to slide by multiple applicable structure; In the present embodiment, the Control arm of a sculler arm and a L shape can be set; Sculler arm is slidably located in the second rotating shaft 7, firmly rabbets with pushing disk 11, thus drives pushing disk 11 to move up and down; The protruding cylindrical boss of sculler arm, this cylindrical boss coordinates with the hole of Control arm end and forms revolute, and the Control arm other end is connected with sculler arm, and the other end is connected with Servo-controller, intermediate point is arranged on rotor assembly pedestal, can rotate by the anchor shaft around intermediate point place.In addition, Servo-controller can also be used for controlling the dynamic engine speed speed of oil.
In addition, flight control desk can be multiple applicable structure, for controlling the start of Servo-controller.Servo-controller is arranged on mainframe, is electrically connected with flight control desk, and the given impulse singla of flight control desk drives steering wheel motion, accomplishes machinery and electrically combines, and reaches and controls aircraft object.Handle Servo-controller by flight control desk and pull Control arm, Control arm pulls sculler arm to move downward, thus drive pushing disk 11 to move up and down, pushing disk 11 pulls two rotor mounting clamps 9 to rotate by connecting rod 13, drive rotor around rotor mounting clamp pedestal 8 central axis, thus change pitch, reach and change rotor lift size.
The above; be only the specific embodiment of the present invention, but protection scope of the present invention is not limited thereto, is anyly familiar with those skilled in the art in the technical scope that the present invention discloses; the change that can expect easily or replacement, all should be encompassed within protection scope of the present invention.Therefore, protection scope of the present invention should be as the criterion with the protection domain of described claim.

Claims (8)

1. a multi-rotor aerocraft, comprises engine (1), multiple rotor assembly and flight control system, it is characterized in that, the quantity of described engine (1) is one, and described multi-rotor aerocraft also comprises:
Power distribution driving system, for the propulsive effort of described engine (1) is passed to multiple described rotor assembly respectively, rotates to drive multiple described rotor assembly simultaneously.
2. multi-rotor aerocraft according to claim 1, is characterized in that, the quantity of described rotor assembly is four, is arranged in parallel along same level;
Described power distribution driving system comprises:
An one-level gear (2), is fixedly installed on the output shaft of described engine (1);
Four secondary gears (3), circumference along same circumference distributes, and along described circumferentially arbitrary neighborhood two described secondary gears (3) between be meshed, described one-level gear (2) is engaged with secondary gear described in one of them (3);
Four the first synchronous pulleys (4), corresponding with four described secondary gear (3) positions, each described first synchronous pulley (4) is coaxially fixed with corresponding described secondary gear (3) by first rotating shaft (5), and described first rotating shaft (5) axis respectively with the dead in line of described first synchronous pulley (4) and described secondary gear (3);
Four the second synchronous pulleys (6), each described second synchronous pulley (6) is connected with a described rotor assembly, for driving described rotor assembly to rotate, and each described second synchronous pulley (6) is connected with described first synchronous pulley (4) by belt.
3. multi-rotor aerocraft according to claim 2, is characterized in that, described one-level gear (2) is positioned between four described secondary gears (3), and engages with secondary gear described in one of them (3).
4. multi-rotor aerocraft according to claim 3, is characterized in that, described engine (1) is positioned at described secondary gear (3) tip position.
5. multi-rotor aerocraft according to claim 4, is characterized in that, each described first synchronous pulley (4) is positioned at the bottom of coupled described secondary gear (3).
6. the multi-rotor aerocraft according to any one of claim 1-5, is characterized in that, described engine (1) is the dynamic engine of oil.
7. multi-rotor aerocraft according to claim 6, is characterized in that, described rotor assembly comprises:
Second rotating shaft (7), is fixedly installed on described second synchronous pulley (6) axle center place;
Rotor mounting clamp pedestal (8), is fixedly installed on one end end of described second rotating shaft (7) away from described second synchronous pulley (6);
Two rotor mounting clamps (9), symmetry is arranged on described rotor mounting clamp pedestal (8), and all rotate along described rotor mounting clamp pedestal (8) place axis, two described rotor mounting clamps (8) are projected with first hanger (10) respectively along contrary direction;
Rotor, is arranged on described rotor mounting clamp (9);
Pushing disk (11), be enclosed within described second rotating shaft (7) go up and be positioned between described rotor mounting clamp pedestal (8) and described second synchronous pulley (6), upper overhanging two symmetrical the second hangers (12) of described pushing disk (11), are hinged with connecting rod (13) between each described first hanger (10) and described second lug (12) of respective side.
8. multi-rotor aerocraft according to claim 7, is characterized in that, described flight control system comprises four Servo-controllers, and each Servo-controller is for driving a described pushing disk (11) in the upper slip of described second rotating shaft (7).
CN201510531441.9A 2015-08-26 2015-08-26 Multi-rotor craft Pending CN105015769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510531441.9A CN105015769A (en) 2015-08-26 2015-08-26 Multi-rotor craft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510531441.9A CN105015769A (en) 2015-08-26 2015-08-26 Multi-rotor craft

Publications (1)

Publication Number Publication Date
CN105015769A true CN105015769A (en) 2015-11-04

Family

ID=54406165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510531441.9A Pending CN105015769A (en) 2015-08-26 2015-08-26 Multi-rotor craft

Country Status (1)

Country Link
CN (1) CN105015769A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105270618A (en) * 2015-11-04 2016-01-27 中航维拓(北京)科技有限责任公司 Variable-pitch coaxial oil-driven six-rotor helicopter
CN106864740A (en) * 2017-02-13 2017-06-20 清华大学 The drive mechanism and method of axle progress of disease pitch quadrotor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110206513A1 (en) * 2010-02-24 2011-08-25 Sikorsky Aircraft Corporation Drive Mechanisms For Variable Diameter Rotor Systems
CN203318679U (en) * 2012-09-13 2013-12-04 吴松 Co-engine multi-shaft multi-rotor craft
CN203780797U (en) * 2014-03-24 2014-08-20 田屋科技有限公司 Double-motor variable-pitch multi-rotor aircraft
CN104139860A (en) * 2014-04-23 2014-11-12 李晓宇 Multi-shaft rotor aircraft and transmission mechanism thereof
CN104691753A (en) * 2014-08-07 2015-06-10 安阳全丰航空植保科技有限公司 Oil-relay multi-rotor helicopter driving system
CN204452933U (en) * 2015-02-10 2015-07-08 曹兵 The many rotor wing unmanned aerial vehicles of belt-driving
CN204527626U (en) * 2015-03-19 2015-08-05 河南金原碟科技有限公司 Bevel gear set, shaft drive four rotor wing unmanned aerial vehicle
CN205076038U (en) * 2015-08-26 2016-03-09 许博男 Multi -rotor -wing aircraft

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110206513A1 (en) * 2010-02-24 2011-08-25 Sikorsky Aircraft Corporation Drive Mechanisms For Variable Diameter Rotor Systems
CN203318679U (en) * 2012-09-13 2013-12-04 吴松 Co-engine multi-shaft multi-rotor craft
CN203780797U (en) * 2014-03-24 2014-08-20 田屋科技有限公司 Double-motor variable-pitch multi-rotor aircraft
CN104139860A (en) * 2014-04-23 2014-11-12 李晓宇 Multi-shaft rotor aircraft and transmission mechanism thereof
CN104691753A (en) * 2014-08-07 2015-06-10 安阳全丰航空植保科技有限公司 Oil-relay multi-rotor helicopter driving system
CN204452933U (en) * 2015-02-10 2015-07-08 曹兵 The many rotor wing unmanned aerial vehicles of belt-driving
CN204527626U (en) * 2015-03-19 2015-08-05 河南金原碟科技有限公司 Bevel gear set, shaft drive four rotor wing unmanned aerial vehicle
CN205076038U (en) * 2015-08-26 2016-03-09 许博男 Multi -rotor -wing aircraft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105270618A (en) * 2015-11-04 2016-01-27 中航维拓(北京)科技有限责任公司 Variable-pitch coaxial oil-driven six-rotor helicopter
CN105270618B (en) * 2015-11-04 2017-07-25 中航维拓(北京)科技有限责任公司 A kind of coaxial six heligyro of dynamic displacement of oil
CN106864740A (en) * 2017-02-13 2017-06-20 清华大学 The drive mechanism and method of axle progress of disease pitch quadrotor

Similar Documents

Publication Publication Date Title
CN203318679U (en) Co-engine multi-shaft multi-rotor craft
CN104760696B (en) A kind of multi-rotor aerocraft
CN204979218U (en) Many rotors of oil -electricity hybrid vehicle unmanned vehicles
CN105015768A (en) Multi-rotor aircraft
CN103803064A (en) Belt-transmission four-rotor-wing aircraft
CN111332462B (en) Portable small-sized cylinder type coaxial reverse-propeller three-blade rotor type unmanned aerial vehicle
CN204895855U (en) Many rotors of oil -electricity hybrid vehicle unmanned vehicles
CN107140192A (en) A kind of hybrid power unmanned plane
CN203780797U (en) Double-motor variable-pitch multi-rotor aircraft
CN204642152U (en) New oil moves many rotors plant protection unmanned plane
CN204979233U (en) Four rotor crafts of feather and power transmission system thereof
CN105197232A (en) Petrol-electricity hybrid multi-rotor unmanned aerial vehicle
CN110001949A (en) A kind of compound rotation unmanned helicopter of close coupled type
CN103950537A (en) Control method and device of variable pitch aircraft
CN106477053A (en) A kind of oil electricity mixes many rotor unmanned aircrafts
CN204433050U (en) The hardware platform of dynamic four rotor unmanned aircrafts of oil
CN205076038U (en) Multi -rotor -wing aircraft
CN205396540U (en) Unmanned aerial vehicle screw mechanism of verting
CN103803069A (en) Bevel-gear-transmission four-rotor-wing aircraft
CN205076037U (en) Multi -rotor -wing aircraft
CN207466966U (en) A kind of dynamic displacement quadrotor unmanned plane of oil
CN105015769A (en) Multi-rotor craft
CN103803076A (en) Gear-transmission four-rotor-wing aircraft
CN103921935A (en) Shaft-driven spiral wing aircraft
CN204895856U (en) Many rotors of oil -electricity hybrid vehicle unmanned vehicles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151104

RJ01 Rejection of invention patent application after publication