CN105013346A - Preparation method of super-hydrophobic polytetrafluoroethylene film - Google Patents

Preparation method of super-hydrophobic polytetrafluoroethylene film Download PDF

Info

Publication number
CN105013346A
CN105013346A CN201410162978.8A CN201410162978A CN105013346A CN 105013346 A CN105013346 A CN 105013346A CN 201410162978 A CN201410162978 A CN 201410162978A CN 105013346 A CN105013346 A CN 105013346A
Authority
CN
China
Prior art keywords
sintering
preparation
polytetrafluoroethylene
ptfe
insulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410162978.8A
Other languages
Chinese (zh)
Other versions
CN105013346B (en
Inventor
姚永毅
钟丕
叶雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHENGDU BIOTOP PHARMA TECHNOLOGY CO LTD
Original Assignee
CHENGDU BIOTOP PHARMA TECHNOLOGY CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHENGDU BIOTOP PHARMA TECHNOLOGY CO LTD filed Critical CHENGDU BIOTOP PHARMA TECHNOLOGY CO LTD
Priority to CN201410162978.8A priority Critical patent/CN105013346B/en
Publication of CN105013346A publication Critical patent/CN105013346A/en
Application granted granted Critical
Publication of CN105013346B publication Critical patent/CN105013346B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Artificial Filaments (AREA)

Abstract

The invention provides a preparation method of a polytetrafluoroethylene film. The preparation method comprises the steps of preparing a spinning solution, preparing fibers and sintering and is characterized by adding polytetrafluoroethylene emulsion after preparing a solution with a fiber forming carrier and a solvent, wherein the fiber forming carrier is sodium alginate, and the solvent is water; adopting multistep continuous sintering through program temperature control, and in flowing atmospheres, increasing the temperature from a room temperature to 120-200 DEG C at a rate of 3-10 DEG C/min and insulating at 120-200 DEG C for 30-120 minutes; increasing the temperature from 120-200 DEG C to 360-400 DEG C at a rate of 2-8 DEG C/min and insulating at 360-400 DEG C for 5-120 minutes; carrying out cooling treatment after sintering: in the flowing atmospheres, reducing the temperature from 360-400 DEG C to 150-200 DEG C at a rate of 3-15 DEG C/min, insulating at 150-200 DEG C for 30-120 minutes and then carrying out natural cooling. The preparation method has the beneficial effects that the polytetrafluoroethylene film with bead-like superfine fibers is prepared and a hydrophobic surface with a multistage coarse structure is formed together; the surface water contact angle is not less than 150 degrees and the porosity is higher than 80%; the problem that fibers are easy to collapse during sintering of a polytetrafluoroethylene precursor film is solved; the fibers have intact morphologies and surfaces and greatly improved strength and tenacity and can bear a certain vacuum pressure.

Description

A kind of preparation method of polytetrafluoroethylene (PTFE) super-hydrophobic film
Technical field
The present invention relates to a kind of preparation method of the diffusion barrier material for separating of field, be specifically related to a kind of preparation method of hydrophobic membrane material.
Technical background
Hydrophobicity is the critical nature of polytetrafluoroethylene (PTFE) (PTFE) material, is the main performance that polytetrafluoroethylporous porous membrane is applied to membrane material.Although polytetrafluoroethylmaterial material has low-surface-energy, the water contact angle of smooth polytetrafluoroethylene (PTFE) plane is between 98 to 112 °, and hydrophobic performance is not good.
Current polytetrafluoroethylporous porous membrane preparation adopts bidirectional extending method more.When this method will expect the film of higher porosity, need to carry out vast scale stretching to film, cannot control by Surface Structures, and thickness is only below tens microns, backing material is needed in using, and backing material itself often has certain limitation in heat resistance or chemical stability or hydrophobic performance, thus limit the application of this biaxial stretching film.Stretch at high proportion simultaneously and be often difficult to the shape of controlling diaphragm, therefore main based on Flat Membrane.The patents such as Chinese patent CN1775847A, CN102007242A, CN101543734B, CN102151494A all carry out polytetrafluoroethylporous porous membrane preparation based on above stretch processes.
The patents such as support methods prepares the important method of polytetrafluoroethylene fibre, CN101994161A and CN102282301A adopt the preparation of electrostatic spinning technique to polytetrafluoroethylsuperfine superfine fiber to report.All relate to the step of high temperature sintering removing fibroblast carrier in these reports, but these sintering processes only pay close attention to the removal of fibroblast template.Specifically: the object of CN101994161A is a kind of polytetrafluoroethylsuperfine superfine fiber of preparation, its preparation method adopts polyvinyl alcohol to make carrier, to be weaved out polytetrafluoroethylene fibre precursor by electrospinning process, post-processing approach is by polytetrafluoroethylene fibre precursor at 100 ~ 120 DEG C dry 5 ~ 15 minutes, then sinters 30 ~ 90 minutes at 280 ~ 350 DEG C; The object of sintering removes to make polyvinyl alcohol decompose.And CN102282301A improving one's methods of a kind of polytetrafluoroethylene (PTFE) pad is mainly provided, its objective is that the technological parameter (spinning fluid viscosity) in order to improve electrospinning obtains the polytetrafluoroethylene fibre pad precursor of uniform diameter, at 400 DEG C, sintering obtains polytetrafluoroethylene fibre pad again, and the ash content of carrier (fibre-forming polymer) is less than 5%.The patents such as CN101994161A and CN102282301A adopt electrostatic spinning technique to polytetrafluoroethylsuperfine superfine fiber (pad), only consider and how to obtain polytetrafluoroethylsuperfine superfine fiber (pad), have to conventional polytetrafluoroethylsuperfine superfine fiber (pad).
Summary of the invention
The object of the present invention is to provide a kind of preparation method of poly tetrafluoroethylene, by controlling the post processing sintering condition of the polytetrafluoroethylene (PTFE) precursor film containing fibroblast carrier, by the method precise hard_drawn tuhes sintering condition of temperature programmed control and cooling condition to obtain fibre morphology and remain intact and to have the superfine fibre reticular membrane of beading structure, the special construction of this nanoscale forms the hydrophobic surface with multistage coarse structure together with superfine fibre.Thus there is ultra-hydrophobicity.
Object of the present invention is realized by following technical measures:
A preparation method for poly tetrafluoroethylene, comprise spinning solution dosing, system fibre, sintering, it is characterized in that: fibroblast carrier and solvent add ptfe emulsion after being mixed with solution, fibroblast carrier is sodium alginate, and solvent is water; Sintering adopts temperature programmed control zonal cooling sintering, under flowing atmosphere, with the speed of 3 ~ 10 DEG C/min from room temperature to 120 DEG C ~ 200 DEG C, at 120 DEG C ~ 200 DEG C insulation 30 ~ 120min; 360 DEG C ~ 400 DEG C are warmed up to from 120 DEG C ~ 200 DEG C, at 360 DEG C ~ 400 DEG C insulation 5 ~ 120min with the speed of 2 ~ 8 DEG C/min; Carry out cooling processing after sintering, described cooling, under flowing atmosphere, is cooled to 150 ~ 200 DEG C with the speed of 3 ~ 15 DEG C/min from 360 DEG C ~ 400 DEG C, at 150 ~ 200 DEG C of insulation 30 ~ 120min, then naturally cools.By controlling the post processing sintering condition of the polytetrafluoroethylene (PTFE) precursor film containing fibroblast carrier; under effect of stress; under carrier protective effect; polytetrafluoroethylgranule granule starts reorientation arrangement; subsequently in appropriate carrier decomposition on opportunity; the further orientation of polytetrafluoroethylgranule granule is reset, and forms catenate superfine fibre network structure.Programme-control condition described in employing is prepared the super-hydrophobic polytetrafluoroethylfiber fiber film that can obtain and have special construction.If not under programme-control condition of the present invention, as CN101994161A be set forth in 280-350 DEG C at sinter 30-90 minute, then cannot obtain have multilevel roughness, the super-hydrophobic polytetrafluoroethylfiber fiber film of water contact angle more than 150 °, and film does not have flexibility.If (obtain polytetrafluoroethylene fibre pad as CN102282301A sinters at 400 DEG C, the ash content of carrier (fibre-forming polymer) is less than 5% not adopt programme-control in addition.) then cannot keep original form of fiber, cause fiber to collapse to flat.By controlling the cooling condition after sintering, further reducing the micro-fractures on fiber, forming seamless fiber surface, the intensity of fortifying fibre and toughness.
The preparation method of above-mentioned poly tetrafluoroethylene, comprise preforming step before sintering after system is fine, described preformed is wrapped on supporting die by polytetrafluoroethylene (PTFE) precursor film, by winding layer numerical control polytetrafluoroethylene (PTFE) film thickness and mean pore size.The winding of fiber is superimposed with the stress orientation being beneficial to sintering process.
The mass concentration of sodium alginate aqueous solution is 0.5% ~ 30%, and sodium alginate is 1: 1 ~ 50 with polytetrafluoroethylene (PTFE) dry weight ratio.
Particularly, a kind of preparation method of poly tetrafluoroethylene, comprises the following steps:
(1) preparation of spinning solution; Be made into water-soluble for sodium alginate the homogeneous solution that concentration is 0.5% ~ 30% mass concentration, then stir and add ptfe emulsion, obtain uniform mixed liquor; Sodium alginate and polytetrafluoroethylene (PTFE) dry weight ratio are 1: 1 ~ 50;
(2) system is fine; Adopt the method for spinning or stretching spinning solution to preparation in (1) to carry out spinning to prepare fiber and obtain polytetrafluoroethylene (PTFE) precursor film;
(3) preformed: according to the use specification of expection, the polytetrafluoroethylene (PTFE) precursor film that obtains obtained in (2) is wrapped on the supporting die of respective shapes, form the film of flat, the difformity such as tubular type, hollow fiber form or rolling and specification, thick by winding layer numerical control masking;
(4) sinter; The preformed polytetrafluoroethylene (PTFE) precursor film obtained in (3) is put into high temperature furnace together with supporting die sinter under the condition passing into flowing atmosphere continuously; Sintering adopts temperature programmed control zonal cooling sintering, with the speed of 3 ~ 10 DEG C/min from room temperature to 120 DEG C ~ 200 DEG C, at 120 DEG C ~ 200 DEG C insulation 30 ~ 120min; 360 DEG C ~ 400 DEG C are warmed up to from 120 DEG C ~ 200 DEG C, at 360 DEG C ~ 400 DEG C insulation 5 ~ 120min with the speed of 2 ~ 8 DEG C/min;
(5) cool: under flowing atmosphere, be cooled to 150 ~ 200 DEG C with the speed of 3 ~ 15 DEG C/min from 360 DEG C ~ 400 DEG C, at 150 ~ 200 DEG C of insulation 30 ~ 120min, then naturally cool.
Above-mentioned flowing atmosphere is nitrogen, air or inert gas at least one.
Beneficial effect
1. the present invention has obtained the poly tetrafluoroethylene of structure uniqueness, have by the crisscross hole three-dimensional communication structure formed of beading filament, be the hydrophobic surface that one formation has multistage coarse structure, beading filament refers to that between polytetrafluoroethylgranule granule, the filament of formation is cohered in point and/or face mutually; Hole is hole, labyrinth, and maximum diameter of hole is 1.0 μm, and minimum-value aperture is 0.01 μm, and average pore size is 0.1 μm ~ 0.5 μm; Filament is nanofiber, and average diameter is 500 ± 50nm.
2. what the present invention was fabulous solves the givey problem of fiber in polytetrafluoroethylene (PTFE) precursor film sintering, and obtain and there is beading superfine fibre reticular membrane, between fiber from unordered stacking become inter-adhesive, fibre morphology and surface intact, intensity and toughness also improve a lot, and can bear certain vacuum pressure (can under 0.7kPa vacuum still stably operable).
3. the polytetrafluoroethylporous porous membrane obtained by the present invention, has special super-hydrophobicity structure, and the PTFE fiber surface obtained forms a large amount of rough surface, surface water contact angle >=150 °, and porosity is up to more than 80%.
4, the polytetrafluoroethylporous porous membrane obtained by the present invention is without the need to supporting, and thickness is controlled, is applied to Membrane Materials process, flux > 20L/m 2h, rejection is more than 99%.
5, the present invention proposes the winding process before sintering and carry out preformed, can control the shape of final products film and thickness, while guarantee high porosity (more than 80%), provide the thickness needed for film and intensity.In contrast to the stretch processes stretched at high proportion for obtaining high porosity, the poly tetrafluoroethylene that the inventive method obtains is without the need to supporting, and various informative, thickness is controlled.
6, polytetrafluoroethylene (PTFE) super-hydrophobic film preparation method provided by the invention, adopt sintering condition rate-determining steps, carrier was decomposed on appropriate opportunity, and polytetrafluoroethylgranule granule melting orientation is reset, obtain and have beading superfine fibre reticular membrane, the special construction of this nanoscale forms the hydrophobic surface with multistage coarse structure together with superfine fibre.Thus there is ultra-hydrophobicity.
7, present invention, avoiding the use of lubricant in biaxial tension etc., there is not the removing problem of lubricant, technique is simple, and without the need to extruding, the Complicated Flows such as press mold, pollute little.
Accompanying drawing explanation
Fig. 1 is the scanning electron microscope (SEM) photograph of the poly tetrafluoroethylene that preparation method of the present invention obtains; Can observe from accompanying drawing: poly tetrafluoroethylene of the present invention has by the crisscross hole three-dimensional communication structure formed of beading filament, and hole is hole, labyrinth, even pore distribution is communicated with, and nanofiber form is homogeneous intact.
Detailed description of the invention
Below by embodiment, the present invention is specifically described; what be necessary to herein means out is that the present embodiment can only be used to further illustrate the present invention; can not be interpreted as limiting the scope of the invention, the person skilled in the art in this field can make some nonessential improvement and adjustment according to the content of the invention described above.
Embodiment 1
The ptfe emulsion of solid content 60% being added drop-wise to mass fraction is stir in the sodium alginate aqueous solution of 15%, is made into spinning solution.Then electrospinning process is adopted to make polytetrafluoroethylene (PTFE) precursor film.Be wound on diameter 5cm cylinder supporting die, be wound around 5 layers, and deliver to logical nitrogen in tube furnace, sintering process temperature programmed control, from room temperature to 140 DEG C of programming rates, 7 DEG C/min, 140 DEG C of insulation 80min, be warmed up to 373 DEG C from 140 DEG C, programming rate is 8 DEG C/min, after arriving sintering temperature, i.e. sintering stage temperature 373 DEG C, insulation 100min.
Cooling: under the flowing atmosphere of nitrogen, be cooled to 180 DEG C with the speed of 8 DEG C/min from 373 DEG C, at 180 DEG C of insulation 80min, then cools naturally.
Extract cylinder supporting die out after taking out after cooling, obtain the cylindric poly tetrafluoroethylene that thickness is 195 μm, cut off and can obtain flat porous membrane.This film hydrophobic contact angle 172 °, porosity 88%, average pore size 0.45 μm, hot strength 490psi, percentage elongation 361%, when operating for Membrane Materials, flux 25L/m 2h, rejection 99.6%.
Embodiment 2
The ptfe emulsion of solid content 60% being added drop-wise to mass fraction is stir in the sodium alginate aqueous solution of 8%, is made into spinning solution.Then electrospinning process is adopted to make polytetrafluoroethylene (PTFE) precursor film.Be wound on diameter 5cm cylinder supporting die, be wound around 5 layers, and deliver to blowing air in tube furnace, sintering process temperature programmed control, from room temperature to 150 DEG C of programming rates, 6 DEG C/min, 70min is incubated at 150 DEG C, be warmed up to 390 DEG C from 150 DEG C, programming rate is 6 DEG C/min, after arriving sintering temperature, i.e. sintering stage temperature 392 DEG C, insulation 10min.
Cooling: under the flowing atmosphere of air, be cooled to 200 DEG C with the speed of 15 DEG C/min from 390 DEG C, at 200 DEG C of insulation 30min, then cools naturally.
Extract cylinder supporting die out after taking out after cooling, obtain the cylindric poly tetrafluoroethylene that thickness is 222um, cut off and can obtain flat porous membrane.This film hydrophobic contact angle 166 °, porosity 85%, average pore size 0.5 μm, hot strength 455psi, percentage elongation 325%, when operating for Membrane Materials, flux 23L/m 2h, rejection 99.6%.
Embodiment 3
The ptfe emulsion of solid content 60% being added drop-wise to mass fraction is stir in the sodium alginate aqueous solution of 6%, is made into spinning solution.Then electrospinning process is adopted to make polytetrafluoroethylene (PTFE) precursor film.Be wound on diameter 5cm cylinder supporting die, be wound around 5 layers, and deliver to logical nitrogen in tube furnace, sintering process temperature programmed control, from room temperature to 180 DEG C of programming rates, 4 DEG C/min, 180 DEG C of insulation 40min, be warmed up to 376 DEG C from 180 DEG C, programming rate is 3 DEG C/min, after arriving sintering temperature, i.e. sintering stage temperature 376 DEG C, insulation 80min.
Cooling: under the flowing atmosphere of nitrogen, be cooled to 190 DEG C with the speed of 5 DEG C/min from 376 DEG C, at 190 DEG C of insulation 40min, then cools naturally.
Extract cylinder supporting die out after taking out after cooling, obtain the cylindric poly tetrafluoroethylene that thickness is 205um, cut off and can obtain flat porous membrane.This film hydrophobic contact angle 163 °, porosity 84%, average pore size 0.35 μm, hot strength 467psi, percentage elongation 328%, when operating for Membrane Materials, flux 25L/m 2h, rejection 99.5%.
Embodiment 4
The ptfe emulsion of solid content 60% being added drop-wise to mass fraction is stir in the sodium alginate aqueous solution of 5%, is made into spinning solution.Then electrospinning process is adopted to make polytetrafluoroethylene (PTFE) precursor film.Be wound on diameter 5cm cylinder supporting die, be wound around 6 layers, and deliver to logical argon gas in tube furnace, sintering process temperature programmed control, from room temperature to 120 DEG C of programming rates, 10 DEG C/min, 120 DEG C of insulation 120min, be warmed up to 388 DEG C from 120 DEG C, programming rate is 4 DEG C/min, after arriving sintering temperature, i.e. sintering stage temperature 388 DEG C, insulation 26min.
Cooling: under the flowing atmosphere of argon gas, be cooled to 150 DEG C with the speed of 15 DEG C/min from 388 DEG C, at 150 DEG C of insulation 120min, then cools naturally.
Extract cylinder supporting die out after taking out after cooling, obtain thickness be 216um cylindric poly tetrafluoroethylene, cut off and can obtain flat porous membrane.This film hydrophobic contact angle 158 °, porosity 85%, average pore size 0.5 μm, hot strength 480psi, percentage elongation 338%, when operating for Membrane Materials, flux 28L/m 2h, rejection 99.2%.
Embodiment 5
The ptfe emulsion of solid content 60% being added drop-wise to mass fraction is stir in the sodium alginate aqueous solution of 10%, is made into spinning solution.Then electrospinning process is adopted to make polytetrafluoroethylene (PTFE) precursor film.Be wound on diameter 0.5cm cylinder supporting die, be wound around 5 layers, and deliver to logical nitrogen in Muffle furnace, sintering process temperature programmed control, from room temperature to 130 DEG C of programming rates, 8 DEG C/min, 130 DEG C of insulation 100min, be warmed up to 385 DEG C from 130 DEG C, programming rate is 7 DEG C/min, after arriving sintering temperature, i.e. sintering stage temperature 385 DEG C, insulation 35min.
Cooling: under the flowing atmosphere of nitrogen, be cooled to 160 DEG C with the speed of 12 DEG C/min from 385 DEG C, at 160 DEG C of insulation 100min, then cools naturally.
Extract cylinder supporting die out after taking out after cooling, obtain the tubular membrane that thickness is 188um.This film hydrophobic contact angle 173 °, porosity 85%, average pore size 0.12 μm, hot strength 468psi, percentage elongation 340%, when operating for tubular membrane Membrane Materials, flux 36L/m 2h, rejection 99.6%.
Embodiment 6
The ptfe emulsion of solid content 60% being added drop-wise to mass fraction is stir in the sodium alginate aqueous solution of 6%, is made into spinning solution.Then electrospinning process is adopted to make polytetrafluoroethylene (PTFE) precursor film.Be wound on diameter 0.5cm cylinder supporting die, be wound around 5 layers, and deliver to logical argon gas in tube furnace, sintering process temperature programmed control, from room temperature to 160 DEG C of programming rates, 5 DEG C/min, 160 DEG C of insulation 100min, be warmed up to 380 DEG C from 160 DEG C, programming rate is 5 DEG C/min, after arriving sintering temperature, i.e. sintering stage temperature 380 DEG C, insulation 60min.
Cooling: under the flowing atmosphere of argon gas, be cooled to 170 DEG C with the speed of 10 DEG C/min from 380 DEG C, at 170 DEG C of insulation 90min, then cools naturally.
Extract cylinder supporting die out after taking out after cooling, obtain the tubular membrane that thickness is 202um.This film hydrophobic contact angle 166 °, porosity 85%, average pore size 0.35 μm, hot strength 475psi, percentage elongation 330%, when operating for tubular membrane Membrane Materials, flux 39L/m 2h, rejection 99.6%.
Embodiment 7
The ptfe emulsion of solid content 60% being added drop-wise to mass fraction is stir in the sodium alginate aqueous solution of 3%, is made into spinning solution.Then electrospinning process is adopted to make polytetrafluoroethylene (PTFE) precursor film.Be wound on diameter 0.1cm cylinder supporting die, be wound around 6 layers, and deliver to blowing air in tube furnace, sintering process temperature programmed control, from room temperature to 200 DEG C of programming rates, 3 DEG C/min, 200 DEG C of insulation 30min, be warmed up to 385 DEG C from 200 DEG C, programming rate is 2 DEG C/min, after arriving sintering temperature, namely at sintering stage temperature 370 DEG C, insulation 120min.
Cooling: under the flowing atmosphere of air, be cooled to 185 DEG C with the speed of 9 DEG C/min from 370 DEG C, at 185 DEG C of insulation 70min, then cools naturally.
Extract cylinder supporting die out after taking out after cooling, obtain the hollow-fibre membrane that thickness is 188um.This film hydrophobic contact angle 175 °, porosity 85%, average pore size 0.40 μm, hot strength 475psi, percentage elongation 368%, during for hollow-fibre membrane distillation procedure, flux 40L/m 2h, rejection 99.9%.

Claims (5)

1. a preparation method for poly tetrafluoroethylene, comprise spinning solution dosing, system fibre, sintering, it is characterized in that: fibroblast carrier and solvent add ptfe emulsion after being mixed with solution, fibroblast carrier is sodium alginate, and solvent is water; Sintering adopts temperature programmed control zonal cooling sintering, under flowing atmosphere, with the speed of 3 ~ 10 DEG C/min from room temperature to 120 DEG C ~ 200 DEG C, at 120 DEG C ~ 200 DEG C insulation 30 ~ 120min; 360 DEG C ~ 400 DEG C are warmed up to from 120 DEG C ~ 200 DEG C, at 360 DEG C ~ 400 DEG C insulation 5 ~ 120min with the speed of 2 ~ 8 DEG C/min; Carry out cooling processing after sintering, described cooling, under flowing atmosphere, is cooled to 150 ~ 200 DEG C with the speed of 3 ~ 15 DEG C/min from 360 DEG C ~ 400 DEG C, at 150 ~ 200 DEG C of insulation 30 ~ 120min, then naturally cools.
2. the preparation method of poly tetrafluoroethylene as claimed in claim 1, comprise preforming step before sintering after system is fine, described preformed is wrapped on supporting die by polytetrafluoroethylene (PTFE) precursor film.
3. the preparation method of poly tetrafluoroethylene as claimed in claim 1 or 2, the mass concentration of described sodium alginate aqueous solution is 0.5% ~ 30%, and sodium alginate and polytetrafluoroethylene (PTFE) dry weight are than being 1:1 ~ 50.
4. the preparation method of poly tetrafluoroethylene as claimed in claim 1, a kind of preparation method of poly tetrafluoroethylene, comprises the following steps:
(1) preparation of spinning solution; Be made into water-soluble for sodium alginate the homogeneous solution that concentration is 0.5% ~ 30% mass concentration, then stir and add ptfe emulsion, obtain uniform mixed liquor; Sodium alginate and polytetrafluoroethylene (PTFE) dry weight ratio are in 1:1 ~ 50;
(2) system is fine; Adopt the method for spinning or stretching spinning solution to preparation in (1) to carry out spinning to prepare fiber and obtain polytetrafluoroethylene (PTFE) precursor film;
(3) preformed: according to the use specification of expection, be wrapped on the supporting die of respective shapes by the polytetrafluoroethylene (PTFE) precursor film that obtains obtained in (2), forms flat, tubular type, hollow fiber form or rolling shape;
(4) sinter; The preformed polytetrafluoroethylene (PTFE) precursor film obtained in (3) is put into high temperature furnace together with supporting die sinter under the condition passing into flowing atmosphere continuously; Sintering adopts temperature programmed control zonal cooling sintering, with the speed of 3 ~ 10 DEG C/min from room temperature to 120 DEG C ~ 200 DEG C, at 120 DEG C ~ 200 DEG C insulation 30 ~ 120min; 360 DEG C ~ 400 DEG C are warmed up to from 120 DEG C ~ 200 DEG C, at 360 DEG C ~ 400 DEG C insulation 5 ~ 120min with the speed of 2 ~ 8 DEG C/min;
(5) cool: under flowing atmosphere, be cooled to 150 ~ 200 DEG C with the speed of 3 ~ 15 DEG C/min from 360 DEG C ~ 400 DEG C, at 150 ~ 200 DEG C of insulation 30 ~ 120min, then naturally cool.
5. the preparation method of poly tetrafluoroethylene as claimed in claim 1, described flowing atmosphere is nitrogen, air or inert gas at least one.
CN201410162978.8A 2014-04-22 2014-04-22 A kind of preparation method of polytetrafluoroethylene (PTFE) super-hydrophobic film Expired - Fee Related CN105013346B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410162978.8A CN105013346B (en) 2014-04-22 2014-04-22 A kind of preparation method of polytetrafluoroethylene (PTFE) super-hydrophobic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410162978.8A CN105013346B (en) 2014-04-22 2014-04-22 A kind of preparation method of polytetrafluoroethylene (PTFE) super-hydrophobic film

Publications (2)

Publication Number Publication Date
CN105013346A true CN105013346A (en) 2015-11-04
CN105013346B CN105013346B (en) 2017-09-05

Family

ID=54403861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410162978.8A Expired - Fee Related CN105013346B (en) 2014-04-22 2014-04-22 A kind of preparation method of polytetrafluoroethylene (PTFE) super-hydrophobic film

Country Status (1)

Country Link
CN (1) CN105013346B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105664733A (en) * 2016-01-21 2016-06-15 巨化集团技术中心 Preparation method of perfluoro hollow fiber composite film
CN115011049A (en) * 2022-06-24 2022-09-06 广东德创新材料有限公司 Preparation method of PTFE composite nanofiber material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234296A (en) * 2008-02-29 2008-08-06 南京工业大学 Preparation technique of porous stainless steel-ceramic compound film
CN101530750A (en) * 2009-04-20 2009-09-16 浙江理工大学 Preparation method of polytetrafluoroethylene superfine fiber porous membrane
CN102908911A (en) * 2012-10-31 2013-02-06 辽宁省电力有限公司电力科学研究院 Processing method of polytetrafluoroethylene microporous filtering material
JP2014042869A (en) * 2012-08-24 2014-03-13 Sumitomo Electric Fine Polymer Inc Porous multi-layer filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234296A (en) * 2008-02-29 2008-08-06 南京工业大学 Preparation technique of porous stainless steel-ceramic compound film
CN101530750A (en) * 2009-04-20 2009-09-16 浙江理工大学 Preparation method of polytetrafluoroethylene superfine fiber porous membrane
JP2014042869A (en) * 2012-08-24 2014-03-13 Sumitomo Electric Fine Polymer Inc Porous multi-layer filter
CN102908911A (en) * 2012-10-31 2013-02-06 辽宁省电力有限公司电力科学研究院 Processing method of polytetrafluoroethylene microporous filtering material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105664733A (en) * 2016-01-21 2016-06-15 巨化集团技术中心 Preparation method of perfluoro hollow fiber composite film
CN105664733B (en) * 2016-01-21 2019-08-02 巨化集团技术中心 A kind of preparation method of perfluor hollow fiber composite membrane
CN115011049A (en) * 2022-06-24 2022-09-06 广东德创新材料有限公司 Preparation method of PTFE composite nanofiber material

Also Published As

Publication number Publication date
CN105013346B (en) 2017-09-05

Similar Documents

Publication Publication Date Title
CN104906968A (en) Teflon membrane and preparation method thereof
CN105013344A (en) Preparation method of super-hydrophobic polytetrafluoroethylene fiber film
CN104998557A (en) Production method of super-hydrophobic polytetrafluoroethylene membrane
CN105013351A (en) Preparation method of super-hydrophobic polytetrafluoroethylene film
CN105013343A (en) Preparation method of super-hydrophobic polytetrafluoroethylene fiber film
CN104998556A (en) Super-hydrophobic polytetrafluoroethylene fiber membrane preparation method
CN105013346A (en) Preparation method of super-hydrophobic polytetrafluoroethylene film
CN105013347A (en) Preparation method of super-hydrophobic polytetrafluoroethylene film
CN105013345A (en) Preparation method of super-hydrophobic polytetrafluoroethylene film
CN105013341A (en) Preparation method of super-hydrophobic polytetrafluoroethylene film
CN105013350A (en) Preparation method of super-hydrophobic polytetrafluoroethylene fiber film
CN105013348A (en) Preparation method of polytetrafluoroethylene film
CN104998558A (en) Production method of super-hydrophobic polytetrafluoroethylene membrane
CN105013342A (en) Preparation method of super-hydrophobic polytetrafluoroethylene fiber film
CN105013349A (en) Preparation method of super-hydrophobic polytetrafluoroethylene film
CN105013352A (en) Preparation method of super-hydrophobic polytetrafluoroethylene film
CN105233707A (en) Preparation method for polytetrafluoroethylene film
CN114892343A (en) Preparation method of polytetrafluoroethylene porous membrane with adjustable pore structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170905

CF01 Termination of patent right due to non-payment of annual fee