CN105008660A - Method and system of optimized steam-assisted gravity drainage with oxygen ("SAGDOX") for oil recovery - Google Patents

Method and system of optimized steam-assisted gravity drainage with oxygen ("SAGDOX") for oil recovery Download PDF

Info

Publication number
CN105008660A
CN105008660A CN201380070818.4A CN201380070818A CN105008660A CN 105008660 A CN105008660 A CN 105008660A CN 201380070818 A CN201380070818 A CN 201380070818A CN 105008660 A CN105008660 A CN 105008660A
Authority
CN
China
Prior art keywords
oxygen
steam
pwor
sagdox
ratio
Prior art date
Application number
CN201380070818.4A
Other languages
Chinese (zh)
Inventor
R·K·克尔
Original Assignee
尼克森能源无限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US201261727960P priority Critical
Priority to CA2815737A priority patent/CA2815737A1/en
Priority to CA 2820702 priority patent/CA2820702A1/en
Application filed by 尼克森能源无限责任公司 filed Critical 尼克森能源无限责任公司
Priority to PCT/CA2013/000969 priority patent/WO2014075175A1/en
Publication of CN105008660A publication Critical patent/CN105008660A/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2406Steam assisted gravity drainage [SAGD]
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2406Steam assisted gravity drainage [SAGD]
    • E21B43/2408SAGD in combination with other methods
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/18Combinations of steam boilers with other apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage
    • Y02E20/34Indirect CO2 mitigation, i.e. by acting on non CO2 directly related matters of the process, e.g. more efficient use of fuels
    • Y02E20/344Oxyfuel combustion

Abstract

A steam assisted gravity drainage with injected oxygen (SAGDOX) process to recover hydrocarbons in a hydrocarbon reservoir including: (a) starting the SAGDOX process at a first oxygen to steam ratio; (b) measuring a produced water to oil ratio (v/v) PWOR associated with the first oxygen to steam ratio; (c) adjusting the oxygen to steam ratio to obtain a predetermined PWOR; and (d) continuing steps (a) to (c) until a target PWOR is obtained improving the hydrocarbon recovery rate.

Description

用于采油的优化的使用氧的蒸汽辅助重力泄油("SAGDOXO")方法及系统 Steam assisted gravity drainage for optimizing oil recovery using oxygen ( "SAGDOXO") method and system

背景技术 Background technique

[0001] 蒸汽辅助重力泄油("SAGD")是使用饱和蒸汽注入水平井2中的、商业化的热强化采油("E0R")工艺,其中使用潜热来加热沥青和降低沥青的粘度,使其通过重力泄到下方的平行、成对水平井(即开采井4)中,在储层底部附近完井(图1)。 [0001] steam assisted gravity drainage ( "SAGD") is to use saturated steam injection horizontal wells 2, commercialization of thermally enhanced oil recovery ( "E0R") process in which the latent heat of the hot asphalt and reducing the viscosity of the bitumen, so that parallel to the bottom by gravity drainage, the pair of horizontal well (i.e., a production well 4), completion (FIG. 1) near the bottom of the reservoir. 调节蒸汽注入速率以达到目标压力。 Adjusting the rate of steam injection to reach the target pressure. 调节液体产生速率以达到目标温度,其比饱和蒸汽温度低几度,使得新鲜蒸汽不能穿透开采井。 Adjust the liquid temperature to achieve the target production rate, which is a few degrees lower than the saturated steam temperature, such that the live steam can not penetrate through production wells.

[0002]自从该工艺在1980 年代早期开始(Butler,RM,"ThermalRecoveryofOil&Bi tumen〃,Prentice-Hall,1991),SAGD已经成为用以从阿尔伯塔省(Alberta)的沥青沉积物中采收沥青的主要原位工艺。目前在阿尔伯塔省的SAGD沥青产量为约300千桶/天(bbl/ d)(OilsandsReview,(2010)),装机容量为约475千桶/天(出处同上)。SA⑶现在是世界领先的热EOR工艺。 [0002] Since the process began in the early 1980s (Butler, RM, "ThermalRecoveryofOil & Bi tumen〃, Prentice-Hall, 1991), SAGD bitumen recovery has become used to from bitumen deposits in Alberta (Alberta) in the main situ process. currently SAGD bitumen production in Alberta is approximately 300 thousand barrels / day (bbl / d) (OilsandsReview, (2010)), the installed capacity of approximately 475 thousand barrels / day (ibid.) .SA⑶ now the world's leading thermal EOR processes.

[0003] 图1 (现有技术)显示出"传统的"SA⑶几何结构,其使用在同一竖直平面上钻孔的成对、平行、水平井2、4,上注入井2和下开采井4,所述两个井2、4之间的间距为5米,每个井长约800米,并且下井(或开采井4)在(水平)储层基底上方的1到2米。 [0003] Figure 1 (prior art) shows a "traditional" SA⑶ geometry, using a pair in the same vertical plane drilling, parallel, horizontal wells 2,4, 2 and the lower injection well production wells 4, the spacing between two wells 2 and 4 is 5 meters, about 800 meters per well, and go down (or production wells 4) in the (horizontal) over the substrate reservoir 1-2 meters. 通过在两个井中循环蒸汽来启动SA⑶工艺。 SA⑶ process initiated by two cycles of steam wells. 建立联通之后,使用上井注入蒸汽6和下井采出热水和热沥青8。 After establishing the link, the use of steam injection wells and a downhole recovery hot water 6 and 8 hot asphalt. 液体采出通过自然升举、气举、或潜水栗来实现。 Liquid draw lift by natural gas lift or dive Li achieved.

[0004] 转换到正常SA⑶操作后,蒸汽室10围绕注入井2和开采井4形成,其中空隙空间被蒸汽6占据。 After [0004] SA⑶ shifts to normal operation, the steam chamber 10 surrounding the injection wells and production wells 4 2 is formed, in which the steam 6 is occupied by void space. 图2(现有技术)显示了SAGD怎样成熟。 Figure 2 (prior art) shows how SAGD maturation. 蒸汽6在室的边界冷凝,释放潜热(冷凝热)并加热沥青、原生水和储层基质。 Steam condensation chamber 6 at the boundary, the release of latent heat (heat of condensation) and heating the asphalt matrix and reservoir connate water. 被加热的沥青和水8通过重力泄到较低的开采井4中。 The heated bitumen and water into the lower vent 8 production wells 4 by gravity. 随着沥青的泄出,蒸汽室10向上和向外增长。 With the escape of asphalt, steam chamber 10 upwardly and outwardly growth. 初期的蒸汽室10使沥青从陡峭室侧面和从室顶层泄油。 Early steam chamber 10 so that the side chamber and a steep pitch drain from the chamber top. 当室10增长触碰储层顶部时,顶层泄油停止,沥青生产率达到峰值和侧壁斜度随着侧向增长继续进行而下降。 When touching the top of the reservoir chamber 10 increase, the top stop the drain, and the pitch peak productivity with the lateral wall angle decreases the growth proceeds. 热损失随顶层接触增加和蒸汽室表面积增大而增大(蒸汽与油的比率("S0R")增加(图8)。泄油速率随侧壁角(0 )减小而减慢。 最终,达到经济上的限度并且寿命末期的泄油角度是小的(10-20° ),如图2(现有技术) 所示。 Heat loss and increased contact with the top surface area of ​​the vapor chamber increases the ratio (steam to oil ( "S0R") (Fig. 8). Drain rate increases sidewall angle (0) is reduced and slows down. Finally, and reach the limit on the economic life of the drainage angle end is small (10-20 °), as shown in FIG. 2 (prior art).

[0005] 采出的流体接近饱和蒸汽温度,因此只有蒸汽的潜热有助于储层中的工艺。 [0005] Produced saturated steam temperature close to the fluid, so that only the latent heat of the steam contributes to the process reservoir. 但是, 一些显热可以从表面热交换器捕获(更高温度下更大的部分),因此对于大部分SAGD项目的压力("P")和温度("T")范围而言,蒸汽净热量贡献的有用经验法则为1000BTU/镑, 如图3 (现有技术)所佳所示。 However, some of the sensible heat can be captured (part of a larger at a higher temperature) from the surface of the heat exchanger, and therefore the pressure SAGD projects most in terms of ( "P") and temperature ( "T") range, the net heat steam a useful rule of thumb contributed to 1000 BTU / pound, in FIG. 3 (prior art) as shown best.

[0006]SAGD的操作性能可以通过以下参数的测量来表征:蒸汽室中的饱和蒸汽P和T(图2);沥青生产率;S0R,通常在井口( "wh");过冷--饱和蒸汽和采出流体之间的温差;和水循环比("WRR")一一采出水与注入蒸汽的比率。 [0006] SAGD operation performance may be characterized by measuring the following parameters: saturated steam in the steam chamber P and T (FIG. 2); bitumen productivity; S0R, generally ( "wh") at the wellhead; subcooled - saturated steam and the temperature difference between the fluid recovery; and a circulation ratio ( "WRR") eleven produced water ratio injected steam.

[0007] 在SAGD工艺过程中,SAGD操作者需要进行两次选择一一过冷目标温差和储层中的操作压力P。 [0007] In the SAGD process, requires two SAGD operator to select the operating pressure of eleven had cooled to a target temperature in the reservoir and P. 约10至30°C的典型过冷目标温度差是为了确保没有新鲜蒸汽穿透至开采井。 Typically from about 10 to 30 ° C supercooling target temperature difference is to ensure that no live steam penetration into the production wells. 工艺压力和温度相关联,如图14(现有技术)中最佳示出的,并主要地涉及沥青生产率和工艺效率。 Pressure and temperature associated with the process, as shown in FIG 14 (prior art) is best shown, and primarily relates to process efficiency and productivity of asphalt. 沥青粘度是温度的强函数,如图5(现有技术)最佳所示,沥青粘度随温度升高而降低。 Bitumen viscosity is a strong function of temperature, as shown best in FIG. 5 (prior art), the asphalt viscosity decreases with increasing temperature. 根据Gravdrain方程,如图6 (现有技术)所示,SA⑶生产率正比于粘度倒数的平方根,(Butler(1991))。 The Gravdrain equation 6 (prior art) as shown, SA⑶ productivity is proportional to the reciprocal of the square root of the viscosity, (Butler (1991)). 相反地,如果P和T增大,则蒸汽的潜热控制迅速下降(图3)并且更多的能量被用来加热岩石基质并损失到覆盖层或其它非开采区域。 Conversely, if P and T increases, the latent heat of the steam control declined rapidly (FIG. 3) and more energy is used to heat lost to the rock matrix and the cover layer or other non-producing zone. 因此,增大的P增加了沥青生产率,但危害工艺效率(提高了SOR)。 Therefore, increasing the pitch P increases productivity, but harm the process efficiency (improved SOR). 由于经济效益可由沥青生产率主导,所以SAGD操作者通常选择将操作压力高于天然、静水储层压力作为目标。 As the dominant economic productivity by asphalt, so SAGD operator typically higher than natural selection operating pressure, hydrostatic pressure reservoir target.

[0008] 尽管正在成为主要的热EOR工艺,但SAGD具有一些限制和受损之处。 [0008] Despite being a major thermal EOR process, but at the SAGD have some limitations and impairment of. 良好的SAGD 项目包括: Good SAGD projects include:

[0009] •在产油区底部附近完成水平井以有效地收集和产生热泄油流体。 [0009] • completion of horizontal wells in the vicinity of the bottom of the oil-producing regions to generate heat efficiently collect and drain the fluid.

[0010] •在砂面("Sf")注入高质量的蒸汽。 [0010] • injecting steam quality graining ( "Sf").

[0011] •工艺启动是有效和便利的。 [0011] • Start the process is effective and convenient.

[0012] •蒸汽室平稳增长并被容纳。 [0012] • Steam room grew steadily and accommodated.

[0013] •储层基质质量良好(孔隙率(初始油饱和度("SlQ")>.6,运动粘度("kv")>2 维("2D"))。 [0013] • good quality reservoir matrix (porosity (initial oil saturation ( "SlQ")>. 6, the kinematic viscosity ( "kv")> 2-dimensional ( "2D")).

[0014] •净产油层是足够的(>15米厚)。 [0014] • net oil production is adequate (> 15 m thick).

[0015] •适当的设计和控制以同时防止蒸汽穿透、防止注入井溢流、刺激蒸汽室增长至开采区和抑制水流入蒸汽室。 [0015] • properly designed and controlled to simultaneously prevent steam penetration, injection wells to prevent flooding, steam chamber growth stimulation and inhibition of the development area to the water flowing into the steam chamber.

[0016] •没有明显的储层折挡物(例如贫乏区)或阻隔物(例如页岩)。 [0016] • no significant blocking off the reservoir (e.g. lean region) or a barrier (e.g., shale).

[0017] 如果这些必要条件没有实现或者经受其他限制,那么SAGD可受损,如下: [0017] If these conditions are not necessary to achieve or subjected to other restrictions, it may be damaged SAGD, as follows:

[0018] (1)优选的主要开采机制是重力泄油并且较低的开采井是水平的。 [0018] (1) The main mining mechanism preferably gravity drainage and lower horizontal production well. 如果储层高度倾斜,则水平开采井会滞留(strand)显著的资源。 If the reservoir is highly skewed, the horizontal production wells will stay (strand) significant resources.

[0019] (2)SAGD蒸汽-吹扫区具有未采收的显著残余沥青含量,特别是对于较重质的沥青和低压蒸汽,如图26最佳所示的。 [0019] (2) SAGD steam - purge region with significant residual asphalt content is not recovered, particularly for heavier bitumen and the low-pressure steam, 26 best shown in FIG. 图4(现有技术)描绘了沥青和重质油的孔中的残余沥青的分数。 FIG. 4 (prior art) depicts the pore fraction of the bitumen and heavy oil residual bitumen. 例如在20%的残余沥青(孔隙饱和度)和70%的初始饱和度的情况下,采收率只有71%,不包括开采井以下或采收井网之间的楔形区中的滞留沥青。 For example at 20% residual asphalt (pore saturation), and where 70% of the initial saturation, 71% recovery only, not including the production well or bitumen recovery retention wedges between the well network.

[0020] (3)为了容纳SAGD蒸汽室,储层中的油必须是相对静止的。 [0020] (3) In order to accommodate the SAGD steam chamber, the oil in the reservoir must be relatively stationary. SAGD不能对在储层条件下具有流动性的重质(或轻质)油起作用。 SAGD oil can not act on heavy (or light) having fluidity at reservoir conditions. 沥青是优选目标。 Bitumen is a preferred target.

[0021] (4)饱和蒸汽不能蒸发原生水。 [0021] (4) saturated steam connate water can not evaporate. 根据定义,饱和蒸汽中的热能量没有足够高的质量(温度)以蒸发水。 By definition, the thermal energy of saturated steam is not sufficiently high quality (temperature) to evaporate water. 现场经验也显示出对于产沥青层,加热的原生水不具有足够的流动性以在SAGD中采出。 Field experience also shows for producing an asphalt layer, connate water heating does not have sufficient flowability to the produced in the SAGD. 采出水与油的比率(PWOR)与SOR类似。 Produced water to oil ratio (PWOR) similar to the SOR. 这使得SAGD难以破裂或利用贫乏区资源。 This makes it difficult to crack or SAGD use of scarce resources area.

[0022] (5)活性水区的存在一一产油区内的顶层水或散布的贫乏区一一可以导致SAGD操作困难(NexenInc.,"SecondQuarterResults",2011 年8 月4 日) (Vanderklippe,N.,"LongLakeProjectHitsStickyPatch",CTV, 2011),或最终可以导致项目失败。 [0022] exist (5) water activity area one by one top oil-producing region of the poor or distribute water area can lead to difficulties in eleven SAGD operation (NexenInc., "SecondQuarterResults", 2011 Nian 8 Yue 4 Ri) (Vanderklippe, N., "LongLakeProjectHitsStickyPatch", CTV, 2011), or may ultimately lead to project failure. 模拟研究得出结论,增加开采井的相隔距离可优化具有活性底层水的SAGD的性能,包括良好的压力控制以最小化水侵量(Akram,F.,"ReservoirSimulation OptimizesSAGD,AmericanOilandGasReporter(A0GR),2011年9月)〇 Simulation study concluded that increasing the separation distance can optimize the performance of production wells have a bottom water SAGD activity, including good pressure control to minimize water influx (Akram, F., "ReservoirSimulation OptimizesSAGD, AmericanOilandGasReporter (A0GR), 2011 September) billion

[0023](6)不能(总是)提高压力目标以改善SAGD生产率和SAGD经济。 [0023] (6) can not (always) increasing the pressure and the target to improve productivity SAGD SAGD economy. 如果储层是"漏的",那么随着提高压力超过天然静水压力,SAGD工艺可损失水或蒸汽至SAGD蒸汽室外的区域。 If the reservoir is the "leakage", so as to increase the pressure exceeds the natural hydrostatic pressure, the loss may be SAGD process water or steam to the steam SAGD outdoor area. 如果流体损失,则水循环比("WRR")降低并且工艺要求显著的水补偿体积。 If the fluid loss, the circulation ratio ( "WRR") decreases and the process requires water compensating volume significantly. 如果蒸汽也损失,则工艺效率下降并且SOR上升。 If steam is also lost, and the process efficiency is lowered SOR increased. 最终,如果压力太高,如果储层浅并且如果高压保留时间过长,贝1J可发生蒸汽、砂和水穿透表面(Roche,P.,"BeyondSteam",NewTech. Mag.,2011 年9 月)。 Finally, if the pressure is too high, if the high-pressure reservoir shallow, and if the retention time is too long, the steam can shell 1J, sand and water penetrate the surface (Roche, P occurs., "BeyondSteam", NewTech. Mag., 2011 dated years. 9 ).

[0024] (7)蒸汽成本是可观的。 [0024] (7) steam cost is substantial. 对于包括资本支出和一些利润的设施,砂面的高质量蒸汽的成本为约$10至$15/百万英热单位(MMBTU)。 For some of the profits, including capital expenditures and facilities, the cost of high-quality sand surface steam for about $ 10 to $ 15 / million British thermal units (MMBTU). 高蒸汽成本可以反映出资源质量限度和最终采收率。 High steam costs may reflect the limits of resource quality and ultimate recovery.

[0025] (8)水的使用显著。 [0025] (8) water significantly. 假设SOR= 3,WRR= 1和采出水处理(即,再循环)的收率为90%,典型的SAGD用水是0. 3桶补偿水/桶采出沥青。 Suppose SOR = 3, WRR = 1 and produced water (i.e., recycled) in 90% yield, water is typically 0.3 SAGD compensation water tub / tub bitumen recovery.

[0026] (9)SAGD工艺效率"不良"且CO2的排放量显著。 [0026] (9) SAGD process efficiency "poor", and CO2 emissions significantly. 如果SA⑶效率被定义为[(沥青能量)_ (使用的表面能)V(沥青能量)并且沥青能量=6MMBTU/桶;在砂面使用的能量= IMMBTU/桶沥青(S0R~3);蒸汽以85%的效率在燃气式锅炉中产生;分配到井口和从井口递送到砂面各自有10 %的热损失;可用的蒸汽能量为1000BTU/镑(图3)并且锅炉燃料为1000BTU/SCF的甲烷;那么SAGD工艺效率=75. 5%和CO2排放量=0. 077吨/桶沥青。 If SA⑶ efficiency is defined as [(asphalt energy) _ (surface energy used) V (bitumen energy) and the pitch energy = 6MMBTU / barrel; energy used in the graining = IMMBTU / barrel bitumen (S0R ~ 3); steam efficiency of 85% is generated in the gas-fired boiler; assigned to the wellhead and delivered from the wellhead to the sand surface each with 10% heat loss; available steam energy is 1000 BTU / pound (FIG. 3) and a boiler fuel 1000BTU / SCF methane ; then the SAGD process efficiency = 755%, and CO2 emissions = 0077 tons / barrel bitumen...

[0027] (10)由于热损失,压力损失和隔离分配蒸汽管道的成本,实际蒸汽分配距离被限制为约10 至15 公里(6-9 英里)(Finan,A.,''IntegrationofNuclearPower…"MIT 论文,2007 年6 月(EnergyAlbertaCorp.,"NuclearEnergy…"CanadianHeavyOil Associationpres. (CHOA),2006 年11 月2 日)〇 [0027] (10) Since the cost of heat loss, pressure loss and isolation steam distribution pipes, vapor distribution actual distance is limited to about 10 to 15 km (6-9 miles) (Finan, A., '' IntegrationofNuclearPower ... "MIT paper, June 2007 (EnergyAlbertaCorp., "NuclearEnergy ..." CanadianHeavyOil Associationpres. (CHOA), November 2, 2006) billion

[0028] 最后,存在限制井长和/或井直径且可以优先于SA⑶操作的压力目标的天然水力限度。 [0028] Finally, there is a limit wells length and / or diameter of the well and may be a target pressure in preference to natural SA⑶ operated hydraulic limit. 图9(现有技术)显示出什么可以发生和什么已经发生。 Figure 9 (prior art) shows what can happen, and what has happened. 在SA⑶中,形成蒸汽/液体界面12。 In SA⑶, the vapor / liquid interface 12 is formed. 对于具有过冷控制的良好SAGD操作,蒸汽/液体界面12处于注入井2和开采井4之间。 For a good operation of subcooling control SAGD, steam / liquid interface 12 is between the injection and production wells 4 wells 2. 因为流体流动的摩擦损失导致的开采井4中的压降,蒸汽/液体界面12是倾斜的。 Because the fluid flow friction loss due to pressure drop production well 4, the vapor / liquid interface 12 is inclined. 蒸汽/气体室中压差很小/没有压差。 The steam / gas pressure in the small chamber / no pressure differential. 如果液体采出速率太高(或如果开采井太小), 那么界面12可以是倾斜的,使得蒸汽注入井14的趾(toe)被淹没和/或开采井16的跟(heel)暴露于蒸汽穿透(图9)。 If liquid draw rate is too high (too small or if production wells), the interface 12 may be inclined such that the toe (TOE) a steam injection well 14 is submerged and / or with the recovery well 16 (heel) are exposed to steam penetration (FIG. 9). 当开采井4中的压降超过蒸汽注入井2和液体开采井4 之间的静压头时(对于5米间距来说,约为8psi(50kPa)),该限制可发生。 When the pressure drop exceeds 4 production well steam injection wells when the hydrostatic head between the production wells and the liquid 4 (5 m for the pitch is about 8 psi (50 kPa)), this limitation may occur.

[0029] 使用氧的蒸汽辅助重力泄油("SAGD0X")是改进的热EOR工艺,其中蒸汽和氧都被注入沥青储层中。 [0029] using oxygen steam assisted gravity drainage ( "SAGD0X") is improved thermal EOR processes, wherein steam and oxygen are injected into the bitumen reservoir. 如图10最佳示出的,SAGDOX使用类似于SAGD的水平开采井4并通过各种竖直或水平井构造来添加氧气注入26,以注入蒸汽6和氧气26并除去非可冷凝的燃烧气体22 (即排气)(图10(a)、11(a)、11(b)和12)。 10 best shown, using a SAGDOX similar to FIG. 4 SAGD production wells and horizontal to the addition of oxygen by a variety of horizontal or vertical injection well construction 26, to inject oxygen and steam 26 6 and removing non-condensable gases in the combustion 22 (i.e., exhaust gas) (FIG. 10 (a), 11 (a), 11 (b) and 12). 图11(a)描绘了单一开采井,其中沥青和水8通过穿孔19采收,并且非可冷凝的气体22通过单独的环排出。 FIG 11 (a) depicts a single production well, wherein the bitumen and water 8 through the perforations 19 harvested, and the non-condensable gas 22 is discharged through a separate ring. 氧26和蒸汽6通过单独的竖直井注入产油层5。 6 oxygen 26 and steam injection oil production by 5 separate vertical wells. 图11(b)描绘了单一的开采井,其中氧26和蒸汽6被注入产油层5,不凝性气体22通过单独的环排出,并且沥青和水8在同一井中被采收,所有的都彼此隔离。 FIG. 11 (b) depicts a single production well, wherein the oxygen 26 and steam is injected into the producing zone 6 5, non-condensable gas is discharged through a separate ring 22, and the bitumen and water 8 are harvested in the same well, were all isolated from each other. 图12描绘了三种优选的几何结构。 12 depicts three preferred geometry. SAGDOX工艺可被认为是混合SA⑶和原位燃烧("ISC")工艺。 SAGDOX mixing process may be considered SA⑶ and in situ combustion ( "ISC") process. 使用氧的燃烧原位产生热,其比蒸汽更廉价且更有效率。 In situ using oxygen combustion generates heat which is cheaper and more efficient than the steam. 蒸汽促进了燃烧动力学,改善了传热并促进了侧向生长。 Steam promotes the combustion dynamics, improved heat transfer and promotes the lateral growth. 调节蒸汽和氧注入速率以及排气除去速率以达到目标压力。 Adjusting the rate of injection of steam and oxygen, and the removal rate of the exhaust gas to reach the target pressure. 通过与SAGD类似的过冷目标温度控制开采速率。 SAGD by similar target subcooling temperature control the rate of extraction. 调节氧/蒸汽比率在0.05-1. 00 (v/v)的范围内,或换句话说蒸汽与氧比率为19-1。 Adjusting the range of the oxygen / steam ratio of 0.05-1. 00 (v / v) or in other words the steam to oxygen ratio of 19-1.

[0030]SAGDOX的早期形式提供的氧与蒸汽比率仅仅在0. 05-1. 00的范围内。 [0030] The ratio of oxygen to steam in the form of early SAGDOX provided only in the range 0. 05-1. 00. 需要扩展氧与蒸汽比率超过0. 05-1.OO并确定SAGDOX中最佳的操作条件。 Oxygen and steam need to extend the ratio exceeds 0. 05-1.OO SAGDOX and determining the optimum operating conditions.

发明内容 SUMMARY

[0031] 根据一个方面,提供了一种改进SAGDOX的方法,所述方法包括使用采出水与油的比率(v/v) ( "PW0R")以确定最佳SAGDOX工艺参数。 [0031] According to one aspect, there is provided a method of improving SAGDOX, the method comprising the ratio (v / v) ( "PW0R") to determine the optimum parameters used SAGDOX produced water and oil.

[0032] 根据另一方面,提供了PWOR在控制热EOR中的用途,优选优化热E0R,更优选优化在烃采收中的SAGDOX。 [0032] According to another aspect, there is provided a PWOR use in controlling the thermal EOR is preferably optimized heat E0R, more preferably in hydrocarbon recovery optimization of SAGDOX.

[0033] 根据另一方面,提供了改进的使用注入氧的蒸汽辅助重力泄油("SAGD0X")方法以采收烃,所述方法包括: [0033] According to another aspect, there is provided an improved use of oxygen injection steam assisted gravity drainage ( "SAGD0X") method to the recovery of hydrocarbons, the method comprising:

[0034] (a)在第一氧与蒸汽比率下开始所述SAGDOX工艺; [0034] (a) at a first start of the ratio of oxygen to steam SAGDOX process;

[0035] (b)测量与所述第一氧与蒸汽比率相关的PWOR; [0035] (b) measuring said first oxygen ratio associated with steam PWOR;

[0036] (C)调节所述氧与蒸汽比率以获得第二PW0R; [0036] (C) adjusting the ratio of oxygen to steam in order to obtain a second PW0R;

[0037] (d)测量与所述第二PWOR相关的烃采收率;以及 [0037] (d) measurement associated with the second hydrocarbon recovery PWOR; and

[0038] (e)重复步骤(c)和(d)直到达到改进所述烃采收率的PWOR目标。 [0038] (e) repeating steps (c) and (d) until the improved hydrocarbon recovery PWOR target.

[0039] 在一种实施方式中,所述改进包括扩展氧与蒸汽比率超过0.05-1. 00 (v/v)的范围,优选蒸汽与氧比率为约19至接近零但是大于零。 [0039] In one embodiment, the improvement comprising oxygen and steam expansion ratio exceeds 0.05-1. 00 (v / v) range, preferably steam to oxygen ratio is from about 19 to greater than zero but near zero. 在一个优选的实施方式中,在所述氧与蒸汽混合物中氧的百分比大于50% (v/v)。 In a preferred embodiment, the percentage of oxygen in said oxygen and steam mixture of greater than 50% (v / v).

[0040] 优选地,改进所述烃采收的所述PWOR目标为约0. 5至2. 0,优选1. 0。 [0040] Preferably, the improved hydrocarbon recovery PWOR the target is from about 0.5 to 2.0, preferably 1.0. 更优选地, 所述PWOR目标可以是最大值,其中在所述工艺中的所述氧的量接近零但是大于0 %。 More preferably, the target may be the maximum PWOR, wherein the amount of oxygen in the process of close to zero but greater than 0%.

[0041] 在另一种实施方式中,所述改进包括使用PWOR去选取最佳氧与蒸汽比率。 [0041] In another embodiment, the improvement comprises the use PWOR to select the best ratio of oxygen to steam. 在另一种实施方式中,所述改进包括调节压力和过冷目标来优化SAGD0X。 In another embodiment, the improvement comprising adjusting the target subcooling pressure and to optimize SAGD0X. 优选地,调节氧与蒸汽比率以达到目标PWOR(采出水与油比率)。 Preferably, adjusting the ratio of oxygen to steam in order to reach the target PWOR (produced water oil ratio). 在另一种实施方式中,选择PWOR目标来优化SAGDOX工艺中氧与蒸汽比率。 In another embodiment, the selected target PWOR SAGDOX to optimize the ratio of oxygen to steam process. 在一种实施方式中,所述注入的氧是含氧气体。 In one embodiment, the oxygen-containing gas is oxygen injection.

[0042] 根据一个方面,提供了使用基本上水平的开采井,从具有顶部和底部的烃储层中采收液态烃的方法,其中: [0042] According to one aspect, there is provided the use of a substantially horizontal production well, recovery of liquid hydrocarbons from a hydrocarbon reservoir having a top and bottom of the method, wherein:

[0043] (1)所述基本上水平的开采井从所述储层中开采水和液态烃;优选地,所述基本上水平的开采井在距储层底部2米内完井; [0043] (1) substantially horizontal production well the produced water and liquid hydrocarbons from said reservoir; Preferably, said substantially horizontal production well completion within 2 m from the bottom of the reservoir;

[0044] (2)将氧注入烃储层内,优选在所述基本上水平的开采井的上方,优选在距所述基本上水平的开采井50米内;优选地,所述氧通过至少一个氧注入井或位点注入;所述至少一个氧注入井或位点具有至少一个储层接触区来接触所述储层,所述区优选长度小于50 米; [0044] (2) oxygen is injected into the hydrocarbon reservoir, preferably substantially above the horizontal production well, preferably from within the substantially horizontal production well in the 50 m; preferably, the oxygen by at least one oxygen injection wells or injection site; the at least one oxygen injector site or at least one reservoir having to contact the contact region of the reservoir, the length of the zone is preferably less than 50 meters;

[0045] (3)将蒸汽注入烃储层中,优选在所述基本上水平的开采井的上方,优选在距所述基本上水平的开采井20米内;其中 [0045] (3) injecting steam into a hydrocarbon reservoir, preferably substantially above the horizontal production well, preferably in a substantially horizontal from said production well 20 m; wherein

[0046] (4)氧通过燃烧原位产生热,蒸汽通过传导以及通过冷凝原位产生热,导致液态烃被加热,降低其粘度使得其穿过所述至少一个储层接触区通过重力泄出到水平开采井,所述液态烃优选传递(更优选栗送)到地表; [0046] (4) oxygen combustion is generated in situ by heat, steam and producing heat by conduction through condensation in situ, leading to liquid hydrocarbons is heated, its viscosity reduced such that it passes through the at least one contact zone by gravity escape reservoir the horizontal production well, the transfer is preferably a liquid hydrocarbon (more preferably Li sent) to the surface;

[0047] (5)控制注入所述烃储层中的氧对蒸汽以获得目标采出水与油比率(v/v) (〃PW0R〃);优选地,注入的所述氧与蒸汽具有19至大于零的蒸汽与氧的比率; [0047] (5) controlling the injection of a hydrocarbon reservoir to obtain the target oxygen steam produced water oil ratio (v / v) (〃PW0R〃); preferably, the oxygen is injected with steam to 19 having is greater than zero the ratio of steam to oxygen;

[0048] (6)通过燃烧产生的非可冷凝的气体和在含氧气体中的惰性气体("排气")通过至少一个排气位点从储层、优选脱离所述基本上水平的开采井被除去,更优选地距离所述基本上水平的开采井约5至约75米处被除去;以及 [0048] (6) a non-condensable gas produced by combustion and inert gas ( "exhaust gas") in an oxygen-containing gas through at least one discharge site from a reservoir, preferably from the substantially horizontal Mining well it is removed, more preferably from the substantially horizontal production well from about 5 to about 75 meters is removed; and

[0049] (7)更优选地,在距离所述至少一个排气除去位点预定距离处、优选距离所述至少一个排气除去位点至少1〇〇米处,注入所述蒸汽和氧。 [0049] (7) More preferably, said at least one exhaust is removed from the site at a predetermined distance, preferably at least one exhaust from the site removing at least 1〇〇 meters, the injection of steam and oxygen.

[0050] 优选地,PWOR目标在0. 5与更大值之间,使得在所述方法中所述氧的量接近零但是大于零,更优选在0. 5与约2. 0之间。 [0050] Preferably, PWOR target value between 0.5 and greater, such that the amount of oxygen in the process of close to zero but greater than zero, more preferably between 0.5 and about 2.0.

[0051] 优选地,通过改变PW0R,直到使成本、优选运营成本/桶沥青最小化,而在现场确定PWOR目标。 [0051] Preferably, by changing PW0R, until in cost, preferably operating costs / bbl bitumen minimized while determining PWOR target site.

[0052] 任选地,根据一种实施方式,不需要除去非可冷凝的燃烧气体或含氧气体中的惰性气体组分。 [0052] Optionally, according to one embodiment, the inert gas is not necessary to remove the non-condensable components of the combustion gas or the oxygen-containing gas.

[0053] 优选地,将蒸汽注入距离所述水平井10米内,更优选使用在与水平开采井相同的竖直平面内的平行的、水平井,并在所述井上方3至8米处。 [0053] Preferably, the steam is injected from the horizontal wells 10 meters, more preferably in parallel with a horizontal production well in the same vertical plane, horizontal well, and at the uphole side of 3-8 meters.

[0054] 在另一种实施方式中,使用至少一个单一的基本上竖直井、优选多个基本上竖直井来将蒸汽注入储层中。 [0054] In another embodiment, at least a single substantially vertical wells, preferably a plurality of substantially vertical wells by injecting steam into the reservoir.

[0055] 在另一种实施方式中,使用至少一个单一的基本上竖直井、优选多个基本上竖直井来将氧、优选含氧气体注入储层中。 [0055] In another embodiment, at least a single substantially vertical wells, preferably a plurality of substantially vertical well to oxygen, preferably an oxygen-containing gas is injected into the reservoir.

[0056] 在又一种实施方式中,使用至少一个单一的基本上竖直井、优选多个基本上竖直井来将排气从储层中除去。 [0056] In yet another embodiment, at least a single substantially vertical wells, preferably a plurality of substantially vertical well removed from the exhaust gas to the reservoir.

[0057] 在又一种实施方式中,所述蒸汽和氧在地表共同混合并使用至少一个单一的基本上竖直井、优选多个基本上竖直井将其注入储层中。 [0057] In yet another embodiment, the steam and oxygen mix together and using at least a single substantially vertical well at the surface, preferably a plurality of substantially vertical injection wells to the reservoir.

[0058] 在有一种实施方式中,所述蒸汽和氧在至少一个单一的基本上竖直井、优选多个基本上竖直井中使用封隔器隔离,并分别注入储层中。 [0058] In one embodiment there is, at least said steam and oxygen at substantially a single vertical well, preferably a plurality of substantially vertical well use a packer isolation, and are injected into the reservoir.

[0059] 根据另一种实施方式,所述蒸汽和氧在所述井中使用同心管和封隔器隔离,优选中心管中的蒸汽被相邻环中的氧包围,优选所述氧以比所述蒸汽注入高度更高的高度注入所述储层中。 [0059] According to another embodiment, the steam and oxygen in the well using a concentric tube and the isolation packer, oxygen is preferably surrounded by the ring center is adjacent steam pipe, preferably the ratio of oxygen to the said height greater steam injection into said reservoir.

[0060] 根据另一个实施方式,所述方法使用单一的基本上竖直井来注入蒸汽和氧,其中所述单一的基本上竖直井在距离所述水平开采井的趾50米之内完井。 [0060] According to another embodiment, the method uses a single substantially vertical well to inject oxygen and steam, wherein said single substantially vertical well completed within 50 m from the toe of a horizontal production well well.

[0061] 根据另一种实施方式,所述排气使用一个井,优选基本上竖直井除去。 [0061] According to another embodiment, a use of the exhaust gas wells, preferably substantially vertical well removed. 在另一种实施方式中,所述排气使用多个竖直井除去。 In another embodiment, the exhaust gas is removed using a plurality of vertical wells.

[0062] 优选地,所述排气通过水平井的跟上升段中的分离环段除去。 [0062] Preferably, the exhaust gas is removed by the horizontal section of the well with the increased separation ring segments.

[0063] 在另一种实施方式中,氧通过水平井的分离的趾段而注入所述储层中。 [0063] In another embodiment, the oxygen separated by the toe section of the horizontal well in the reservoir is injected.

[0064] 在另一种实施方式中,蒸汽通过水平井的分离的趾段而注入所述储层中。 [0064] In another embodiment, the separated steam through the toe section of the horizontal well in the reservoir is injected.

[0065] 在另一种实施方式中,所述蒸汽和氧在地表混合,并通过水平井的分离的趾段而注入所述储层中。 [0065] In another embodiment, the mixed steam and oxygen at the surface, and the toe section separated by a horizontal well in the reservoir is injected.

[0066] 在另一种实施方式中,所述氧和蒸汽被隔离并通过水平井的分离的趾段而同时注入所述储层中。 [0066] In another embodiment, the oxygen and steam are isolated and separated horizontal section through the toe while simultaneously injecting wells in the reservoir.

[0067] 在另一种实施方式中,所述隔离使用同心管和封隔器完成,蒸汽在中心管中,其被相邻的环中的氧包围。 [0067] In another embodiment, the spacer tube and the concentric packer completed, the steam in the central tube, which is adjacent oxygen ring surrounds.

[0068] 在另一种实施方式中,所述排气在水平井的跟上升段中的分离环中除去。 [0068] In another embodiment, the exhaust gas in the separation loop with the rising section of the horizontal well removed.

[0069] 在另一种实施方式中,所述水平井的趾向上钻孔并完井,使得最低的注入孔口(用于蒸汽或含氧气体或二者)在高度上比开采井的水平段的水平面更高、优选在高度上比开采井的水平段的水平面高超过2米。 [0069] In another embodiment, the toe of the horizontal well drilling and completion upwardly, so that the minimum injection orifice (for steam or oxygen containing gas or both) the horizontal production well in the height ratio the higher level section, the horizontal section of preferably horizontal production well in the height ratio of more than 2 meters high.

[0070] 在另一种实施方式中,所述水平井以倾斜储层中的上倾方向基本上平行于所述储层底部进行钻孔,使得最低的注入孔口在高度上比最高的液体开采孔口更高、更优选在高度上比最尚的液体开米孔口尚超过2米。 [0070] In another embodiment, the inclined horizontal wells in a reservoir on the tilting direction substantially parallel to said bottom reservoir drilling, such that the minimum height of the inlet orifice than the highest liquid higher extraction aperture, still more preferably at most than the opening height of the liquid orifice meters still more than 2 meters.

[0071] 在另一种实施方式中,含氧气体是氧,氧含量为95-99. 99 (v/v) %。 [0071] In another embodiment, the oxygen-containing gas is oxygen, the oxygen content is 95-99. 99 (v / v)%.

[0072] 在另一种实施方式中,含氧气体是空气,优选富氧空气,氧含量为21-95 (v/v) %。 [0072] In another embodiment, the oxygen-containing gas is air, preferably oxygen enriched air, the oxygen content of 21-95 (v / v)%.

[0073] 在另一种实施方式中,所述方法还包括使用靠近开采井的趾的扩展管,确保开采井中的最低压力接近所述趾。 [0073] In another embodiment, the method further comprising the use of extension tubes near the toe of the production well, the recovery well ensuring a minimum pressure close to the toe.

[0074] 当液态烃是沥青时,优选API密度小于10,且原位粘度大于100,OOOcp。 [0074] When the pitch is a liquid hydrocarbon, the density is preferably less than 10 API, and the in situ viscosity of greater than 100, OOOcp. 当液态烃是重质油时,优选API密度为10至20,且原位粘度大于1,OOOcp。 When the heavy oil is a liquid hydrocarbon, the density is preferably from 10 to 20 API, and the in situ viscosity of greater than 1, OOOcp.

[0075] 在一种实施方式中,水平开采井距离储层的底部在其最接近点处小于2. 0米。 [0075] In one embodiment, the bottom horizontal production well from the reservoir is less than 2.0 m at its closest point.

[0076] 优选地,通过改变PWOR直到沥青生产率最大化,来确定PWOR目标。 [0076] Preferably, by varying the pitch until PWOR maximize productivity, determined PWOR target.

附图说明 BRIEF DESCRIPTION

[0077] 图1描述了传统SAGD几何结构。 [0077] Figure 1 depicts a conventional SAGD geometry.

[0078] 图2描绘了SAGD寿命周期。 [0078] FIG. 2 depicts a SAGD life cycle.

[0079] 图3描绘了饱和蒸汽性质。 [0079] FIG 3 depicts a saturated steam properties.

[0080] 图4描绘了蒸汽吹扫区中的残余沥青。 [0080] FIG 4 depicts a vapor purge zone residual bitumen.

[0081] 图5描绘了沥青的粘度与温度的关系。 [0081] FIG. 5 depicts the relationship between viscosity and temperature of the asphalt.

[0082] 图6描绘了用于SAGD沥青生产率的Gravdrain方程。 [0082] FIG 6 depicts an equation for SAGD bitumen Gravdrain productivity.

[0083] 图7描绘了SAGDOX转变为ISC。 [0083] FIG. 7 depicts a SAGDOX into ISC.

[0084] 图8描绘了蒸汽EOR在各种初始油饱和水平下的S0R。 [0084] FIG 8 depicts an EOR S0R steam at various initial oil saturation levels.

[0085] 图9描绘了在良好和差的操作条件期间的SAGD水力限度。 [0085] FIG. 9 depicts a hydraulic SAGD limits in good and poor conditions during operation.

[0086] 图10描绘了优选实施方式的SAGDOX几何结构,排气位点与注入井和开米井分开。 [0086] FIG. 10 depicts a preferred embodiment of SAGDOX geometry embodiment, the exhaust gas separated from the site of injection wells and wells meters apart. [0087] 图IOa描绘了优选实施方式的SAGDOX几何结构,排气位点接近开采井。 [0087] FIG IOa depicts a preferred embodiment SAGDOX geometry exhaust site near the production well.

[0088] 图Ila描绘了优选实施方式的趾-到-跟SAGDOX几何结构,氧和蒸汽在接近开采井的趾处注入。 [0088] FIG Ila depicts a preferred embodiment of the toe - to - SAGDOX geometry with injection of oxygen and steam at the toe proximate the production well.

[0089] 图Ilb描绘了优选的实施方式的单井SAGD0X,具有升高的趾几何结构。 [0089] FIG Ilb single well SAGD0X depicts a preferred embodiment having a toe geometry raised.

[0090] 图12描绘了SAGDOX几何结构的三个优选实施方式。 [0090] FIG. 12 depicts a preferred embodiment three SAGDOX geometry.

[0091] 图13描绘了燃烧热释放HHV与燃料的H/C原子比率的关系。 [0091] Figure 13 depicts the relationship between the H / C atomic ratio of the combustion heat release and fuel HHV.

[0092] 图14描绘了饱和蒸汽的压力与温度的关系。 [0092] Figure 14 depicts the relationship between pressure and temperature of saturated steam.

[0093] 图15描绘了SAGDOX机制与烃采收的关系。 [0093] FIG. 15 depicts the relationship of SAGDOX hydrocarbon recovery mechanism.

[0094] 图15 (a)描绘了THSAGD0X的采收井网的侧视图。 [0094] FIG. 15 (a) depicts a side view of the recovery wells THSAGD0X network.

[0095]图16描绘了用于燃烧的所需要的最小空气流率与原油重力的关系。 [0095] Figure 16 depicts the relationship required for the combustion air flow rate to the minimum oil gravity.

[0096] 图17描绘了蒸汽和氧燃烧管测试I。 [0096] Figure 17 depicts the test tube steam and oxygen combustion I.

[0097] 图18描绘了蒸汽和氧燃烧管测试II。 [0097] FIG. 18 depicts the test tube steam and oxygen combustion II.

[0098] 图19描绘了SAGDOX燃烧化学。 [0098] Figure 19 depicts SAGDOX combustion chemistry.

[0099]图20描绘了SAGDOX燃烧组分PWOR与初始沥青饱和度的关系。 [0099] FIG. 20 depicts the relationship SAGDOX combustion component PWOR initial saturation asphalt.

[0100] 图21描绘了PWOR与初始沥青饱和度的关系(在能量与油比率("ETOR")=I. 0 时)。 [0100] FIG. 21 depicts the relationship PWOR initial bitumen and saturation (ratio of energy and oil ( "ETOR") = I. 0 hours).

[0101] 图22描绘了PWOR与ETOR的关系,假设S1。 [0101] FIG. 22 depicts the relationship PWOR and ETOR, assuming S1. 为0. 80。 0.80.

[0102] 图23描绘了在SAGDOX寿命末期时的燃烧组分PW0R。 [0102] FIG. 23 depicts the combustion component in the late PW0R SAGDOX life.

[0103] 图24描绘了ETOR升高或SAGDOX成熟时的渐变氧策略。 [0103] FIG. 24 depicts the gradient of the oxygen ETOR strategy when raised or SAGDOX maturation.

[0104] 图25描绘了WRR与初始沥青饱和度在各种氧浓度下的关系。 [0104] FIG. 25 depicts the relationship between the initial pitch WRR saturation at various oxygen concentrations.

[0105] 图26描绘了蒸汽吹扫区中的%油/沥青采收率与初始油/沥青饱和度的关系。 [0105] FIG. 26 illustrates the relationship between the steam purge zone% oil / bitumen recovery from the initial oil / bitumen saturation.

具体实施方式 Detailed ways

[0106]SAGDOX的目的是降低储层能量注入成本,同时保持良好的效率和生产率。 [0106] SAGDOX purpose is to reduce the cost of energy into the reservoir, while maintaining good efficiency and productivity. 氧气燃烧以约480BTU/SCF氧气(独立于燃烧的燃料)的速率产生原位热(图13,Butler(1991))。 Oxygen combustion of about 480BTU / SCF of oxygen (independently of the fuel combustion) rate of heat generation in situ (FIG. 13, Butler (1991)). 燃烧温度独立于压力并且它们高于饱和蒸汽温度(图3、14)。 Independent of the pressure and the combustion temperature is higher than the saturated vapor temperature thereof (FIG. 3, 14). 来自燃烧的较高温度蒸发原生水并回流一些蒸汽。 Higher temperature from the combustion of the connate water was evaporated and refluxed some steam. 蒸汽从由冷凝释放的潜热以净值递送EOR能量,包括约1000BTU/镑的表面热回收(图3)。 Steam from the latent heat released by condensing a net energy delivered EOR, comprising a heat recovery surface from about 1000 BTU / pound (FIG. 3). 表1展示了蒸汽+氧气混合物的热性质。 Table 1 shows the thermal properties of steam + oxygen mixtures. 对于每单位递送到储层的热,氧气体积小于蒸汽的十分之一,并且氧气的成本(包括资本费用)是蒸汽成本的一半到三分之一。 Per unit of heat delivered to the reservoir, the volume of oxygen less than one tenth of the steam, and the cost of oxygen (including capital cost) is half to one-third the cost of steam.

[0107]SAGDOX的采收机制比SA⑶的更复杂。 [0107] SAGDOX harvesting mechanism is more complex than the SA⑶. 如图15最佳所示,燃烧吹扫区域170被容纳在蒸汽-吹扫区170以内。 Best shown in FIG. 15, the combustion purge zone 170 is accommodated in the steam - purge zone 170 or less. 蒸汽-吹扫区120中的残余沥青被热燃烧气体加热、分馏和热解以提供作为燃烧实际燃料的焦炭。 Steam - residual bitumen in the purge zone 120 the hot combustion gas heating, pyrolysis and fractionation to provide the actual fuel as coke combustion. 形成的气体室含有蒸汽燃烧气体、蒸发的原生水、和其他气体。 A gas chamber formed in a combustion gas containing vapor evaporated connate water, and other gases. 大的气体室可以细分为燃烧-吹扫区100、燃烧前区110、热解区120、热沥青储库130、过热蒸汽区140和饱和蒸汽区150。 Large gas can be subdivided into the combustion chamber - purge zone 100, the combustion front region 110, a pyrolysis zone 120, hot bitumen reservoir 130, superheated steam and saturated steam region 140 region 150. 冷凝蒸汽从饱和蒸汽区150和气体室的顶层及壁泄出。 And condensed steam escape from the top wall 150 and a saturated vapor zone of the gas chamber. 热沥青从所述室的顶层及壁和燃烧前区110的边缘的热沥青区泄出。 Hot asphalt and escape from the top wall of the chamber and the combustion zone of hot asphalt edge of the front region 110. 冷凝水和热沥青8通过较低的水平井4收集并运送(或栗送)到地表(图10)。 8 and condensed water through the hot asphalt lower horizontal wells collected and transported (or transmitting Li) to the surface (FIG. 10) 4. 图15 (a)描述了在燃烧吹扫区在SAGDOX工艺过程中是如何生长的。 FIG 15 (a) is described in the combustion zone SAGDOX purging process is how to grow.

[0108] 将燃烧不凝性气体收集并通过排气井或在分离的排气位点去除(分别为图10、 10(a)、11(a)和11 (b))。 [0108] The non-condensed gas combustion collected and removed in a separate exhaust through the exhaust sites or wells (Figures 10, 10 (a), 11 (a) and 11 (b)). 在一种实施方式中,通过排气的产生可以独立于液体开米速率而部分地控制工艺压力。 In one embodiment, the exhaust gas generated by the liquid may be independently open and partially controlled rate meter process pressure. 排气的产生也可用于影响气体室增长的方向和速率。 Generating exhaust gas chamber can also be used to influence the direction and rate of growth.

[0109]一些SAGDOX件质包括: [0109] Some SAGDOX mass member comprises:

[0110] (1)使用氧气(而不是空气)作为氧化剂注入 [0110] (1) oxygen (rather than air) as the oxidant injection

[0111] •如果考虑处理排气以去除硫组分和采收挥发性烃类的成本,则对于每单位递送到储层的能量而言,即使在低压力下,氧气的全部成本也小于压缩空气的成本。 [0111] • consideration of the exhaust gas treatment to remove sulfur components and the cost of recovery of volatile hydrocarbons, the per unit energy delivered to the reservoir, even if at a low pressure, all of the oxygen is less than the cost of compression cost air.

[0112] •对于相同能量递送来说,氧气占有相对于空气约五分之一的体积。 [0112] • for the same energy delivery, the oxygen is about one-fifth of the volume occupied relative to the air. 井管道/管更小,并且氧气可以输送到离中央工厂位置更远的距离。 Well conduit / pipe is smaller, and the oxygen may be delivered to the plant from a central position a greater distance.

[0113] •使用氧气的原位燃烧主要产生不以氮气稀释的不凝性C02。0)2可以溶于沥青以提高生产率。 [0113] • in situ combustion using oxygen gas diluted with nitrogen to produce primarily non-condensable C02.0) 2 may be dissolved in the asphalt to improve productivity. 溶解通过使用氧气而最大化。 By maximizing the use of oxygen dissolved.

[0114] •使用氧气时,排气主要是CO2并可被埋存(sequester)在单独的位置或单独的层位(horizon)中。 [0114] • When using oxygen, exhaust mainly CO2 and buried memory (Sequester) in a separate location or in a separate layer bits (horizon).

[0115] •存在最小氧气流量以维持高温氧化("HT0")燃烧(图16),图16显示了空气流率。 [0115] • there is a minimum oxygen flow to maintain a high temperature oxidation ( "HT0") combustor (FIG. 16), FIG. 16 shows an air flow rate. 氧速率为约1/5空气流率。 Oxygen rate is about 1/5 of the air flow rate. 当燃烧区厚度增加时,最小ISC空气流率降低。 When increasing the thickness of the combustion zone, the minimum ISC air flow rate.

[0116] •更容易达到/维持使用氧气的这个流量 [0116] • easier to achieve / maintain the flow of oxygen

[0117] (2)保持氧气在集中位置注入 [0117] (2) maintaining the oxygen concentration at the injection position

[0118] •由于来自原位燃烧的最小〇2流量约束(图16),所以氧气注入井(或分离段)与储层接触不应超过50米。 [0118] • Since the minimum flow constraint from 〇2 situ combustion (FIG. 16), the oxygen gas injection well (or separate segments) in contact with the reservoir should not exceed 50 m.

[0119] (3)尽可能分离氧气和蒸汽注入物 [0119] (3) separation of oxygen and steam as implant

[0120] •冷凝蒸汽(热水)与氧气对碳钢的腐蚀性很强。 [0120] • condensed steam (water) and oxygen strongly corrosive to carbon steel.

[0121] •为了最小化腐蚀,或者:(i)将氧气和蒸汽分别注入(图l〇、ll(a))或(ii)使共同混合的蒸汽与氧气有限地暴露于可为耐腐蚀合金的管段,或者暴露于共同混合的蒸汽和氧的段的完整性对所述工艺不是关键的(图11(b)),或者整个注入带是由耐腐蚀合金制成的。 [0121] • To minimize corrosion, or: (i) oxygen and steam were injected (FIG l〇, ll (a)) or (ii) mixed together to make steam to a limited exposure to oxygen may be a corrosion-resistant alloy pipe sections, or exposure to mixed together segments integrity of steam and oxygen is not critical to the process (FIG. 11 (b)), or the entire band is injection of a corrosion resistant alloy.

[0122] (4)排气井(或位置)靠近储层顶部,并远离氧气注入位置。 [0122] (4) vent well (or location) near the top of the reservoir, and away from the oxygen injection location.

[0123] •由于蒸汽的移动和冷凝,不凝性气体集中在气体室的顶部附近。 [0123] • due to the movement and condensation of the steam, non-condensable gas concentration in the gas near the top of the chamber.

[0124] •排气井远离氧气注入井以容许燃烧和热传递的时间/空间。 [0124] • vent well away from the injection well to allow the oxygen combustion and heat transfer time / space.

[0125] (5)排气不应带有显著的氧气含量而产生 [0125] (5) with the exhaust gas should not significantly oxygen content is generated

[0126] •为减轻爆炸并培养良好的氧气利用,任何具有大于5% (v/v)氧气含量的排气产生应被关井。 [0126] • To mitigate blast and develop good oxygen utilization, having no (v / v) oxygen content of the exhaust gas is generated more than 5% should be shut.

[0127] (6)在储层中达到/保持最小量的蒸汽 [0127] (6) to reach / maintain a minimum amount of steam in the reservoir

[0128] •在SAGDOX中随氧气加入/注入蒸汽,因为蒸汽协助燃烧。 [0128] • join with oxygen in the SAGDOX / injection of steam, because steam assisted combustion. 蒸汽预热储层, 使得HTO的点火可自发。 Preheating steam reservoir, so that the ignition HTO spontaneously. 蒸汽向燃烧区加入OH和H+自由基以改善和稳定化燃烧(图17和图18)(个人通信)。 Steam is added to the H and OH radicals to improve combustion zone + and stabilized combustion (FIGS. 17 and 18) (personal communication). 这也得到了无烟燃烧操作的证实,其中加入蒸汽以改善燃烧并减少烟雾(Stone,D•等,"Flares",第七章,www.gasflare.org, 2012 年6 月, EnvironmentalProtectionAgency("EPA")"IndustrialFlares",EPA.gov,2012 年6 月)(Shore,D."MakingtheFlareSafe",J.LossPrev.Proc.Ind.,9, 363, 1996)。 This has also been confirmed smokeless combustion operation in which steam is added to improve combustion and reduce smoke (Stone, D • and so on, "Flares", Chapter VII, www.gasflare.org, June 2012, EnvironmentalProtectionAgency ( "EPA ")" IndustrialFlares ", ePA.gov, June 2012) (Shore, D." MakingtheFlareSafe ", J.LossPrev.Proc.Ind., 9, 363, 1996). 用于气化燃料的该工艺也向部分燃烧器加入蒸汽以最小化烟灰的产生(Berkowitz,N.,"fossil Hydrocarbons',,AcademicPress, 1997) 〇 The process for the gasification of the fuel vapor to be added to produce a partial combustion minimize soot (Berkowitz, N., "Fossil Hydrocarbons' ,, AcademicPress, 1997) square

[0129] •蒸汽也冷凝并产生覆盖水平开采井和将该井与气体或蒸汽侵入隔离的水。 [0129] • condensed and produced steam may also cover the horizontal well and the recovery well and invasive isolation gas or vapor water.

[0130] •蒸汽冷凝物将水加入开采井以可能改善流动性能一一水/沥青乳液一一与单独沥青相比。 [0130] • steam condensate recovery well water was added to improve the flow properties of the eleven possible water / bitumen emulsion eleven compared with asphalt alone.

[0131] •蒸汽也是储层中优异的传热剂。 [0131] • steam is excellent in heat-transfer agent reservoir. 如果比较热燃烧气体(主要是CO2)与蒸汽时, 蒸汽的传热优势明显。 If the relatively hot combustion gases (mainly CO2) and steam, heat transfer obvious advantages of steam. 例如,如果热气体室的边缘为约200°C,则将燃烧气体从500°C冷却至200°C的可用的热为约16BTU/SCF。 For example, if the edge of the hot gas chamber is about 200 ° C, the gas is cooled from 500 ° C to 200 ° C to heat the combustion will be available about 16BTU / SCF. 相同体积的饱和蒸汽含有39BTU/SCF的潜热,超过燃烧气体能量含量的两倍多。 Saturated steam containing the same volume of the latent heat 39BTU / SCF, and more than twice the energy content of the combustion gas and more. 此外,当热燃烧气体冷却时,它们成为有效的隔离体,阻碍进一步传热。 Further, when cooling the hot combustion gases, they become effective separator, further hindering heat transfer. 当蒸汽被冷凝以递送潜热时,它产生了短暂的低压,所述低压抽进更多的蒸汽一一可与热栗相比。 When the vapor is condensed in the latent heat delivery time, it produces a brief low pressure, drawn into the low pressure steam eleven more heat can be compared with Li. 动力学也有利于蒸汽/水。 Dynamics is also conducive to the steam / water. 与约为6.8 (mW/cmK)的水的导热系数相比一一增加了20倍,燃烧气体的导热率约为0. 31 (mW/cmK)。 As compared to approximately 6.8 (mW / cmK) of the thermal conductivity of water eleven 20-fold increase, the thermal conductivity of the combustion gas is about 0. 31 (mW / cmK). 因此,燃烧(无蒸汽)具有慢传热和差的侧向增长的议题。 Thus, combustion (no steam) having a heat transfer issues and poor lateral slow growth. 这些议题可以通过蒸汽注入来缓和。 These issues can be mitigated by steam injection.

[0132] •由于无法测量储层中蒸汽的量,所以SAGDOX通过1. 0的最大氧气/蒸汽(v/v) 比率或者蒸汽与氧气混合物中50% (v/v)的氧气来设置蒸汽最小值。 [0132] • reservoir since the amount of steam can not be measured, so that the maximum SAGDOX 1.0 oxygen / steam (v / v) ratio of steam to oxygen or mixture of 50% (v / v) oxygen to steam set the minimum value.

[0133] (7)达到(或超过)最小氧气注入 [0133] (7) reaches (or exceeds) the minimum oxygen injection

[0134] •在蒸汽与氧气混合物中低于约5% (v/v)的氧气时,燃烧吹扫区小并且氧气成本优势最小。 When [0134] • less than about 5% of steam and oxygen mixture (v / v) oxygen combustion region and the small purge oxygen minimum cost advantages. 在这个水平,只有约三分之一的注入能量是由于燃烧。 At this level, only about a third of the energy is injected into the combustion.

[0135] (8)最大氧气注入 [0135] (8) the maximum oxygen injection

[0136] •在上述(6)和(7)的约束内,因为每单位能量氧气不如蒸汽昂贵,所以用于开采沥青的最低成本的选择是最大化氧气/蒸汽比率。 [0136] • in (6) above, and constraints (7) of oxygen per unit of energy not as good as steam expensive, so choose the lowest cost for the extraction of bitumen is to maximize the oxygen / steam ratio.

[0137] (9)使用优选的SAGDOX几何结构 [0137] (9) using the preferred geometry SAGDOX

[0138] •根据个体应用、储层基质性质、储层流体性质、深度、净产油区、压力和区域因子, 对于SAGDOX有三种优选的几何结构(图12)。 [0138] • depending on the individual application, the matrix of reservoir properties, the reservoir fluid properties, depth, net oil production zone, pressure and regional factors, there are three preferred for SAGDOX geometry (FIG. 12).

[0139] •选项B-趾-到-跟SAGD0X( "THSAGD0X")和C-单井SAGD0X( "SWSAGD0X")最适合于薄产油区资源,只要求一个水平井。 [0139] • Option B- toe - to - heel SAGD0X ( "THSAGD0X") and C- single well SAGD0X ( "SWSAGD0X") is best suited for thin oil-producing region resources, only requires a horizontal well. 与SAGD相比,THSAGD0X和SWSAGD0X具有减少的井数且较低的钻井成本。 Compared with SAGD, THSAGD0X SWSAGD0X and having a reduced number of well drilling and low cost. 而且,内管和封隔器应可用于多种应用。 Furthermore, the inner tube and the packer can be used for various applications.

[0140] (10)通过如下对SAGDOX进行控制/操作: [0140] (10) by control of SAGDOX / Operation:

[0141] •对于流体开采速率的过冷控制,其中在储层压力下将采出流体温度与饱和蒸汽温度作比较。 [0141] • extraction rate of the fluid control supercooling, wherein at reservoir pressure and temperature of the production fluid to compare the saturated steam temperature. 其假设紧贴着液/气界面上方的气体主要是蒸汽。 It is assumed close to the liquid / gas interface above the main gas is steam.

[0142] •调整氧气/蒸汽比率(v/v)以满足目标比率,其依照0.05至1.00的范围限度 [0142] • adjusting the oxygen / steam ratio (v / v) ratio to meet the target, it limits the range of 0.05 to 1.00 in accordance with

[0143] •调节排气去除速率使得气体主要是不凝性气体,氧气含量小于5.0% (v/v),并达到/保持压力目标。 [0143] • adjust the exhaust gas such that the rate of removal is primarily non-condensable gas, an oxygen content of less than 5.0% (v / v), and to achieve / maintain pressure goals.

[0144] •与上述(iii) 一并调节蒸汽与氧气注入速率(依照上述(ii)),以达到/保持压力目标。 [0144] • and (iii) above together with oxygen steam injection rate adjustment (according to the above (ii)), in order to achieve / maintain pressure goals.

[0145] 改讲的SAGDOX工艺 [0145] change process speak SAGDOX

[0146] 对于原始SAGDOX而言,一种建议的控制是选取用于注入的目标蒸汽/氧混合物。 [0146] For the purposes of the original SAGDOX a recommendation control target is selected for injecting steam / oxygen mixture. 但是,除了建议混合物中5-50% (v/v)氧的范围(或氧与蒸汽比率为0• 05至L00)外,不存在什么是最佳组成或如何选择最佳组成的准则。 However, in addition to the recommended range of the mixture 5-50% (v / v) oxygen (or oxygen to steam ratio of 0 • 05 to L00), the absence of what is the optimum composition or how to choose the best criteria thereof. SAGD0X0(SAGD0X_优化的)方法克服了该缺点。 SAGD0X0 (SAGD0X_ optimization) overcomes this disadvantage. 对于选取目标组成存在两个考虑: Select the desired composition for the presence of two considerations:

[0147] (1)氧比蒸汽更廉价且更有效。 [0147] (1) oxygen cheaper and effective than steam. 因此,单独基于这些标准,氧水平应该被最大化。 Thus, based on these criteria alone, the oxygen level should be maximized.

[0148] (2)蒸汽在储存采收方法中是非常有用的。 [0148] (2) vapor in a storage recovery process is very useful. 除了向沥青提供潜热外,它预热燃烧区,它是比热燃烧气体更好的热传递介质,并且来自蒸汽的水当与开采的沥青混合时,产生乳液(或混合物),其比沥青本身更易于产生。 In addition to providing the latent heat of the asphalt, but that preheating the combustion zone, which is a better heat transfer medium gas specific heat of combustion, and the water from the steam when mixed with bitumen mining, to produce an emulsion (or a mixture), which itself than the asphalt easier to produce. 在储层中存在最佳的蒸汽水平,其获得了这些益处的大多数,并允许尽可能实际地增加氧水平。 There is an optimal level of the steam in the reservoir, which is obtained most of these benefits, and allow oxygen levels actually increased as much as possible.

[0149] SAGD0X0方法的关键是找到最佳的蒸汽水平和/或以确定与蒸汽性质相关的测量值,其将允许通过现场调节优化蒸汽水平,同时保持本文中所述的其它SAGDOX操作控制。 Key [0149] SAGD0X0 method is to find the optimal level of steam and / or steam in order to determine the properties associated with the measured values, which will allow to optimize the level of steam by adjusting the site, while keeping the other control operations SAGDOX herein. 提供了优化SAGDOX中蒸汽水平的方法,所述方法包括选择PWOR目标,优选0. 5和更大值之间,使得氧水平接近零但保持大于零,更优选〇. 5和2. 0之间、最优选约1. 0,其最小化沥青成本。 SAGDOX provided a method of optimizing the level of steam, the method comprises selecting a target PWOR, preferably between 0.5 and greater value, so that the oxygen level is close to zero but remains greater than zero, more preferably square. Between 5 and 2.0 , most preferably about 1.0, which minimizes the cost of asphalt.

[0150] 在一种实施方式中,选择所述PW0R,其最大化沥青生产率。 [0150] In one embodiment, the selected PW0R, which maximizes productivity asphalt.

[0151] PWOR(开采的流体,水与油比率)还用作选择最佳的氧与蒸汽比率的量度。 [0151] PWOR (mining fluids, water to oil ratio) is also used as a measure to select the optimum ratio of oxygen to steam. 对于SAGD来说,PWOR不是非常有用的,因为其通常接近S0R,并且通常不存在可影响PWOR并起到SAGD方法的性质量度的储层水源。 For SAGD is, PWOR not very useful, since they typically close S0R, and may affect the water reservoir and serves PWOR SAGD method of measurement of properties is generally not present. 在SAGD中,基于现场经验,不开采原生水。 In SAGD based on field experience, not exploitation connate water. 对于SAGD0X, 蒸汽组分的行为类似SAGD。 For behavioral SAGD0X, vapor components similar to SAGD. 但是燃烧组分气化并产生原生水,使得PWOR>SOR。 However, gasification and combustion components produced connate water, such PWOR> SOR. 在稳定态, 对于SAGDOX,PWOR是每单元沥青开采注入的蒸汽和采出的蒸汽的直接量度。 In the steady state, for SAGDOX, PWOR is a direct measure of bitumen extraction per unit of injected steam and vapor recovery.

[0152] 根据一个方面,提供了优化的SAGDOX方法(SAGD0X0),其包括下面3个部分: [0152] According to one aspect there is provided a method of optimizing SAGDOX (SAGD0X0), which includes the following three parts:

[0153] (1)确定量度,优选PW0R,其可用作直接与储层中的蒸汽/沥青比率相关联, [0153] (1) determining a measure of, preferably PW0R, which can be used directly with the steam reservoir / pitch ratio is associated,

[0154] (2)在新储层中,用于SAGDOX操作的PWOR目标,其在0. 5和使得氧水平接近0但保持大于0的最大值之间,更优选在0. 5与2. 0之间,最优选1. 0, [0154] (2) in the new reservoir, for PWOR SAGDOX operation target, which is between 0.5 and such that the maximum oxygen level remains greater than 0 but close to 0, more preferably at 0.5 to 2. 0, most preferably 1.0,

[0155] (3)找到对于特定储层而言最佳的PWOR和氧/蒸汽混合物的方法,通过改变所述PWOR目标(以及氧/蒸汽混合物)以在合理的生产率下最小化沥青成本或最大化沥青生产率;以及 [0155] (3) the method to find the optimal PWOR and oxygen / steam mixture reservoir In particular, by changing the target PWOR (and the oxygen / steam mixture) to pitch at a reasonable cost minimization or maximum productivity asphalt productivity; and

[0156] (4) 19至接近零但大于零的蒸汽与氧比率。 [0156] (4) 19 to near zero but greater than zero steam to oxygen ratio.

[0157] 实施例 [0157] Example

[0158] 在分析SAGD0X0方法的PWOR目标含义和机制时,进行下面的假定: [0158] In the analysis of the meaning of certain PWOR SAGD0X0 methods and mechanisms, the following assumptions:

[0159] (I)SAGDOX分成两部分方法-类似SA⑶的蒸汽EOR操作,其通过蒸汽冷凝传递热和通过重力泄出热沥青;以及燃烧EOR通过残余沥青组分的氧化而直接和间接地加热沥青。 [0159] (I) SAGDOX divided into two methods - EOR operation similar SA⑶ steam, which transfers heat by condensation of steam escape by gravity and hot asphalt; and a combustion EOR directly and indirectly heated by oxidation of residual bitumen bituminous component .

[0160] (2)蒸汽EOR假定如下: [0160] (2) EOR steam assumed as follows:

[0161] •蒸汽能量传递约lOOOBTU/lb净蒸汽(图3)。 [0161] • steam energy transfer from about lOOOBTU / lb steam net (FIG. 3).

[0162] •注入的所有蒸汽作为水采出。 [0162] • All steam injected as a water recovery.

[0163] •在SAGDOX中,蒸汽吹扫区170在燃烧区之前(图15),在所述区中的残余沥青提供用于燃烧的燃料前体。 [0163] • in SAGDOX, the steam purge zone prior to combustion region 170 (FIG. 15), residual bitumen in the region of the precursor fuel for combustion.

[0164] •在(饱和)蒸汽吹扫区中的所有原生水保持在储层中,与SAGD现场经验一致。 [0164] • In all connate water (saturated) steam purge zone remains in the reservoir, SAGD is consistent with field experience.

[0165] (3)燃烧EOR部分,假定如下: [0165] (3) EOR portion of the combustion, it is assumed as follows:

[0166] •燃烧能量以480BTU/SCF氧传递(图13)。 [0166] • combustion energy 480BTU / SCF oxygen delivery (FIG. 13).

[0167] •燃烧的燃料是焦炭,简化式为CH5(图13),其通过蒸汽吹扫区170 (图15)中的残余沥青的分馏和热解而制备。 [0167] • coke burning fuel, CH5 (FIG. 13), which is prepared by fractional distillation and pyrolysis steam purge zone 170 (FIG. 15) of the residual bitumen simplified formula.

[0168] •假定完全的HT0。 [0168] • assume full HT0. 图19提供了SAGDOX燃烧化学。 Figure 19 provides SAGDOX combustion chemistry.

[0169] •所有作为燃烧的化学产物而采出的水被开采。 [0169] • all the products of combustion as a chemical recovery water is mined.

[0170] •燃烧_吹扫区中的残余沥青和原生水为零(图15)。 [0170] • _ combustion zone purged of residual bitumen and connate water is zero (FIG. 15). 所述区被气体占据。 The area occupied gas.

[0171] •与开采并消耗用于燃烧的沥青结合的所有原生水被开采。 [0171] • mining and is mined and all connate water consumption for combustion of the asphalt binder.

[0172] (4)为了进行PWOR评价,SAGDOX被认为是燃烧与蒸汽EOR的线性组合,具有下面的假定: [0172] (4) In order to evaluate PWOR, a SAGDOX combustion is considered to be a linear combination of the EOR with steam, with the following assumptions:

[0173] •经每个部分开采的沥青通过能量的传递而按比例分配。 [0173] • the prorated portion of each asphalt mined by the transfer of energy by.

[0174] •传递的能量在砂面(sf)处。 [0174] • energy transfer (SF) at the sand surface.

[0175] •对于蒸汽,在井口(wh)与砂面之间存在10%热量损失。 [0175] • For steam, in the presence of 10% heat loss wellhead between (WH) with the sand surface. 由于该热损失,冷凝的蒸汽泄出到开采井并增加了采出水体积。 Due to this heat loss, condensed vapor to escape and an increase in production wells produced water volume.

[0176] •在产油层没有初始气体饱和度。 [0176] • no initial gas saturation in the pay zone.

[0177] 作为上述方法模型的结果,能够如下评估上述方法聚焦于PWOR的结果和影响: [0177] As a result of the method described above models, the above method can be focused on the following evaluation results and impact PWOR:

[0178] 对于沥青饱和度为0. 6至I. 0进行PWOR评估;蒸汽+氧混合物中氧百分比为大于0 至小于l〇〇(v/v) % (优选范围为5-50% );且ET0R(MMBTU/bbl沥青("bblB"))为I. 0 至2.O(等效于SOR为3至6),对于成熟操作。 [0178] For saturation asphalt I. 0 to 0.6 for evaluation PWOR; + steam-oxygen mixture in a percentage of oxygen greater than 0 to less than l〇〇 (v / v)% (preferably 5 to 50% range); and ET0R (MMBTU / bbl bitumen ( "bblB")) is I. 0 to 2.O (SOR is equivalent to 3 to 6), for the maturation operation.

[0179] I. 0或更大的PWOR可导致良好(SAGD0X0)的操作,具有最大的氧含量和良好的热传递以及由于蒸汽的其它益处(即对于目标PWOR的优选值)。 [0179] I. 0 PWOR or more can lead to good (SAGD0X0) operation, and having a maximum oxygen content, and a good heat transfer due to other benefits of steam (i.e., the target value is preferably the PWOR). 但是,由于地质或流体性质变化,每个储层(或采收井网)可以是不同的。 However, due to geological variations or fluid properties, each reservoir (or collection well pattern) may be different. SAGD0X0操作者可以以PWOR= 1开始并调节PWOR以考虑具体的储层条件。 SAGD0X0 operator may begin to PWOR PWOR = 1 and adjusted to account for the specific reservoir conditions. 还可使用接近的或类似的储层的操作历史来调节目标。 You can also use the operating history of close or similar reservoir to adjust the target.

[0180] 有2种方式来使用现场结果"优化"PWOR目标。 [0180] There are two ways to use the results of on-site "optimized" PWOR goal. 首先,可以使用PWOR最小化沥青成本,同时保持"合理的"沥青生产率。 First, you can use PWOR minimize the cost of asphalt, while maintaining a "reasonable" asphalt productivity. 其次,可以调节PWOR来最大化沥青生产率。 Second, you can adjust PWOR to maximize productivity asphalt.

[0181] 基于上述假定,对于SAGDOX的燃烧部分,图20显示出PWOR性能几乎不依赖于ET0R。 [0181] Based on the above assumption, the combustion portion of SAGDOX, FIG. 20 shows the performance is almost not dependent on PWOR ET0R. 这是因为相对于与采出沥青结合的原生水,作为燃烧产物而产生的水和与燃烧的沥青结合的原生水是小的。 This is because with respect to the produced bitumen binding connate water, as a combustion product generated by the combustion in combination with water and connate water pitch is small.

[0182] 图20还显示出对于沥青E0R,为什么干ISC不是好的选项。 [0182] Figure 20 also shows for asphalt E0R, dry ISC Why is not a good option. 如果良好热量传递(和其它蒸汽益处)的阈值是PWOR= 1. 0,那么干ISC将不会较好地工作(即生产率),除非初始沥青饱和度< 0. 5,不依赖于ET0R。 If good heat transfer (steam and other benefits) threshold is PWOR = 1. 0, then dry ISC will not work well (i.e., productivity), except the starting pitch saturation <0.5, it does not depend on ET0R.

[0183] 考虑典型的沥青饱和度为0. 8的沥青储层,我们的成熟SAGD0X0方法操作的ETOR =1. 〇(等效于SOR~3,对于SAGD),并且PWOR目标为I. 0 (即采出流体为50%水和50 % 沥青)。 [0183] Consider a typical asphalt bitumen saturation of the reservoir 0.8, ETOR mature SAGD0X0 our method of operation = 1. Billion (equivalent to SOR ~ 3, for SAGD), and the target is PWOR I. 0 ( i.e., the production fluid is 50% water and 50% pitch). 图21显示了SAGD0X0方法应该以含有约25% (v/v)氧,或等效地,氧/蒸汽比率(v/v)为0. 33的蒸汽+氧混合物来操作。 Figure 21 shows SAGD0X0 method should contain about 25% (v / v) oxygen, or equivalently, the oxygen / steam ratio (v / v) mixture of steam + 0.33 oxygen to operate. 对于该目标PW0R,这最大化了该储层中的氧含量。 For this goal PW0R, which maximize the oxygen content of the reservoir.

[0184] 上述实施例还可用于证实(以及说明)SAGD0X0的范围限度(蒸汽+氧混合物中5-50 (v/v) %之间的氧)。 [0184] The embodiments may also be used to confirm (and instructions) (% of steam between the oxygen + oxygen mixture, 5-50 (v / v)) SAGD0X0 the range limits. 对于成熟的项目,假定我们的ETOR=I.OMMBTU/bblB(SAGD等效于SOR为约3);我们的初始沥青饱和度为0. 75至0. 90 ;并且我们的PWOR目标范围为0. 75 至1.50。 For mature projects, we assume ETOR = I.OMMBTU / bblB (SAGD SOR equivalent to about 3); Our initial bitumen saturation is from 0.75 to 0.90; and our target range of 0 PWOR. 75 to 1.50. 那么,图21显示出氧/蒸汽混合物中的氧含量应该在约10-50%之间变化-与SAGD范围限度一致。 Then, FIG. 21 shows the oxygen content of the oxygen / steam mixture should vary between about 10-50% - consistent with SAGD range limits.

[0185] 虽然上述范围证实了SAGDOX气体的限度为在氧+蒸汽混合物中(5-50 (v/v)) %的氧,但SAGD0X0策略使氧水平扩展到原始SAGDOX限度之外。 [0185] Although the above-described range limits confirmed SAGDOX + oxygen gas is steam mixture (5-50 (v / v))% of oxygen, but oxygen level SAGD0X0 strategy to extend beyond the original SAGDOX limit. 随着SAGD0X0方法成熟,ETOR 将增加,因为热损失增加,并且SAGD0X0方法策略决定氧水平的增加。 A method as SAGD0X0 mature, ETOR will increase because of the increased heat loss and increasing the oxygen level SAGD0X0 method of policy decision. 例如,使用图22,对于Sici-O. 8并且PWOR=L0,在ETOR=L0的初期成熟(primematurity)时,建议的氧水平为氧-蒸汽混合物中约25%的氧。 For example, FIG. 22, for Sici-O 8 and PWOR = L0, the L0 ETOR = initial oxygen levels at maturity (primematurity), recommended for oxygen - steam mixture in about 25% oxygen. 如果ETOR爬升至2. 0 (等效于SOR~6),则建议的氧水平为在氧-蒸汽混合物中超过50%,即60%O2 -超过传统的SAGDOX目标范围。 If ETOR climb to 2.0 (equivalent to the SOR ~ 6) oxygen levels, it is recommended for oxygen - steam mixture exceeds 50%, i.e. 60% O2 - SAGDOX over conventional target range.

[0186] (9)本发明的SAGDOX操作策略是渐变蒸汽+氧混合物中的氧水平,以低氧水平开始,并最终在接近寿命末期(图2)时仅注入氧而没有蒸汽。 [0186] (9) SAGDOX operation strategy of the present invention is an oxygen gradient horizontal steam + oxygen mixture, begins to low oxygen levels, and ultimately when approaching end of life (FIG. 2) without the steam injection of oxygen only. 这是凭直觉的,因为氧比蒸汽更廉价、SAGD0X0方法自动获得该策略。 This is intuitive, as the oxygen cheaper than steam, SAGD0X0 method for automatically obtaining the policy. 接近寿命末期时,暴露于非开采区的表面积可以是高的并且泄油角度小(图2)。 Near the end of life, the surface area exposed to the non-producing region may be high and a small drainage angle (FIG. 2). ETOR可以爬升直至达到经济限度。 ETOR can climb up to the economic limit. 对于仅仅氧气,高达约16 的ETOR是可行的。 It is feasible only for oxygen, up to about 16 ETOR. 随着ETOR增加,由于产生更多的燃烧水以及产生更多的原生水(与燃烧的沥青相关),燃烧部分的水/蒸汽产量增加。 With increasing ETOR, due to the generation of more water and producing more combustion connate water (associated with the combustion of bitumen), water combustion / steam production increased portion. 图23显示了仅用于燃烧的PWOR以提高ETOR性能。 23 shows only used to improve combustion PWOR ETOR performance. 对于初始沥青饱和度< 0. 9,随着ETOR爬升至超过10,如果良好(蒸汽)热传递的阈值为PWOR多1. 0,那么不需要注入任何蒸汽(即蒸汽为0% )。 For the initial bitumen saturation <0.9, with ETOR climb to over 10, if a good threshold (steam) heat transfer multi-value PWOR 1.0, you do not need any steam injection (i.e., 0% steam). 如果放松性能标准, 对于PW0RX). 5的寿命末期SAGD0X0项目,只要ETOR彡4,对于S1C]〈0. 9,我们不需要注入任何蒸汽。 If the relaxation performance standards for PW0RX). End of life SAGD0X0 item 5, as long as ETOR San 4, for S1C] <0. 9, we do not need any steam is injected. 仅仅使用氧(即蒸汽=〇%,氧=100% )的前景,接近寿命末期的SAGD0X0项目, 确保最小化操作成本(因为氧比蒸汽的每单位能量更廉价)以及最大化最终采收率(即储量)。 Using only oxygen (i.e., = billion% steam, oxygen = 100%) of the foreground, closer to the end of the life of the project SAGD0X0 ensure minimizing operating costs (because oxygen is more expensive than the per unit energy of the steam) and maximize ultimate recovery ( ie reserves).

[0187] (10)图24显示了对于具体案例(Slci= 0.8,PTOR目标=1.0)而言,注入气体中的氧水平如何随着ETOR的增加而上升。 [0187] (10) FIG. 24 shows that for specific cases (Slci = 0.8, PTOR certain = 1.0), the level of oxygen gas is injected into how the rise with the increase ETOR. 在ETOR= 8. 0以上,不需要注入蒸汽。 In the above ETOR = 8. 0, no steam injection. 注入气体仅仅为氧。 Injecting only oxygen gas. 通过使用由热气化的原生水以及由燃烧直接产生的蒸汽而在储层中产生足够的蒸汽,以获得PWOR= 1.0目标。 Generated by using the hot gas and the steam of connate water produced by the combustion directly in the reservoir sufficient steam to obtain the target PWOR = 1.0.

[0188] (11)图7显示了从蒸汽+氧(SAGDOX)至仅仅氧(ISC)的转变点随ETOR和初始沥青饱和度的变化,假定PWOR= 1.0目标。 [0188] (11) FIG. 7 shows a transition point from a vapor changes + oxygen (a SAGDOX) only to oxygen (ISC) and the initial saturation with ETOR bitumen, assuming PWOR = 1.0 target. 对于沥青饱和度小于约0.5而言,存在足够的气化的原生水加上燃烧水以满足所有ETOR值的PWOR目标,不用注入任何蒸汽。 For bitumen saturation less than about 0.5, the presence of sufficient combustion gasification connate water plus water to meet all ETOR PWOR target value, without any steam injection.

[0189] (12)使用PWOR目标系统的SAGD0X0方法如果遇到具有低沥青饱和度(〈0. 6)和高原生水饱和度(>0.4)的贫乏区,该方法也是有用的。 [0189] (12) using the target system SAGD0X0 PWOR If you run bitumen having a low saturation (poor regions <0.6) and plateaus raw water saturation (> 0.4), the method is also useful. 当燃烧遇到贫乏区时,产生水并且PWOR(临时地)升高。 You encounter poor when the combustion zone, and produce water PWOR (temporarily) increased. SAGD0X0补救措施是增加进料气体(蒸汽+氧)中的氧含量。 SAGD0X0 remedy is to increase the oxygen content of the feed gas (steam + oxygen) was added. 这降低了操作成本并保持了PWOR目标。 This reduces operating costs and maintain PWOR goal. 当该区破裂时,氧水平降低。 When the rupture zone, reduced oxygen levels.

[0190] (13)图25和表5显示了SAGDOX和SAGD0X0对水循环比(采出水/注入的蒸汽) 的影响。 [0190] (13) FIG. 25 and Table 5 shows the effect on the water cycle SAGDOX and SAGD0X0 (steam produced water / injection) ratio. 假定采出水处理的收率为90%,如果WRR超过1.1,那么不需要补充水。 Produced water is assumed 90% yield, WRR if more than 1.1, then no water added. 只要注入气体中氧水平超过约10%,该方法就产生比所需要的更多的水以保持蒸汽产生而不需要任何补充或新鲜水。 As long as the level of oxygen in the gas injection than about 10%, which produces more water than required to maintain the steam generator without the need for any additional or fresh water.

[0191]SAGD0X0和SAGDOX之间的一些不同为: [0191] Some differences between SAGD0X0 and SAGDOX as:

[0192]•SAGDOX包括一系列的优选氧浓度(5-50 %,在蒸汽+氧混合物中);SAGD0X0扩展了该范围(无限制)。 [0192] • SAGDOX preferably comprises a series of oxygen concentration (5-50%, in the steam-oxygen mixture in +); SAGD0X0 extend the range (limit).

[0193] •SAGDOX建议操作者可选取氧/蒸汽混合物;SAGD0X0提供了优化氧/蒸汽比率的方法。 [0193] • SAGDOX recommended operator may select an oxygen / steam mixture; SAGD0X0 provides a method for optimizing the oxygen / steam ratio.

[0194] •SAGD0X0使用PWOR作为目标测量值来优化性能;SAGDOX不具有这样的测量值。 [0194] • SAGD0X0 PWOR used as a target value to optimize the performance measurements; do not have such a SAGDOX measurements.

[0195] •SAGD0X0自动开发了一个策略来随着项目成熟而渐变蒸汽注入;SAGDOX不具有这样的优选。 [0195] • SAGD0X0 automatically develop a strategy as the project matures gradual steam injection; SAGDOX not have such preferred.

[0196] •SAGDOX总是注入蒸汽+氧混合物;SAGD0X0可转变成用于高ETOR操作或用于贫沥青储层的ISC方法。 [0196] Steam + oxygen mixture • SAGDOX always injection; SAGD0X0 can be converted to a high operating ETOR or ISC-depleted reservoirs for bitumen.

[0197] SAGD0X0的一些独特特征包括: Some unique features of [0197] SAGD0X0 comprises:

[0198] •目标、测量(PWOR)以优化氧/蒸汽混合物组成。 [0198] • target oxygen / steam mixture is measured (PWOR) to optimize the composition.

[0199] •随着工艺老化和ETOR增加而自动渐变(降低蒸汽注入、增加氧)。 [0199] • With aging process and increase ETOR automatically gradient (decrease of the steam injection, to increase oxygen).

[0200] •考虑沥青饱和度作为控制和优化方法的关键因素。 [0200] • Key factors to consider as bitumen saturation control and optimization methods.

[0201] •自动响应储层中遇到的贫乏区(降低蒸汽水平直到该区破裂)。 [0201] • Automatic poor response encountered in the reservoir area (lower level until the steam cracking zone).

[0202] •没有固定的氧/蒸汽比率范围;没有限度。 [0202] • no fixed oxygen / steam ratio ranges; no limit.

[0203] •建议的PWOR的初始目标彡1•0。 [0203] The initial goal of the proposed PWOR of San • 1 • 0.

[0204] ^ 1 [0204] ^ 1

[0205]SACDDX:注入气体性质 [0205] SACDDX: injecting gas properties

[0206] [0206]

Figure CN105008660AD00151

Figure CN105008660AD00161

Figure CN105008660AD00171

Figure CN105008660AD00181

Figure CN105008660AD00191

[0257] -钻头燃料值=6MMBTU/bblB [0257] - Fuel bit value = 6MMBTU / bblB

[0258] 因此可对本发明的实施方式作出许多变化而不背离其范围。 [0258] Thus many changes may be made to embodiments of the present invention without departing from the scope thereof. 认为在本文中包含的所有情形都被认为是对本发明的说明而非限制。 All cases that contained herein are considered to be of the present invention is illustrative and not limiting.

Claims (13)

1•采出水与油比率(v/v) ( "PWOR")在热强化采油("EOR")中用于控制所述热EOR 的用途。 1 • produced water oil ratio (v / v) ( "PWOR") enhanced oil recovery ( "EOR") for use in controlling the heat of the heat for EOR.
2. 根据权利要求1所述的用途,其中PWOR用于优化所述热E0R。 2. The use according to claim 1, wherein for optimizing the heat PWOR E0R.
3. 用于采收烃储层中的烃的使用注入氧的蒸汽辅助重力泄油(SAGDOX)方法,所述方法包括: (a) 在第一氧与蒸汽比率下开始所述SAGDOX工艺; (b) 测量与所述第一氧与蒸汽比率相关的采出水与油比率(v/v) PffOR ; (c) 调节所述氧与蒸汽比率以获得预定的PW0R;和(d) 继续步骤(a)至(c)直到获得改进所述烃采收率的目标PW0R。 Implanting oxygen using steam assisted gravity drainage reservoir 3 for recovery of hydrocarbons hydrocarbons (SAGDOX), the method comprising: (a) at a first start of the ratio of oxygen to steam SAGDOX process; ( b) measuring said first oxygen ratio associated with steam produced water oil ratio (v / v) PffOR; (c) adjusting the ratio of oxygen to steam in order to obtain a predetermined PW0R; and (d) continuing steps (a ) to (c) until the improved hydrocarbon recovery target PW0R.
4. 用于采收烃的使用注入氧的蒸汽辅助重力泄油("SAGD0X")方法,其中所述SAGDOX 方法具有约19至大于零的蒸汽与氧比率。 4. The recovery of hydrocarbons using oxygen injection steam assisted gravity drainage ( "SAGD0X") method, wherein the method SAGDOX having from about 19 to greater than zero steam to oxygen ratio.
5. 用于采收烃的使用注入氧的蒸汽辅助重力泄油("SAGD0X")方法,其中所述SAGDOX 具有的氧与蒸汽比率由采出水与油比率("PW0R")确定。 5. A steam assisted gravity drainage recovery of hydrocarbons using oxygen injection ( "SAGD0X") method, wherein the oxygen has SAGDOX ratio determined by the steam produced water oil ratio ( "PW0R").
6. 根据权利要求3所述的方法,其中所述PWOR为约0. 5到直至最大值,使得氧的量接近零但是大于零。 6. The method according to claim 3, wherein said PWOR is up to a maximum of about 0.5, so that the amount of oxygen is greater than zero, but approaches zero.
7. 根据权利要求6所述的方法,其中所述PWOR为约0. 5至2. 00,且所述氧与蒸汽比率为约0%至100%的氧比蒸汽。 7. The method according to claim 6, wherein said PWOR is from about 0.5 to 2.00, and the ratio of oxygen to steam is from about 0% to 100% oxygen than the steam.
8. 根据权利要求6所述的方法,其中所述PWOR为1. 0。 8. The method according to claim 6, wherein said PWOR is 1.0.
9. 根据权利要求3所述的方法,其中所述氧具有的氧含量为95-99. 99 (v/v) %。 9. The method according to claim 3, wherein said oxygen having an oxygen content of 95-99. 99 (v / v)%.
10. 根据权利要求8所述的方法,其中所述氧为富氧空气,氧含量为21-95 (v/v) %。 10. The method according to claim 8, wherein the oxygen-enriched air, the oxygen content of 21-95 (v / v)%.
11. 根据权利要求1所述的方法,其中待开采的所述烃储层中的所述烃是沥青,API密度小于10,并且原位粘度大于100, OOOcp。 11. The method according to claim 1, wherein the hydrocarbon reservoir to be mined in the hydrocarbon bitumen, the API density of less than 10, and in situ viscosity of greater than 100, OOOcp.
12. 根据权利要求1所述的方法,其中待开采的所述烃储层中的所述烃是重质油,API 密度在10和20之间,并且原位粘度大于1,OOOcp。 12. The method according to claim 1, wherein the hydrocarbon reservoir to be mined in the hydrocarbon is a heavy oil, the API density of between 10 and 20, and in situ viscosity of greater than 1, OOOcp.
13. 根据权利要求1、2或3所述的用途,其中通过改变所述PWOR直到最大化沥青生产率来确定PWOR目标。 13. The use of claim 2 or claim 3, wherein the bitumen until maximize the productivity of a target is determined by changing the PWOR PWOR.
CN201380070818.4A 2012-05-15 2013-11-19 Method and system of optimized steam-assisted gravity drainage with oxygen ("SAGDOX") for oil recovery CN105008660A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US201261727960P true 2012-11-19 2012-11-19
CA2815737A CA2815737A1 (en) 2012-05-15 2013-05-14 Steam assisted gravity drainage with added oxygen geometry for impaired bitumen reservoirs
CA 2820702 CA2820702A1 (en) 2012-06-29 2013-06-27 Sagdox operation in leaky bitumen reservoirs
PCT/CA2013/000969 WO2014075175A1 (en) 2012-11-19 2013-11-19 Method and system of optimized steam-assisted gravity drainage with oxygen ("sagdoxo") for oil recovery

Publications (1)

Publication Number Publication Date
CN105008660A true CN105008660A (en) 2015-10-28

Family

ID=50730429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380070818.4A CN105008660A (en) 2012-05-15 2013-11-19 Method and system of optimized steam-assisted gravity drainage with oxygen ("SAGDOX") for oil recovery

Country Status (4)

Country Link
US (1) US20140076555A1 (en)
CN (1) CN105008660A (en)
CA (1) CA2833498A1 (en)
WO (1) WO2014075175A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104011331B (en) 2011-10-21 2017-09-01 尼克森能源无限责任公司 With the SAGD method of oxygenation
CA2815737A1 (en) 2012-05-15 2013-11-15 Nexen Inc. Steam assisted gravity drainage with added oxygen geometry for impaired bitumen reservoirs
US9435183B2 (en) * 2014-01-13 2016-09-06 Bernard Compton Chung Steam environmentally generated drainage system and method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148359A (en) * 1978-01-30 1979-04-10 Shell Oil Company Pressure-balanced oil recovery process for water productive oil shale
US4635720A (en) * 1986-01-03 1987-01-13 Mobil Oil Corporation Heavy oil recovery process using intermittent steamflooding
CN1932237A (en) * 2005-04-27 2007-03-21 钻石Qc技术公司 Flue gas injection for heavy oil recovery
US20080041580A1 (en) * 2006-08-21 2008-02-21 Rune Freyer Autonomous inflow restrictors for use in a subterranean well
US7383886B2 (en) * 2003-06-25 2008-06-10 Reslink As Device and a method for selective control of fluid flow between a well and surrounding rocks
US7419002B2 (en) * 2001-03-20 2008-09-02 Reslink G.S. Flow control device for choking inflowing fluids in a well
US20080283238A1 (en) * 2007-05-16 2008-11-20 William Mark Richards Apparatus for autonomously controlling the inflow of production fluids from a subterranean well
US20090084556A1 (en) * 2007-09-28 2009-04-02 William Mark Richards Apparatus for adjustably controlling the inflow of production fluids from a subterranean well
CN201331047Y (en) * 2009-04-08 2009-10-21 辽河石油勘探局总机械厂 Superheated vapor fuel oil (gas) steam-filling boiler
CN101611216A (en) * 2006-12-13 2009-12-23 古舍股份有限公司 Preconditioning an oilfield reservoir
CN102395752A (en) * 2009-02-13 2012-03-28 斯塔特伊公司 Single well steam assisted gravity drainage
CN102758603A (en) * 2012-07-10 2012-10-31 中国石油天然气股份有限公司 Later-period air injection exploitation method for super heavy oil reservoir using steam assisted gravity drainage (SAGD) exploitation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976137A (en) * 1974-06-21 1976-08-24 Texaco Inc. Recovery of oil by a combination of low temperature oxidation and hot water or steam injection
US8091636B2 (en) * 2008-04-30 2012-01-10 World Energy Systems Incorporated Method for increasing the recovery of hydrocarbons

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148359A (en) * 1978-01-30 1979-04-10 Shell Oil Company Pressure-balanced oil recovery process for water productive oil shale
US4635720A (en) * 1986-01-03 1987-01-13 Mobil Oil Corporation Heavy oil recovery process using intermittent steamflooding
US7419002B2 (en) * 2001-03-20 2008-09-02 Reslink G.S. Flow control device for choking inflowing fluids in a well
US7383886B2 (en) * 2003-06-25 2008-06-10 Reslink As Device and a method for selective control of fluid flow between a well and surrounding rocks
CN1932237A (en) * 2005-04-27 2007-03-21 钻石Qc技术公司 Flue gas injection for heavy oil recovery
US20080041580A1 (en) * 2006-08-21 2008-02-21 Rune Freyer Autonomous inflow restrictors for use in a subterranean well
CN101611216A (en) * 2006-12-13 2009-12-23 古舍股份有限公司 Preconditioning an oilfield reservoir
US20080283238A1 (en) * 2007-05-16 2008-11-20 William Mark Richards Apparatus for autonomously controlling the inflow of production fluids from a subterranean well
US20090084556A1 (en) * 2007-09-28 2009-04-02 William Mark Richards Apparatus for adjustably controlling the inflow of production fluids from a subterranean well
CN102395752A (en) * 2009-02-13 2012-03-28 斯塔特伊公司 Single well steam assisted gravity drainage
CN201331047Y (en) * 2009-04-08 2009-10-21 辽河石油勘探局总机械厂 Superheated vapor fuel oil (gas) steam-filling boiler
CN102758603A (en) * 2012-07-10 2012-10-31 中国石油天然气股份有限公司 Later-period air injection exploitation method for super heavy oil reservoir using steam assisted gravity drainage (SAGD) exploitation

Also Published As

Publication number Publication date
US20140076555A1 (en) 2014-03-20
WO2014075175A1 (en) 2014-05-22
CA2833498A1 (en) 2014-05-19

Similar Documents

Publication Publication Date Title
Butler Steam-assisted gravity drainage: concept, development, performance and future
US5273111A (en) Laterally and vertically staggered horizontal well hydrocarbon recovery method
US6662872B2 (en) Combined steam and vapor extraction process (SAVEX) for in situ bitumen and heavy oil production
US4640352A (en) In-situ steam drive oil recovery process
CN101563524B (en) Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
Shah et al. A review of novel techniques for heavy oil and bitumen extraction and upgrading
JP5616634B2 (en) Heating the tar sand formation to a viscosity-reducing temperature
US6328104B1 (en) Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking
CN101827999B (en) Irregular spacing of heat sources for treating hydrocarbon containing formations
CA2722430C (en) Method for increasing the recovery of hydrocarbons
CA2096034C (en) Horizontal well gravity drainage combustion process for oil recovery
CN100545415C (en) Method for in situ treatment of hydrocarbon-containing formation
CN101595273B (en) Optimized well spacing for in situ shale oil development
AU2010332234B2 (en) Enhanced convection for in situ pyrolysis of organic-rich rock formations
US7516789B2 (en) Hydrocarbon recovery facilitated by in situ combustion utilizing horizontal well pairs
AU2001250938B2 (en) Method for production of hydrocarbons from organic-rich rock
JP5441413B2 (en) System and method for the production of hydrocarbons from tar sands by a heat-generated drain
CN101553644B (en) Method for producing viscous hydrocarbon using steam and carbon dioxide
Gates et al. Steam injection strategy and energetics of steam-assisted gravity drainage
CN101122224B (en) Gravity-assisted steam flooding exploitation method for heavy layer common heavy oil reservoir
Gupta et al. Effect of solvent sequencing and other enhancements on solvent aided process
CA2722452C (en) Field management for substantially constant composition gas generation
CN1993534B (en) Oilfield enhanced in situ combustion process
Kisman et al. Numerical study of the SAGD process in the Burnt Lake oil sands lease
US7921907B2 (en) In situ method and system for extraction of oil from shale

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
WD01