CN104998636A - Synthetic method and application of PtRu binary metal nano-alloy catalyst - Google Patents
Synthetic method and application of PtRu binary metal nano-alloy catalyst Download PDFInfo
- Publication number
- CN104998636A CN104998636A CN201510453973.5A CN201510453973A CN104998636A CN 104998636 A CN104998636 A CN 104998636A CN 201510453973 A CN201510453973 A CN 201510453973A CN 104998636 A CN104998636 A CN 104998636A
- Authority
- CN
- China
- Prior art keywords
- ptru
- flower
- alloy catalyst
- metal
- reducing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910002849 PtRu Inorganic materials 0.000 title claims abstract description 48
- 239000003054 catalyst Substances 0.000 title claims abstract description 31
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 30
- 239000002184 metal Substances 0.000 title claims abstract description 30
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 21
- 239000000956 alloy Substances 0.000 title claims abstract description 21
- 238000010189 synthetic method Methods 0.000 title 1
- 239000000243 solution Substances 0.000 claims abstract description 39
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 18
- 238000003756 stirring Methods 0.000 claims abstract description 18
- 239000004094 surface-active agent Substances 0.000 claims abstract description 17
- 239000002243 precursor Substances 0.000 claims abstract description 16
- 239000011259 mixed solution Substances 0.000 claims abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 150000003057 platinum Chemical class 0.000 claims abstract description 5
- 150000003303 ruthenium Chemical class 0.000 claims abstract description 5
- 150000003839 salts Chemical class 0.000 claims abstract description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 30
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims description 17
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 12
- 230000003197 catalytic effect Effects 0.000 claims description 11
- 235000019253 formic acid Nutrition 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 7
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 239000000446 fuel Substances 0.000 claims description 5
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 claims description 5
- YASYEJJMZJALEJ-UHFFFAOYSA-N Citric acid monohydrate Chemical group O.OC(=O)CC(O)(C(O)=O)CC(O)=O YASYEJJMZJALEJ-UHFFFAOYSA-N 0.000 claims description 4
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 claims description 4
- 229960002303 citric acid monohydrate Drugs 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 229910052700 potassium Inorganic materials 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 2
- 239000001509 sodium citrate Substances 0.000 claims description 2
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 2
- 239000012498 ultrapure water Substances 0.000 claims description 2
- 239000013543 active substance Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 20
- 239000011943 nanocatalyst Substances 0.000 description 7
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 238000002484 cyclic voltammetry Methods 0.000 description 6
- 229910002056 binary alloy Inorganic materials 0.000 description 5
- 231100000572 poisoning Toxicity 0.000 description 4
- 230000000607 poisoning effect Effects 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Natural products C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Catalysts (AREA)
Abstract
本发明公开了一种花状(孔状)结构的PtRu二元金属纳米合金催化剂,其特征在于:(1)将表面活性剂和还原剂一起加入到水中,室温下搅拌10~30分钟,表面活性剂与还原剂的质量比为1:2~2:1;所加水量需要将表面活性剂和还原剂完全溶解即可;(2)向步骤(1)所得的混合溶液中分别加入金属铂盐前驱体溶液和金属钌盐前驱体溶液,二者体积比为:3:2~2:3,混合溶液与金属前驱体溶液总体积的比值为10:1~20:1;室温搅拌10~30分钟,金属盐前驱体溶液的浓度为0.05~0.5mol/L;(3)将步骤(2)所得混合溶液室温下搅拌5~30分钟,在高压釜中反应1.5~3小时,温度控制在180~230℃;(4)将步骤(3)所得产物冷却后进行洗涤,离心分离后即得一种具有花状(孔状)结构的PtRu二元金属纳米合金催化剂。
The invention discloses a PtRu binary metal nano-alloy catalyst with a flower-like (porous) structure, which is characterized in that: (1) adding a surfactant and a reducing agent into water, stirring at room temperature for 10-30 minutes, the surface activity The mass ratio of the surfactant to the reducing agent is 1:2 to 2:1; the amount of water added needs to completely dissolve the surfactant and the reducing agent; (2) Add metal platinum salts to the mixed solution obtained in step (1) Precursor solution and metal ruthenium salt precursor solution, the volume ratio of the two is: 3:2~2:3, the ratio of the mixed solution to the total volume of the metal precursor solution is 10:1~20:1; stirring at room temperature for 10~30 Minutes, the concentration of the metal salt precursor solution is 0.05-0.5mol/L; (3) Stir the mixed solution obtained in step (2) at room temperature for 5-30 minutes, react in an autoclave for 1.5-3 hours, and control the temperature at 180 ~230°C; (4) Cool the product obtained in step (3), wash it, and centrifuge to obtain a PtRu binary metal nano-alloy catalyst with a flower-like (pore-like) structure.
Description
技术领域 technical field
本发明涉及燃料电池催化剂领域,具体地说是一种PtRu二元金属纳米合金催化剂的合成及其应用。 The invention relates to the field of fuel cell catalysts, in particular to the synthesis and application of a PtRu binary metal nano-alloy catalyst.
背景技术 Background technique
燃料电池由于其能量转化率高,对环境污染少,有利于减少传统石化燃料的过度使用和保护地球环境,可作为未来理想的动力来源,因而受到世界各国科学家的广泛关注,为此,世界各国投入了大量的人力,物力,和财力来进行研究。甲醇在常温常压下是一种结构最简单的液态有机化合物,存储简单,来源方便,价格便宜,是一种理想的可再生燃料。Pt催化剂由于其对甲醇优异的催化活性和稳定性,而受到人们的广泛关注。但是,由于其在地球上的储量稀少和昂贵的价格大大的限制了燃料电池的商业化使用,而且甲醇的氧化中间产物CO会占据Pt表面的活性位点,使Pt催化剂中毒,从而降低了Pt的电化学活性和稳定性。提高催化剂活性的关键是在低电位下氧化类似CO的中间产物。目前,Pt的合金化是科学家们采取的一种普遍方法来解决单金属Pt催化活性低以及易中毒这一问题。基于Pt的二元纳米合金由于其独特的物理化学性能而越来越受到人们的重视。其中,PtRu二元纳米合金以其较好电化学活性和CO抗毒性而受到广泛关注。但是, 已见报道的PtRu二元金属纳米合金催化剂很少可以同时兼具高活性和高稳定性。而这种花状(孔状)结构的二元金属纳米合金催化剂不仅兼具催化活性和稳定性,而且较之之前报道的PtRu二元纳米催化剂在这两方面都有较大程度提升。 Due to its high energy conversion rate and low environmental pollution, fuel cells are conducive to reducing the excessive use of traditional fossil fuels and protecting the global environment. A lot of manpower, material resources, and financial resources have been invested in research. Methanol is a liquid organic compound with the simplest structure at normal temperature and pressure. It is easy to store, convenient to source, and cheap. It is an ideal renewable fuel. Pt catalysts have attracted extensive attention due to their excellent catalytic activity and stability towards methanol. However, due to its scarcity and high price on the earth, the commercial use of fuel cells is greatly limited, and CO, an intermediate oxidation product of methanol, will occupy the active sites on the Pt surface, poisoning the Pt catalyst, thereby reducing the Pt electrochemical activity and stability. The key to enhancing catalyst activity is the oxidation of CO-like intermediates at low potentials. At present, the alloying of Pt is a common method adopted by scientists to solve the problem of low catalytic activity and easy poisoning of single metal Pt. Pt-based binary nanoalloys have attracted increasing attention due to their unique physicochemical properties. Among them, PtRu binary nanoalloys have attracted extensive attention due to their better electrochemical activity and CO toxicity resistance. However, few of the reported PtRu binary metal nanoalloy catalysts have both high activity and high stability. The flower-like (pore-like) structure of the binary metal nano-alloy catalyst not only has both catalytic activity and stability, but also has a greater degree of improvement in both aspects than the previously reported PtRu binary nano-catalysts.
发明内容 Contents of the invention
本发明要解决的技术问题是:提供一种花状(孔状)结构的PtRu二元金属纳米合金催化剂,增强了催化剂抗CO中毒能力并提高了对甲醇、甲醛、甲酸的催化活性。 The technical problem to be solved by the present invention is to provide a PtRu binary metal nano-alloy catalyst with a flower-like (pore-like) structure, which enhances the catalyst's ability to resist CO poisoning and improves the catalytic activity to methanol, formaldehyde and formic acid.
本发明的技术方案是:一种花状(孔状)结构的PtRu二元金属纳米合金催化剂的制备方法,包含以下步骤: The technical scheme of the present invention is: a kind of preparation method of the PtRu binary metal nano-alloy catalyst of flower-like (porous) structure, comprises the following steps:
(1)将表面活性剂和还原剂一起加入到水中,室温下搅拌10~30分钟,表面活性剂与还原剂的质量比为1:2~2:1;所加水量需要将表面活性剂和还原剂完全溶解即可; (1) Add surfactant and reducing agent into water together, stir at room temperature for 10 to 30 minutes, the mass ratio of surfactant to reducing agent is 1:2 to 2:1; the amount of water added needs to be equal to surfactant and The reducing agent is completely dissolved;
(2)向步骤(1)所得的混合溶液中分别加入金属铂盐前驱体溶液和金属钌盐前驱体溶液,二者体积比为:3:2~2:3,混合溶液与金属前驱体溶液总体积的比值为10:1~20:1;室温搅拌10~30分钟,金属盐前驱体溶液的浓度为0.05~0.5mol/L; (2) Add metal platinum salt precursor solution and metal ruthenium salt precursor solution respectively to the mixed solution obtained in step (1), the volume ratio of the two is: 3:2~2:3, the mixed solution and the metal precursor solution The ratio of the total volume is 10:1-20:1; stirring at room temperature for 10-30 minutes, the concentration of the metal salt precursor solution is 0.05-0.5mol/L;
(3)将步骤(2)所得混合溶液室温下搅拌5~30分钟,在高压釜中反应1.5~3小时,温度控制在180~230℃; (3) Stir the mixed solution obtained in step (2) at room temperature for 5-30 minutes, react in an autoclave for 1.5-3 hours, and control the temperature at 180-230°C;
(4)将步骤(3)所得产物冷却后进行洗涤,离心分离后即得一种具有花状(孔状)结构的PtRu二元金属纳米合金催化剂。 (4) The product obtained in step (3) is cooled, washed, and centrifuged to obtain a PtRu binary metal nano-alloy catalyst with a flower-like (pore-like) structure.
步骤(1)所述的水溶液为超纯水,搅拌时间为20分钟,表面活性剂与还原剂质量比为2:3。 The aqueous solution in step (1) is ultrapure water, the stirring time is 20 minutes, and the mass ratio of surfactant to reducing agent is 2:3.
步骤(1)中的表面活性剂为PVP或CTAC或二者混合物;还原剂为一水柠檬酸或柠檬酸钠。 The surfactant in step (1) is PVP or CTAC or a mixture of the two; the reducing agent is citric acid monohydrate or sodium citrate.
步骤(1)中的表面活性剂为PVP-8000和CTAC的混合物;还原剂为一水柠檬酸。 The surfactant in step (1) is a mixture of PVP-8000 and CTAC; the reducing agent is citric acid monohydrate.
所述金属铂盐前驱体溶液为氯铂酸或氯铂酸钾。 The metal platinum salt precursor solution is chloroplatinic acid or potassium chloroplatinate.
所述金属钌盐前驱体溶液为三氯化钌。 The metal ruthenium salt precursor solution is ruthenium trichloride.
步骤(3)所述室温下搅拌20分钟,在高压釜中反应2小时,温度控制在210℃左右。 Step (3) Stir at room temperature for 20 minutes, react in an autoclave for 2 hours, and control the temperature at about 210°C.
本发明的有益效果: Beneficial effects of the present invention:
本发明研究并获得了一种花状(孔状)结构的PtRu二元金属纳米合金催化剂,较好的增强了催化剂抗CO中毒能力和提高催化甲醇、甲醛、甲酸的催化活性。以甲醇为例,催化甲醇的峰电流值为10.98mA cm-2。 The present invention studies and obtains a PtRu binary metal nano-alloy catalyst with a flower-like (pore-like) structure, which better enhances the catalyst's ability to resist CO poisoning and improves the catalytic activity of methanol, formaldehyde and formic acid. Taking methanol as an example, the peak current value of catalytic methanol is 10.98mA cm-2.
在0.6 v的条件下扫3600 s后的峰电流值为2.85 mA cm-2,比商业Pt black的0.21mA cm-2要高十倍以上。 The peak current value after sweeping for 3600 s at 0.6 v is 2.85 mA cm-2, which is more than ten times higher than the 0.21 mA cm-2 of commercial Pt black.
附图说明 Description of drawings
图1.是花状(孔状)结构的PtRu二元合金纳米催化剂,用高分辨率透射电子显微镜观察结果图; Figure 1. It is a PtRu binary alloy nanocatalyst with a flower-like (pore-like) structure, and the result of observation with a high-resolution transmission electron microscope;
图2.是花状(孔状)结构的PtRu元素谱图,可以看出Pt和Ru原子在花状(孔状)结构颗粒中的整体分布比较均匀,形成了合金; Figure 2 is the PtRu element spectrum of the flower-like (pore-like) structure. It can be seen that the overall distribution of Pt and Ru atoms in the flower-like (pore-like) structure particles is relatively uniform, forming an alloy;
图3.花状(孔状)结构的PtRu二元合金纳米催化剂以及商用Pt black、PtRu black以及PtRu/C black在0.1M HClO4+0.5M CH3OH溶液中催化甲醇的循环伏安曲线; Figure 3. Cyclic voltammetry curves of PtRu binary alloy nanocatalysts with flower-like (pore-like) structure and commercial Pt black, PtRu black and PtRu/C black in 0.1M HClO4+0.5M CH3OH solution;
图4.花状(孔状)结构的PtRu合金纳米催化剂以及商用Pt black、PtRu black以及PtRu/C black在0.1M HClO4+0.5M CH3OH溶液中0.6 v的条件下的i-t曲线; Figure 4. The i-t curves of PtRu alloy nanocatalysts with flower-like (porous) structure and commercial Pt black, PtRu black and PtRu/C black in 0.1M HClO4+0.5M CH3OH solution at 0.6 v;
图5.花状(孔状)结构的PtRu二元合金纳米催化剂以及商用Pt black、PtRu/C black在0.1M HClO4+0.1M HCHO溶液中催化甲醛的循环伏安曲线; Figure 5. Cyclic voltammetry curves of PtRu binary alloy nanocatalysts with flower-like (pore-like) structure and commercial Pt black, PtRu/C black in 0.1M HClO4+0.1M HCHO solution to catalyze formaldehyde;
图6.花状(孔状)结构的PtRu二元合金纳米催化剂以及商用Pt black、PtRu/C black在0.1M HClO4+0.1M HCOOH溶液中催化甲酸的循环伏安曲线。 Figure 6. Cyclic voltammetry curves of PtRu binary alloy nanocatalysts with flower-like (porous) structure and commercial Pt black and PtRu/C black in 0.1M HClO4+0.1M HCOOH solution for formic acid.
具体实施方式 Detailed ways
具体实施1: Specific implementation 1:
(1)将表面活性剂与还原剂按质量比为2:3加入到水溶液中,搅拌15分钟; (1) Add the surfactant and the reducing agent into the aqueous solution at a mass ratio of 2:3, and stir for 15 minutes;
(2)向步骤(1)混合液(5.6mL)中加入体积比为3:2的氯铂酸溶液、三氯化钌溶液,浓度均为0.1mol/L,混合后的溶液颜色为黄棕色,室温下搅拌15分钟; (2) Add chloroplatinic acid solution and ruthenium trichloride solution with a volume ratio of 3:2 to the mixed solution (5.6mL) in step (1), both at a concentration of 0.1mol/L, and the color of the mixed solution is yellow-brown , stirring at room temperature for 15 minutes;
(3)将步骤(2)所得溶液转入反应釜中,反应2h,温度控制在200℃左右; (3) Transfer the solution obtained in step (2) into the reactor, react for 2 hours, and control the temperature at about 200°C;
(4)所得产品经离心分离并用醇溶液进行三次洗涤后分散保存于醇溶液中,分散性较好,催化活性一般。 (4) The obtained product is separated by centrifugation and washed three times with alcohol solution, and then dispersed and stored in alcohol solution, with good dispersibility and general catalytic activity.
具体实施2: Specific implementation 2:
(1)将表面活性剂与还原剂按质量比为2:3加入到水溶液中,搅拌20分钟; (1) Add the surfactant and the reducing agent into the aqueous solution at a mass ratio of 2:3, and stir for 20 minutes;
(2)向步骤(1)混合液(5.6mL)中加入体积比为1:1的氯铂酸溶液、三氯化钌溶液,浓度均为0.1mol/L,混合后的溶液颜色为黄褐色,室温下搅拌20分钟; (2) Add chloroplatinic acid solution and ruthenium trichloride solution with a volume ratio of 1:1 to the mixed solution (5.6mL) in step (1), both at a concentration of 0.1mol/L, and the color of the mixed solution is yellowish brown , stirred at room temperature for 20 minutes;
(3)将步骤(2)所得溶液转入反应釜中,反应2h,温度控制在210℃左右; (3) Transfer the solution obtained in step (2) into the reactor, react for 2 hours, and control the temperature at about 210°C;
(4)所得产品经离心分离并用醇溶液进行三次洗涤后分散保存于醇溶液中,分散性很好,催化能力很高。 (4) After being centrifuged and washed three times with alcohol solution, the obtained product is dispersed and stored in alcohol solution, with good dispersibility and high catalytic ability.
具体实施3: Specific implementation 3:
(1)将表面活性剂与还原剂按质量比为2:3加入到水溶液中,搅拌25分钟; (1) Add the surfactant and the reducing agent into the aqueous solution at a mass ratio of 2:3, and stir for 25 minutes;
(2)向步骤(1)混合液(5.6mL)中加入体积比为2:3的氯铂酸溶液、三氯化钌溶液,浓度均为0.1mol/L,混合后的溶液颜色为深棕色,室温下搅拌25分钟; (2) Add chloroplatinic acid solution and ruthenium trichloride solution with a volume ratio of 2:3 to the mixed solution (5.6mL) in step (1), both at a concentration of 0.1mol/L, and the color of the mixed solution is dark brown , stirring at room temperature for 25 minutes;
(3)将步骤(2)所得溶液转入反应釜中,反应2h,温度控制在220℃左右; (3) Transfer the solution obtained in step (2) into the reactor, react for 2 hours, and control the temperature at about 220°C;
(4)所得产品经离心分离并用醇溶液进行三次洗涤后分散保存于醇溶液中,分散性较好,催化活性较高。 (4) The product obtained is centrifuged and washed three times with alcohol solution, and then dispersed and stored in alcohol solution, with good dispersibility and high catalytic activity.
图1为将实施例所得催化剂进行高分辨率透射电子显微镜,可以看出PtRu二元合金纳米催化剂的花状(孔状)结构。 Fig. 1 is a high-resolution transmission electron microscope of the catalyst obtained in the embodiment, and it can be seen that the flower-like (pore-like) structure of the PtRu binary alloy nanocatalyst.
图2.为花状(孔状)结构的PtRu元素谱图,可以看出Pt和Ru原子在花状(孔状)结构颗粒中的整体分布均匀,形成了合金。 Figure 2 is the PtRu element spectrum of the flower-like (pore-like) structure. It can be seen that the overall distribution of Pt and Ru atoms in the flower-like (pore-like) structure particles is uniform, forming an alloy.
图3.为将实施例所得催化剂以及商用Pt black、PtRu black、PtRu/C black在0.1M HClO4+0.5M CH3OH溶液中催化甲醇的循环伏安曲线,可以看出其中花状结构的PtRu的峰电流值最高,为10.98 mA cm-2。 Fig. 3. is the cyclic voltammetry curve of catalytic methanol in 0.1M HClO4+0.5M CH3OH solution for the catalyst obtained by the embodiment and commercial Pt black, PtRu black, PtRu/C black, can find out the peak of the PtRu wherein flower-like structure The highest current value is 10.98 mA cm-2.
图4.为实施例所得催化剂和商业的Pt black、PtRu black、PtRu/C black在0.1MHClO4+0.5MCH3OH溶液中0.6v的条件下测i-t曲线,测试时间为3600 s,结果表明花状结构的PtRu的催化剂在3600 s的峰电流值一直要比Pt black、PtRu black以及PtRu/C black要高,稳定性比商业化的Pt black、PtRu black以及PtRu/C black要好。 Fig. 4. measures i-t curve under the condition of 0.6v in 0.1MHClO4+0.5MCH3OH solution for Pt black, PtRu black, PtRu/C black of embodiment gained catalyst and business, and test time is 3600 s, and the result shows the flower-like structure The peak current value of the PtRu catalyst at 3600 s has always been higher than that of Pt black, PtRu black and PtRu/C black, and its stability is better than that of commercial Pt black, PtRu black and PtRu/C black.
图5.为将实施例所得催化剂以及商用Pt black、PtRu/C black在0.1M HClO4+0.1M HCHO溶液中催化甲醛的循环伏安曲线。其中花状结构的PtRu的峰电流值最高,为12.16 mA cm-2。 Fig. 5. is the cyclic voltammetry curve of the catalyst obtained in the embodiment and commercial Pt black, PtRu/C black in 0.1M HClO4+0.1M HCHO solution to catalyze formaldehyde. Among them, PtRu with flower-like structure has the highest peak current value of 12.16 mA cm-2.
图6.为将实施例所得催化剂以及商用Pt black、PtRu/C black在0.1M HClO4+0.1M HCOOH溶液中催化甲酸的循环伏安曲线,其中花状(孔状)结构的PtRu的峰电流值最高,为6.42 mA cm-2。 Figure 6. is the cyclic voltammetry curve of the catalyst obtained in the embodiment and commercial Pt black, PtRu/C black in 0.1M HClO4+0.1M HCOOH solution catalyzed formic acid, wherein the peak current value of the PtRu of flower-like (porous) structure The highest is 6.42 mA cm-2.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510453973.5A CN104998636A (en) | 2015-07-29 | 2015-07-29 | Synthetic method and application of PtRu binary metal nano-alloy catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510453973.5A CN104998636A (en) | 2015-07-29 | 2015-07-29 | Synthetic method and application of PtRu binary metal nano-alloy catalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104998636A true CN104998636A (en) | 2015-10-28 |
Family
ID=54371652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510453973.5A Pending CN104998636A (en) | 2015-07-29 | 2015-07-29 | Synthetic method and application of PtRu binary metal nano-alloy catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104998636A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105798325A (en) * | 2016-03-24 | 2016-07-27 | 贵州大学 | Sub-2nm ruthenium (Ru) nanowire network and preparation method thereof |
CN105958087A (en) * | 2016-06-08 | 2016-09-21 | 贵州大学 | General preparation method for flower-like porous platinum-based nano-catalyst |
CN106348247A (en) * | 2016-10-26 | 2017-01-25 | 贵州大学 | Synthesis method of ternary PtPdCu nano-crystal and application |
CN106841355A (en) * | 2017-03-29 | 2017-06-13 | 贵州大学 | A kind of PtNi Nanoalloy electrochemical sensors for detecting dopamine |
CN107570172A (en) * | 2017-08-30 | 2018-01-12 | 江苏大学 | A kind of preparation method and applications of ruthenium/nickel alloy nanocatalyst |
CN107808964A (en) * | 2017-10-23 | 2018-03-16 | 济南大学 | A kind of method using polygonal pattern PtCoFe nanocatalysts catalysis oxidation methanol electrochemistry |
CN108372315A (en) * | 2018-04-03 | 2018-08-07 | 贵州大学 | A kind of bianry alloy PtCu nanosponges |
CN110988062A (en) * | 2019-11-25 | 2020-04-10 | 郑州炜盛电子科技有限公司 | Preparation method of gas diffusion electrode for measuring hydrogen sulfide gas |
CN113458409A (en) * | 2021-06-17 | 2021-10-01 | 西南大学 | Method for synthesizing nano alloy catalyst at room temperature |
CN114899438A (en) * | 2022-06-07 | 2022-08-12 | 江苏大学 | Preparation method of ternary alloy platinum ruthenium copper catalyst and its application in methanol catalysis |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104493193A (en) * | 2014-11-24 | 2015-04-08 | 北京大学 | Hydro-thermal synthetic method and application of Pt-Ru bimetal nanoparticles |
-
2015
- 2015-07-29 CN CN201510453973.5A patent/CN104998636A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104493193A (en) * | 2014-11-24 | 2015-04-08 | 北京大学 | Hydro-thermal synthetic method and application of Pt-Ru bimetal nanoparticles |
Non-Patent Citations (2)
Title |
---|
DABING HUANG ET AL.,: "Facile synthesis of PdPt nanoalloys with sub-2.0nm islands as robust electrocatalysts for methanol oxidation", 《CHEM.COMMUN.》 * |
QIANG YUAN ET AL.,: "RhPt flowerlike bimetallic nanocrystals with tunable composition as superior electrocatalysts for methanol oxidation", 《LANGMUIR》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105798325B (en) * | 2016-03-24 | 2018-07-06 | 贵州大学 | A kind of ruthenium (Ru) nanometer line network of Asia 2nm and preparation method thereof |
CN105798325A (en) * | 2016-03-24 | 2016-07-27 | 贵州大学 | Sub-2nm ruthenium (Ru) nanowire network and preparation method thereof |
CN105958087A (en) * | 2016-06-08 | 2016-09-21 | 贵州大学 | General preparation method for flower-like porous platinum-based nano-catalyst |
CN105958087B (en) * | 2016-06-08 | 2018-12-07 | 贵州大学 | A kind of general preparative methods of flower-shaped apertures platinum base nanocatalyst |
CN106348247A (en) * | 2016-10-26 | 2017-01-25 | 贵州大学 | Synthesis method of ternary PtPdCu nano-crystal and application |
CN106841355A (en) * | 2017-03-29 | 2017-06-13 | 贵州大学 | A kind of PtNi Nanoalloy electrochemical sensors for detecting dopamine |
CN106841355B (en) * | 2017-03-29 | 2023-09-01 | 贵州大学 | A PtNi Nanoalloy Electrochemical Sensor for Detecting Dopamine |
CN107570172A (en) * | 2017-08-30 | 2018-01-12 | 江苏大学 | A kind of preparation method and applications of ruthenium/nickel alloy nanocatalyst |
CN107808964A (en) * | 2017-10-23 | 2018-03-16 | 济南大学 | A kind of method using polygonal pattern PtCoFe nanocatalysts catalysis oxidation methanol electrochemistry |
CN108372315A (en) * | 2018-04-03 | 2018-08-07 | 贵州大学 | A kind of bianry alloy PtCu nanosponges |
CN110988062A (en) * | 2019-11-25 | 2020-04-10 | 郑州炜盛电子科技有限公司 | Preparation method of gas diffusion electrode for measuring hydrogen sulfide gas |
CN110988062B (en) * | 2019-11-25 | 2022-07-26 | 郑州炜盛电子科技有限公司 | Preparation method of gas diffusion electrode for measuring hydrogen sulfide gas |
CN113458409A (en) * | 2021-06-17 | 2021-10-01 | 西南大学 | Method for synthesizing nano alloy catalyst at room temperature |
CN114899438A (en) * | 2022-06-07 | 2022-08-12 | 江苏大学 | Preparation method of ternary alloy platinum ruthenium copper catalyst and its application in methanol catalysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104998636A (en) | Synthetic method and application of PtRu binary metal nano-alloy catalyst | |
CN101944620B (en) | Fuel cell catalyst with multi-component composite as carrier and preparation method | |
CN111261883B (en) | Preparation method and application of ionic liquid functionalized graphene oxide loaded nano cobaltosic oxide composite material | |
CN103078123B (en) | Fuel cell catalyst and preparation method thereof | |
CN106058277B (en) | A kind of PdAu electrocatalyst for fuel cell and preparation method thereof | |
CN105170169A (en) | Nitrogen-doped graphene-iron-based nanoparticle composite catalyst and preparation method thereof | |
CN107335451B (en) | Platinum/molybdenum disulfide nano sheet/graphene three-dimensional combination electrode catalyst preparation method | |
CN108786845A (en) | A kind of preparation method of dendroid Pt-Ni-Cu alloy nanoparticles | |
CN103022521A (en) | Palladium-cobalt/graphene nano electro-catalyst and preparation method thereof | |
CN103143378A (en) | Preparation method of non-noble metal oxygen reduction electrocatalyst for cathode of fuel cell | |
CN107863538B (en) | Electrode for ethanol catalysis and application thereof | |
CN105948139B (en) | A kind of two-dimentional CuCo2S4Nanometer sheet and preparation method thereof and the application as elctro-catalyst in hydrogen reduction and oxygen evolution reaction | |
CN105633425A (en) | Pdx@Pt/C core-shell structure cathode catalyst for fuel cell and preparation method of Pdx@Pt/C core-shell structure cathode catalyst | |
CN101161341A (en) | A method for preparing direct methanol fuel cell anode multicomponent catalyst | |
CN102389794A (en) | Method for preparing Pd catalyst with three-dimensional nano meshy structure by reduction of nitrile rubber precursor | |
CN101667644A (en) | High-performance low-platinum catalyst for methanol fuel cell and preparation method thereof | |
CN106992304A (en) | It is a kind of to nitrogenize the Preparation method and use that carbon-based composite oxygen reduction electro-catalyst modifies disk electrode | |
CN112133930A (en) | A kind of preparation method of ZIF-8 derived Pd-N-C oxygen reduction electrocatalyst | |
CN106268795A (en) | The preparation method of metal-oxide cerium catalyst and the application in carbon dioxide electro-catalysis is reduced thereof | |
CN103191757B (en) | PdNiW/C ternary alloy nano catalyst and preparation method thereof | |
Bellini et al. | Energy & chemicals from renewable resources by electrocatalysis | |
CN112133929A (en) | A kind of preparation method of Au-N-C oxygen reduction electrocatalyst derived from ZIF-8 | |
CN105895930B (en) | A kind of preparation method of nanometer alloy catalyst | |
CN101162780A (en) | Direct methanol fuel battery anode catalyst and method for producing the same | |
CN103736483B (en) | A kind of preparation method of the fuel cell platinum based catalyst of high activity high-durability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151028 |
|
RJ01 | Rejection of invention patent application after publication |