CN104998636A - Synthetic method and application of PtRu binary metal nano-alloy catalyst - Google Patents

Synthetic method and application of PtRu binary metal nano-alloy catalyst Download PDF

Info

Publication number
CN104998636A
CN104998636A CN201510453973.5A CN201510453973A CN104998636A CN 104998636 A CN104998636 A CN 104998636A CN 201510453973 A CN201510453973 A CN 201510453973A CN 104998636 A CN104998636 A CN 104998636A
Authority
CN
China
Prior art keywords
ptru
flower
alloy catalyst
metal
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510453973.5A
Other languages
Chinese (zh)
Inventor
袁强
赵伟悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou University
Original Assignee
Guizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou University filed Critical Guizhou University
Priority to CN201510453973.5A priority Critical patent/CN104998636A/en
Publication of CN104998636A publication Critical patent/CN104998636A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种花状(孔状)结构的PtRu二元金属纳米合金催化剂,其特征在于:(1)将表面活性剂和还原剂一起加入到水中,室温下搅拌10~30分钟,表面活性剂与还原剂的质量比为1:2~2:1;所加水量需要将表面活性剂和还原剂完全溶解即可;(2)向步骤(1)所得的混合溶液中分别加入金属铂盐前驱体溶液和金属钌盐前驱体溶液,二者体积比为:3:2~2:3,混合溶液与金属前驱体溶液总体积的比值为10:1~20:1;室温搅拌10~30分钟,金属盐前驱体溶液的浓度为0.05~0.5mol/L;(3)将步骤(2)所得混合溶液室温下搅拌5~30分钟,在高压釜中反应1.5~3小时,温度控制在180~230℃;(4)将步骤(3)所得产物冷却后进行洗涤,离心分离后即得一种具有花状(孔状)结构的PtRu二元金属纳米合金催化剂。

The invention discloses a PtRu binary metal nano-alloy catalyst with a flower-like (porous) structure, which is characterized in that: (1) adding a surfactant and a reducing agent into water, stirring at room temperature for 10-30 minutes, the surface activity The mass ratio of the surfactant to the reducing agent is 1:2 to 2:1; the amount of water added needs to completely dissolve the surfactant and the reducing agent; (2) Add metal platinum salts to the mixed solution obtained in step (1) Precursor solution and metal ruthenium salt precursor solution, the volume ratio of the two is: 3:2~2:3, the ratio of the mixed solution to the total volume of the metal precursor solution is 10:1~20:1; stirring at room temperature for 10~30 Minutes, the concentration of the metal salt precursor solution is 0.05-0.5mol/L; (3) Stir the mixed solution obtained in step (2) at room temperature for 5-30 minutes, react in an autoclave for 1.5-3 hours, and control the temperature at 180 ~230°C; (4) Cool the product obtained in step (3), wash it, and centrifuge to obtain a PtRu binary metal nano-alloy catalyst with a flower-like (pore-like) structure.

Description

一种PtRu二元金属纳米合金催化剂的合成方法与应用A kind of synthetic method and application of PtRu binary metal nano-alloy catalyst

技术领域 technical field

本发明涉及燃料电池催化剂领域,具体地说是一种PtRu二元金属纳米合金催化剂的合成及其应用。 The invention relates to the field of fuel cell catalysts, in particular to the synthesis and application of a PtRu binary metal nano-alloy catalyst.

背景技术 Background technique

燃料电池由于其能量转化率高,对环境污染少,有利于减少传统石化燃料的过度使用和保护地球环境,可作为未来理想的动力来源,因而受到世界各国科学家的广泛关注,为此,世界各国投入了大量的人力,物力,和财力来进行研究。甲醇在常温常压下是一种结构最简单的液态有机化合物,存储简单,来源方便,价格便宜,是一种理想的可再生燃料。Pt催化剂由于其对甲醇优异的催化活性和稳定性,而受到人们的广泛关注。但是,由于其在地球上的储量稀少和昂贵的价格大大的限制了燃料电池的商业化使用,而且甲醇的氧化中间产物CO会占据Pt表面的活性位点,使Pt催化剂中毒,从而降低了Pt的电化学活性和稳定性。提高催化剂活性的关键是在低电位下氧化类似CO的中间产物。目前,Pt的合金化是科学家们采取的一种普遍方法来解决单金属Pt催化活性低以及易中毒这一问题。基于Pt的二元纳米合金由于其独特的物理化学性能而越来越受到人们的重视。其中,PtRu二元纳米合金以其较好电化学活性和CO抗毒性而受到广泛关注。但是, 已见报道的PtRu二元金属纳米合金催化剂很少可以同时兼具高活性和高稳定性。而这种花状(孔状)结构的二元金属纳米合金催化剂不仅兼具催化活性和稳定性,而且较之之前报道的PtRu二元纳米催化剂在这两方面都有较大程度提升。 Due to its high energy conversion rate and low environmental pollution, fuel cells are conducive to reducing the excessive use of traditional fossil fuels and protecting the global environment. A lot of manpower, material resources, and financial resources have been invested in research. Methanol is a liquid organic compound with the simplest structure at normal temperature and pressure. It is easy to store, convenient to source, and cheap. It is an ideal renewable fuel. Pt catalysts have attracted extensive attention due to their excellent catalytic activity and stability towards methanol. However, due to its scarcity and high price on the earth, the commercial use of fuel cells is greatly limited, and CO, an intermediate oxidation product of methanol, will occupy the active sites on the Pt surface, poisoning the Pt catalyst, thereby reducing the Pt electrochemical activity and stability. The key to enhancing catalyst activity is the oxidation of CO-like intermediates at low potentials. At present, the alloying of Pt is a common method adopted by scientists to solve the problem of low catalytic activity and easy poisoning of single metal Pt. Pt-based binary nanoalloys have attracted increasing attention due to their unique physicochemical properties. Among them, PtRu binary nanoalloys have attracted extensive attention due to their better electrochemical activity and CO toxicity resistance. However, few of the reported PtRu binary metal nanoalloy catalysts have both high activity and high stability. The flower-like (pore-like) structure of the binary metal nano-alloy catalyst not only has both catalytic activity and stability, but also has a greater degree of improvement in both aspects than the previously reported PtRu binary nano-catalysts.

发明内容 Contents of the invention

本发明要解决的技术问题是:提供一种花状(孔状)结构的PtRu二元金属纳米合金催化剂,增强了催化剂抗CO中毒能力并提高了对甲醇、甲醛、甲酸的催化活性。 The technical problem to be solved by the present invention is to provide a PtRu binary metal nano-alloy catalyst with a flower-like (pore-like) structure, which enhances the catalyst's ability to resist CO poisoning and improves the catalytic activity to methanol, formaldehyde and formic acid.

本发明的技术方案是:一种花状(孔状)结构的PtRu二元金属纳米合金催化剂的制备方法,包含以下步骤: The technical scheme of the present invention is: a kind of preparation method of the PtRu binary metal nano-alloy catalyst of flower-like (porous) structure, comprises the following steps:

 (1)将表面活性剂和还原剂一起加入到水中,室温下搅拌10~30分钟,表面活性剂与还原剂的质量比为1:2~2:1;所加水量需要将表面活性剂和还原剂完全溶解即可; (1) Add surfactant and reducing agent into water together, stir at room temperature for 10 to 30 minutes, the mass ratio of surfactant to reducing agent is 1:2 to 2:1; the amount of water added needs to be equal to surfactant and The reducing agent is completely dissolved;

(2)向步骤(1)所得的混合溶液中分别加入金属铂盐前驱体溶液和金属钌盐前驱体溶液,二者体积比为:3:2~2:3,混合溶液与金属前驱体溶液总体积的比值为10:1~20:1;室温搅拌10~30分钟,金属盐前驱体溶液的浓度为0.05~0.5mol/L; (2) Add metal platinum salt precursor solution and metal ruthenium salt precursor solution respectively to the mixed solution obtained in step (1), the volume ratio of the two is: 3:2~2:3, the mixed solution and the metal precursor solution The ratio of the total volume is 10:1-20:1; stirring at room temperature for 10-30 minutes, the concentration of the metal salt precursor solution is 0.05-0.5mol/L;

(3)将步骤(2)所得混合溶液室温下搅拌5~30分钟,在高压釜中反应1.5~3小时,温度控制在180~230℃; (3) Stir the mixed solution obtained in step (2) at room temperature for 5-30 minutes, react in an autoclave for 1.5-3 hours, and control the temperature at 180-230°C;

(4)将步骤(3)所得产物冷却后进行洗涤,离心分离后即得一种具有花状(孔状)结构的PtRu二元金属纳米合金催化剂。 (4) The product obtained in step (3) is cooled, washed, and centrifuged to obtain a PtRu binary metal nano-alloy catalyst with a flower-like (pore-like) structure.

步骤(1)所述的水溶液为超纯水,搅拌时间为20分钟,表面活性剂与还原剂质量比为2:3。 The aqueous solution in step (1) is ultrapure water, the stirring time is 20 minutes, and the mass ratio of surfactant to reducing agent is 2:3.

步骤(1)中的表面活性剂为PVP或CTAC或二者混合物;还原剂为一水柠檬酸或柠檬酸钠。 The surfactant in step (1) is PVP or CTAC or a mixture of the two; the reducing agent is citric acid monohydrate or sodium citrate.

步骤(1)中的表面活性剂为PVP-8000和CTAC的混合物;还原剂为一水柠檬酸。 The surfactant in step (1) is a mixture of PVP-8000 and CTAC; the reducing agent is citric acid monohydrate.

所述金属铂盐前驱体溶液为氯铂酸或氯铂酸钾。 The metal platinum salt precursor solution is chloroplatinic acid or potassium chloroplatinate.

所述金属钌盐前驱体溶液为三氯化钌。 The metal ruthenium salt precursor solution is ruthenium trichloride.

步骤(3)所述室温下搅拌20分钟,在高压釜中反应2小时,温度控制在210℃左右。 Step (3) Stir at room temperature for 20 minutes, react in an autoclave for 2 hours, and control the temperature at about 210°C.

本发明的有益效果: Beneficial effects of the present invention:

本发明研究并获得了一种花状(孔状)结构的PtRu二元金属纳米合金催化剂,较好的增强了催化剂抗CO中毒能力和提高催化甲醇、甲醛、甲酸的催化活性。以甲醇为例,催化甲醇的峰电流值为10.98mA cm-2。 The present invention studies and obtains a PtRu binary metal nano-alloy catalyst with a flower-like (pore-like) structure, which better enhances the catalyst's ability to resist CO poisoning and improves the catalytic activity of methanol, formaldehyde and formic acid. Taking methanol as an example, the peak current value of catalytic methanol is 10.98mA cm-2.

在0.6 v的条件下扫3600 s后的峰电流值为2.85 mA cm-2,比商业Pt black的0.21mA cm-2要高十倍以上。 The peak current value after sweeping for 3600 s at 0.6 v is 2.85 mA cm-2, which is more than ten times higher than the 0.21 mA cm-2 of commercial Pt black.

附图说明 Description of drawings

图1.是花状(孔状)结构的PtRu二元合金纳米催化剂,用高分辨率透射电子显微镜观察结果图; Figure 1. It is a PtRu binary alloy nanocatalyst with a flower-like (pore-like) structure, and the result of observation with a high-resolution transmission electron microscope;

图2.是花状(孔状)结构的PtRu元素谱图,可以看出Pt和Ru原子在花状(孔状)结构颗粒中的整体分布比较均匀,形成了合金; Figure 2 is the PtRu element spectrum of the flower-like (pore-like) structure. It can be seen that the overall distribution of Pt and Ru atoms in the flower-like (pore-like) structure particles is relatively uniform, forming an alloy;

图3.花状(孔状)结构的PtRu二元合金纳米催化剂以及商用Pt black、PtRu black以及PtRu/C black在0.1M HClO4+0.5M CH3OH溶液中催化甲醇的循环伏安曲线; Figure 3. Cyclic voltammetry curves of PtRu binary alloy nanocatalysts with flower-like (pore-like) structure and commercial Pt black, PtRu black and PtRu/C black in 0.1M HClO4+0.5M CH3OH solution;

图4.花状(孔状)结构的PtRu合金纳米催化剂以及商用Pt black、PtRu black以及PtRu/C black在0.1M HClO4+0.5M CH3OH溶液中0.6 v的条件下的i-t曲线; Figure 4. The i-t curves of PtRu alloy nanocatalysts with flower-like (porous) structure and commercial Pt black, PtRu black and PtRu/C black in 0.1M HClO4+0.5M CH3OH solution at 0.6 v;

图5.花状(孔状)结构的PtRu二元合金纳米催化剂以及商用Pt black、PtRu/C black在0.1M HClO4+0.1M HCHO溶液中催化甲醛的循环伏安曲线; Figure 5. Cyclic voltammetry curves of PtRu binary alloy nanocatalysts with flower-like (pore-like) structure and commercial Pt black, PtRu/C black in 0.1M HClO4+0.1M HCHO solution to catalyze formaldehyde;

图6.花状(孔状)结构的PtRu二元合金纳米催化剂以及商用Pt black、PtRu/C black在0.1M HClO4+0.1M HCOOH溶液中催化甲酸的循环伏安曲线。 Figure 6. Cyclic voltammetry curves of PtRu binary alloy nanocatalysts with flower-like (porous) structure and commercial Pt black and PtRu/C black in 0.1M HClO4+0.1M HCOOH solution for formic acid.

具体实施方式 Detailed ways

具体实施1: Specific implementation 1:

(1)将表面活性剂与还原剂按质量比为2:3加入到水溶液中,搅拌15分钟; (1) Add the surfactant and the reducing agent into the aqueous solution at a mass ratio of 2:3, and stir for 15 minutes;

(2)向步骤(1)混合液(5.6mL)中加入体积比为3:2的氯铂酸溶液、三氯化钌溶液,浓度均为0.1mol/L,混合后的溶液颜色为黄棕色,室温下搅拌15分钟; (2) Add chloroplatinic acid solution and ruthenium trichloride solution with a volume ratio of 3:2 to the mixed solution (5.6mL) in step (1), both at a concentration of 0.1mol/L, and the color of the mixed solution is yellow-brown , stirring at room temperature for 15 minutes;

(3)将步骤(2)所得溶液转入反应釜中,反应2h,温度控制在200℃左右; (3) Transfer the solution obtained in step (2) into the reactor, react for 2 hours, and control the temperature at about 200°C;

(4)所得产品经离心分离并用醇溶液进行三次洗涤后分散保存于醇溶液中,分散性较好,催化活性一般。 (4) The obtained product is separated by centrifugation and washed three times with alcohol solution, and then dispersed and stored in alcohol solution, with good dispersibility and general catalytic activity.

具体实施2: Specific implementation 2:

(1)将表面活性剂与还原剂按质量比为2:3加入到水溶液中,搅拌20分钟; (1) Add the surfactant and the reducing agent into the aqueous solution at a mass ratio of 2:3, and stir for 20 minutes;

(2)向步骤(1)混合液(5.6mL)中加入体积比为1:1的氯铂酸溶液、三氯化钌溶液,浓度均为0.1mol/L,混合后的溶液颜色为黄褐色,室温下搅拌20分钟; (2) Add chloroplatinic acid solution and ruthenium trichloride solution with a volume ratio of 1:1 to the mixed solution (5.6mL) in step (1), both at a concentration of 0.1mol/L, and the color of the mixed solution is yellowish brown , stirred at room temperature for 20 minutes;

(3)将步骤(2)所得溶液转入反应釜中,反应2h,温度控制在210℃左右; (3) Transfer the solution obtained in step (2) into the reactor, react for 2 hours, and control the temperature at about 210°C;

(4)所得产品经离心分离并用醇溶液进行三次洗涤后分散保存于醇溶液中,分散性很好,催化能力很高。 (4) After being centrifuged and washed three times with alcohol solution, the obtained product is dispersed and stored in alcohol solution, with good dispersibility and high catalytic ability.

具体实施3: Specific implementation 3:

(1)将表面活性剂与还原剂按质量比为2:3加入到水溶液中,搅拌25分钟; (1) Add the surfactant and the reducing agent into the aqueous solution at a mass ratio of 2:3, and stir for 25 minutes;

(2)向步骤(1)混合液(5.6mL)中加入体积比为2:3的氯铂酸溶液、三氯化钌溶液,浓度均为0.1mol/L,混合后的溶液颜色为深棕色,室温下搅拌25分钟; (2) Add chloroplatinic acid solution and ruthenium trichloride solution with a volume ratio of 2:3 to the mixed solution (5.6mL) in step (1), both at a concentration of 0.1mol/L, and the color of the mixed solution is dark brown , stirring at room temperature for 25 minutes;

(3)将步骤(2)所得溶液转入反应釜中,反应2h,温度控制在220℃左右; (3) Transfer the solution obtained in step (2) into the reactor, react for 2 hours, and control the temperature at about 220°C;

(4)所得产品经离心分离并用醇溶液进行三次洗涤后分散保存于醇溶液中,分散性较好,催化活性较高。 (4) The product obtained is centrifuged and washed three times with alcohol solution, and then dispersed and stored in alcohol solution, with good dispersibility and high catalytic activity.

图1为将实施例所得催化剂进行高分辨率透射电子显微镜,可以看出PtRu二元合金纳米催化剂的花状(孔状)结构。 Fig. 1 is a high-resolution transmission electron microscope of the catalyst obtained in the embodiment, and it can be seen that the flower-like (pore-like) structure of the PtRu binary alloy nanocatalyst.

图2.为花状(孔状)结构的PtRu元素谱图,可以看出Pt和Ru原子在花状(孔状)结构颗粒中的整体分布均匀,形成了合金。 Figure 2 is the PtRu element spectrum of the flower-like (pore-like) structure. It can be seen that the overall distribution of Pt and Ru atoms in the flower-like (pore-like) structure particles is uniform, forming an alloy.

图3.为将实施例所得催化剂以及商用Pt black、PtRu black、PtRu/C black在0.1M HClO4+0.5M CH3OH溶液中催化甲醇的循环伏安曲线,可以看出其中花状结构的PtRu的峰电流值最高,为10.98 mA cm-2。 Fig. 3. is the cyclic voltammetry curve of catalytic methanol in 0.1M HClO4+0.5M CH3OH solution for the catalyst obtained by the embodiment and commercial Pt black, PtRu black, PtRu/C black, can find out the peak of the PtRu wherein flower-like structure The highest current value is 10.98 mA cm-2.

图4.为实施例所得催化剂和商业的Pt black、PtRu black、PtRu/C black在0.1MHClO4+0.5MCH3OH溶液中0.6v的条件下测i-t曲线,测试时间为3600 s,结果表明花状结构的PtRu的催化剂在3600 s的峰电流值一直要比Pt black、PtRu black以及PtRu/C black要高,稳定性比商业化的Pt black、PtRu black以及PtRu/C black要好。 Fig. 4. measures i-t curve under the condition of 0.6v in 0.1MHClO4+0.5MCH3OH solution for Pt black, PtRu black, PtRu/C black of embodiment gained catalyst and business, and test time is 3600 s, and the result shows the flower-like structure The peak current value of the PtRu catalyst at 3600 s has always been higher than that of Pt black, PtRu black and PtRu/C black, and its stability is better than that of commercial Pt black, PtRu black and PtRu/C black.

图5.为将实施例所得催化剂以及商用Pt black、PtRu/C black在0.1M HClO4+0.1M HCHO溶液中催化甲醛的循环伏安曲线。其中花状结构的PtRu的峰电流值最高,为12.16 mA cm-2。 Fig. 5. is the cyclic voltammetry curve of the catalyst obtained in the embodiment and commercial Pt black, PtRu/C black in 0.1M HClO4+0.1M HCHO solution to catalyze formaldehyde. Among them, PtRu with flower-like structure has the highest peak current value of 12.16 mA cm-2.

图6.为将实施例所得催化剂以及商用Pt black、PtRu/C black在0.1M HClO4+0.1M HCOOH溶液中催化甲酸的循环伏安曲线,其中花状(孔状)结构的PtRu的峰电流值最高,为6.42 mA cm-2。 Figure 6. is the cyclic voltammetry curve of the catalyst obtained in the embodiment and commercial Pt black, PtRu/C black in 0.1M HClO4+0.1M HCOOH solution catalyzed formic acid, wherein the peak current value of the PtRu of flower-like (porous) structure The highest is 6.42 mA cm-2.

Claims (8)

1.一种花状(孔状)结构的PtRu二元金属纳米合金催化剂,其特征在于: 1. a PtRu binary metal nano-alloy catalyst of a flower-like (porous) structure, characterized in that: (1)将表面活性剂和还原剂一起加入到水中,室温下搅拌10~30分钟,表面活性剂与还原剂的质量比为1:2~2:1;所加水量需要将表面活性剂和还原剂完全溶解即可; (1) Add surfactant and reducing agent into water together, stir at room temperature for 10 to 30 minutes, the mass ratio of surfactant to reducing agent is 1:2 to 2:1; the amount of water added needs to be equal to surfactant and The reducing agent is completely dissolved; (2)向步骤(1)所得的混合溶液中分别加入金属铂盐前驱体溶液和金属钌盐前驱体溶液,二者体积比为:3:2~2:3,混合溶液与金属前驱体溶液总体积的比值为10:1~20:1;室温搅拌10~30分钟,金属盐前驱体溶液的浓度为0.05~0.5mol/L; (2) Add metal platinum salt precursor solution and metal ruthenium salt precursor solution respectively to the mixed solution obtained in step (1), the volume ratio of the two is: 3:2~2:3, the mixed solution and the metal precursor solution The ratio of the total volume is 10:1-20:1; stirring at room temperature for 10-30 minutes, the concentration of the metal salt precursor solution is 0.05-0.5mol/L; (3)将步骤(2)所得混合溶液室温下搅拌5~30分钟,在高压釜中反应1.5~3小时,温度控制在180~230℃; (3) Stir the mixed solution obtained in step (2) at room temperature for 5-30 minutes, react in an autoclave for 1.5-3 hours, and control the temperature at 180-230°C; (4)将步骤(3)所得产物冷却后进行洗涤,离心分离后即得一种具有花状(孔状)结构的PtRu二元金属纳米合金催化剂。 (4) The product obtained in step (3) is cooled, washed, and centrifuged to obtain a PtRu binary metal nano-alloy catalyst with a flower-like (pore-like) structure. 2.根据权利要求1所述的一种花状(孔状)结构的PtRu纳米合金催化剂的制备方法,其特征在于:步骤(1)所述的水溶液为超纯水,搅拌时间为20分钟,表面活性剂与还原剂质量比为2:3。 2. the preparation method of the PtRu nano-alloy catalyst of a kind of flower shape (porous) structure according to claim 1, it is characterized in that: the aqueous solution described in step (1) is ultrapure water, and stirring time is 20 minutes, and surface The mass ratio of active agent to reducing agent is 2:3. 3.根据权利要求1所述的一种花状(孔状)结构的PtRu纳米合金催化剂的制备方法,其特征在于:步骤(1)中的表面活性剂为PVP或CTAC或二者混合物;还原剂为一水柠檬酸或柠檬酸钠。 3. The preparation method of a PtRu nano-alloy catalyst with a flower-like (porous) structure according to claim 1, characterized in that: the surfactant in step (1) is PVP or CTAC or a mixture of the two; the reducing agent It is citric acid monohydrate or sodium citrate. 4.根据权利要求1或3所述的一种花状(孔状)结构的PtRu纳米合金催化剂的制备方法,其特征在于:步骤(1)中的表面活性剂为PVP-8000和CTAC的混合物;还原剂为一水柠檬酸。 4. The preparation method of a PtRu nano-alloy catalyst with a flower-like (porous) structure according to claim 1 or 3, characterized in that: the surfactant in step (1) is a mixture of PVP-8000 and CTAC; The reducing agent is citric acid monohydrate. 5.根据权利要求1所述的一种花状(孔状)结构的PtRu纳米合金催化剂的制备方法,其特征在于:所述金属铂盐前驱体溶液为氯铂酸或氯铂酸钾。 5. The preparation method of a PtRu nano-alloy catalyst with a flower-like (porous) structure according to claim 1, characterized in that: the metal platinum salt precursor solution is chloroplatinic acid or potassium chloroplatinate. 6.根据权利要求1所述的一种花状(孔状)结构的PtRu纳米合金催化剂制备方法,其特征在于:所述金属钌盐前驱体溶液为三氯化钌。 6. The preparation method of a PtRu nano-alloy catalyst with a flower-like (pore-like) structure according to claim 1, characterized in that: the metal ruthenium salt precursor solution is ruthenium trichloride. 7.根据权利要求1所述的一种花状(孔状)结构的PtRu纳米合金催化剂的制备方法,其特征在于:步骤(3)所述室温下搅拌20分钟,在高压釜中反应2小时,温度控制在210℃左右。 7. The preparation method of a PtRu nano-alloy catalyst with a flower-like (pore-like) structure according to claim 1, characterized in that: step (3) stirs at room temperature for 20 minutes, reacts in an autoclave for 2 hours, The temperature is controlled at about 210°C. 8.根据权利要求1-7所述的PtRu二元金属纳米合金催化剂在燃料电池领域对甲醇、甲醛、甲酸等有机小分子有比较好的催化效率和抗毒化性能。 8. The PtRu binary metal nano-alloy catalyst according to claims 1-7 has relatively good catalytic efficiency and anti-poisoning performance to small organic molecules such as methanol, formaldehyde and formic acid in the field of fuel cells.
CN201510453973.5A 2015-07-29 2015-07-29 Synthetic method and application of PtRu binary metal nano-alloy catalyst Pending CN104998636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510453973.5A CN104998636A (en) 2015-07-29 2015-07-29 Synthetic method and application of PtRu binary metal nano-alloy catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510453973.5A CN104998636A (en) 2015-07-29 2015-07-29 Synthetic method and application of PtRu binary metal nano-alloy catalyst

Publications (1)

Publication Number Publication Date
CN104998636A true CN104998636A (en) 2015-10-28

Family

ID=54371652

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510453973.5A Pending CN104998636A (en) 2015-07-29 2015-07-29 Synthetic method and application of PtRu binary metal nano-alloy catalyst

Country Status (1)

Country Link
CN (1) CN104998636A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105798325A (en) * 2016-03-24 2016-07-27 贵州大学 Sub-2nm ruthenium (Ru) nanowire network and preparation method thereof
CN105958087A (en) * 2016-06-08 2016-09-21 贵州大学 General preparation method for flower-like porous platinum-based nano-catalyst
CN106348247A (en) * 2016-10-26 2017-01-25 贵州大学 Synthesis method of ternary PtPdCu nano-crystal and application
CN106841355A (en) * 2017-03-29 2017-06-13 贵州大学 A kind of PtNi Nanoalloy electrochemical sensors for detecting dopamine
CN107570172A (en) * 2017-08-30 2018-01-12 江苏大学 A kind of preparation method and applications of ruthenium/nickel alloy nanocatalyst
CN107808964A (en) * 2017-10-23 2018-03-16 济南大学 A kind of method using polygonal pattern PtCoFe nanocatalysts catalysis oxidation methanol electrochemistry
CN108372315A (en) * 2018-04-03 2018-08-07 贵州大学 A kind of bianry alloy PtCu nanosponges
CN110988062A (en) * 2019-11-25 2020-04-10 郑州炜盛电子科技有限公司 Preparation method of gas diffusion electrode for measuring hydrogen sulfide gas
CN113458409A (en) * 2021-06-17 2021-10-01 西南大学 Method for synthesizing nano alloy catalyst at room temperature
CN114899438A (en) * 2022-06-07 2022-08-12 江苏大学 Preparation method of ternary alloy platinum ruthenium copper catalyst and its application in methanol catalysis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104493193A (en) * 2014-11-24 2015-04-08 北京大学 Hydro-thermal synthetic method and application of Pt-Ru bimetal nanoparticles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104493193A (en) * 2014-11-24 2015-04-08 北京大学 Hydro-thermal synthetic method and application of Pt-Ru bimetal nanoparticles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DABING HUANG ET AL.,: "Facile synthesis of PdPt nanoalloys with sub-2.0nm islands as robust electrocatalysts for methanol oxidation", 《CHEM.COMMUN.》 *
QIANG YUAN ET AL.,: "RhPt flowerlike bimetallic nanocrystals with tunable composition as superior electrocatalysts for methanol oxidation", 《LANGMUIR》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105798325B (en) * 2016-03-24 2018-07-06 贵州大学 A kind of ruthenium (Ru) nanometer line network of Asia 2nm and preparation method thereof
CN105798325A (en) * 2016-03-24 2016-07-27 贵州大学 Sub-2nm ruthenium (Ru) nanowire network and preparation method thereof
CN105958087A (en) * 2016-06-08 2016-09-21 贵州大学 General preparation method for flower-like porous platinum-based nano-catalyst
CN105958087B (en) * 2016-06-08 2018-12-07 贵州大学 A kind of general preparative methods of flower-shaped apertures platinum base nanocatalyst
CN106348247A (en) * 2016-10-26 2017-01-25 贵州大学 Synthesis method of ternary PtPdCu nano-crystal and application
CN106841355A (en) * 2017-03-29 2017-06-13 贵州大学 A kind of PtNi Nanoalloy electrochemical sensors for detecting dopamine
CN106841355B (en) * 2017-03-29 2023-09-01 贵州大学 A PtNi Nanoalloy Electrochemical Sensor for Detecting Dopamine
CN107570172A (en) * 2017-08-30 2018-01-12 江苏大学 A kind of preparation method and applications of ruthenium/nickel alloy nanocatalyst
CN107808964A (en) * 2017-10-23 2018-03-16 济南大学 A kind of method using polygonal pattern PtCoFe nanocatalysts catalysis oxidation methanol electrochemistry
CN108372315A (en) * 2018-04-03 2018-08-07 贵州大学 A kind of bianry alloy PtCu nanosponges
CN110988062A (en) * 2019-11-25 2020-04-10 郑州炜盛电子科技有限公司 Preparation method of gas diffusion electrode for measuring hydrogen sulfide gas
CN110988062B (en) * 2019-11-25 2022-07-26 郑州炜盛电子科技有限公司 Preparation method of gas diffusion electrode for measuring hydrogen sulfide gas
CN113458409A (en) * 2021-06-17 2021-10-01 西南大学 Method for synthesizing nano alloy catalyst at room temperature
CN114899438A (en) * 2022-06-07 2022-08-12 江苏大学 Preparation method of ternary alloy platinum ruthenium copper catalyst and its application in methanol catalysis

Similar Documents

Publication Publication Date Title
CN104998636A (en) Synthetic method and application of PtRu binary metal nano-alloy catalyst
CN101944620B (en) Fuel cell catalyst with multi-component composite as carrier and preparation method
CN111261883B (en) Preparation method and application of ionic liquid functionalized graphene oxide loaded nano cobaltosic oxide composite material
CN103078123B (en) Fuel cell catalyst and preparation method thereof
CN106058277B (en) A kind of PdAu electrocatalyst for fuel cell and preparation method thereof
CN105170169A (en) Nitrogen-doped graphene-iron-based nanoparticle composite catalyst and preparation method thereof
CN107335451B (en) Platinum/molybdenum disulfide nano sheet/graphene three-dimensional combination electrode catalyst preparation method
CN108786845A (en) A kind of preparation method of dendroid Pt-Ni-Cu alloy nanoparticles
CN103022521A (en) Palladium-cobalt/graphene nano electro-catalyst and preparation method thereof
CN103143378A (en) Preparation method of non-noble metal oxygen reduction electrocatalyst for cathode of fuel cell
CN107863538B (en) Electrode for ethanol catalysis and application thereof
CN105948139B (en) A kind of two-dimentional CuCo2S4Nanometer sheet and preparation method thereof and the application as elctro-catalyst in hydrogen reduction and oxygen evolution reaction
CN105633425A (en) Pdx@Pt/C core-shell structure cathode catalyst for fuel cell and preparation method of Pdx@Pt/C core-shell structure cathode catalyst
CN101161341A (en) A method for preparing direct methanol fuel cell anode multicomponent catalyst
CN102389794A (en) Method for preparing Pd catalyst with three-dimensional nano meshy structure by reduction of nitrile rubber precursor
CN101667644A (en) High-performance low-platinum catalyst for methanol fuel cell and preparation method thereof
CN106992304A (en) It is a kind of to nitrogenize the Preparation method and use that carbon-based composite oxygen reduction electro-catalyst modifies disk electrode
CN112133930A (en) A kind of preparation method of ZIF-8 derived Pd-N-C oxygen reduction electrocatalyst
CN106268795A (en) The preparation method of metal-oxide cerium catalyst and the application in carbon dioxide electro-catalysis is reduced thereof
CN103191757B (en) PdNiW/C ternary alloy nano catalyst and preparation method thereof
Bellini et al. Energy & chemicals from renewable resources by electrocatalysis
CN112133929A (en) A kind of preparation method of Au-N-C oxygen reduction electrocatalyst derived from ZIF-8
CN105895930B (en) A kind of preparation method of nanometer alloy catalyst
CN101162780A (en) Direct methanol fuel battery anode catalyst and method for producing the same
CN103736483B (en) A kind of preparation method of the fuel cell platinum based catalyst of high activity high-durability

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151028

RJ01 Rejection of invention patent application after publication