CN104992454B - 一种区域化自动变类的图像分割方法 - Google Patents

一种区域化自动变类的图像分割方法 Download PDF

Info

Publication number
CN104992454B
CN104992454B CN201510487600.XA CN201510487600A CN104992454B CN 104992454 B CN104992454 B CN 104992454B CN 201510487600 A CN201510487600 A CN 201510487600A CN 104992454 B CN104992454 B CN 104992454B
Authority
CN
China
Prior art keywords
cluster
current
clustering
image
clusters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510487600.XA
Other languages
English (en)
Other versions
CN104992454A (zh
Inventor
赵泉华
李晓丽
李玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Technical University
Original Assignee
Liaoning Technical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Technical University filed Critical Liaoning Technical University
Priority to CN201510487600.XA priority Critical patent/CN104992454B/zh
Publication of CN104992454A publication Critical patent/CN104992454A/zh
Application granted granted Critical
Publication of CN104992454B publication Critical patent/CN104992454B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Analysis (AREA)

Abstract

本发明涉及一种区域化自动变类的图像分割方法,该方法为在待分割图像域中随机产生生成点,得到生成点集合,以生成点为中心进行子区域初步划分,设定待分割图像域有c个聚类,得到初始聚类中心;设定最大迭代次数,根据划分子区域对待分割图像域进行聚类图像分割,计算划分子区域到当前聚类中心的距离并根据其确定划分子区域所属聚类,同时更新图像各聚类的聚类中心,位移当前生成点集中的生成点,更新划分子区域、更新划分子区域到当前聚类中心的距离及划分子区域所属聚类、更新各聚类的聚类中心,通过对图像聚类的分裂和图像聚类的合并,改变当前图像聚类数,实现自动变类,得到图像分割结果。

Description

一种区域化自动变类的图像分割方法
技术领域
本发明属于图像处理领域,具体涉及一种区域化自动变类的图像分割方法。
背景技术
图像分割是图像分析与解译的基础,其分割精度直接影响后续工作的质量,因此图像分割成为图像处理领域研究的热点及难点问题。图像分割就是把图像域分解为若干个同质区域,各同质区域内像素特征具有某种相似性,而同质区域间像素特征表现为非相似性。
图像分割包括两个技术问题:(1)确定分割的同质区域数,即聚类数;(2)实现各同质区域的最佳分割。图像分割的方法有很多,大部分是以像素为基本单元进行分割,且其聚类数需用户预先给定。基于像素的聚类图像分割往往对几何噪声和异常值极其敏感,难以实现同质区域的最佳分割。至今缺乏能同时有效分割同质区域及自动确定聚类数的分割方法。目前最为常用的聚类方法为K-均值聚类方法和迭代自组织数据分析技术方法(ISODATA)。K-均值聚类方法假定图像含有已知的k个聚类,通过随机选取初始聚类中心,在像素光谱测度的特征空间中以自然聚类方式进行分割,并以聚类中所有像素彩色矢量的均值为新的聚类中心,继续分割,直至聚类中心不再改变时完成图像分割。但是该方法对几何噪声及异常值极其敏感,同质区域分割效果差,分割结果含有大量亮斑,且需事先人工判读图像中聚类个数,不能自动确定图像聚类,只能实现固定类分割。ISODATA是目前最常用的实现变类分割的方法,将K-均值聚类方法纳入聚类分裂、合并框架中,提出自动变类的分割方法,当参数满足分裂、合并条件时执行聚类分裂、合并操作,直至收敛,得到正确图像聚类数,但是该方法仍然以像素为基本单元进行分割,抗噪性能差。
基于像素的聚类图像分割普遍存在对几何噪声和异常值极其敏感,当像素光谱测度突变时会造成判断失误,导致实际分割结果与理想分割结果不同,影响分割精度;而固定类分割方法只能在给定聚类数下进行分割,不能自动寻找正确聚类数,当人工判读失误时易导致分割结果错误。
发明内容
针对现有技术的不足,本发明提出一种区域化自动变类的图像分割方法。
一种区域化自动变类的图像分割方法,包括以下步骤:
步骤1:读取待分割图像域;
步骤2:将待分割图像域进行子区域初步划分;
步骤2.1:在待分割图像域中随机产生m个生成点,得到初始生成点集合;
步骤2.2:以初始生成点集合中的各生成点为中心,进行Voronoi划分,即采用距离最小化原则将待分割图像域划分为m个子区域;
步骤2.3:将各划分子区域内所有像素的彩色矢量的均值作为该划分子区域的彩色矢量;
步骤3:设定待分割图像域有c个聚类,从初始生成点集合中随机选取c个生成点,将其所在划分子区域的彩色矢量作为初始聚类中心;
步骤4:对待分割图像域进行区域化自动变类的图像分割,得到分割图像;
步骤4.1:设定最大迭代次数;
步骤4.2:根据划分子区域对待分割图像域进行聚类图像分割,计算划分子区域到当前聚类中心的距离并根据其确定划分子区域所属聚类,同时更新图像各聚类的聚类中心;
步骤4.2.1:计算当前各划分子区域到当前各聚类中心的距离;
步骤4.2.2:比较各划分子区域到各聚类中心的距离的大小,将各划分子区域归类到其到聚类中心的距离最小的聚类中;
步骤4.2.3:更新聚类的聚类中心:以各聚类中所有划分子区域的彩色矢量的均值作为聚类的聚类中心;
步骤4.3:位移当前生成点集中的生成点,更新划分子区域、更新划分子区域到当前聚类中心的距离及划分子区域所属聚类、更新各聚类的聚类中心;
步骤4.3.1:设定最大位移次数;
步骤4.3.2:从当前生成点集中以等概率随机选取一个待替换的生成点;
步骤4.3.3:在待替换的生成点所在的划分子区域内随机选取候选生成点,与其他生成点组成候选生成点集;
步骤4.3.4:以候选生成点集中的各生成点为中心,采用距离最小化原则将待分割图像域划分为位移更新后的划分子区域,将位移更新后的划分子区域内所有像素的彩色矢量的均值作为位移更新后的划分子区域的彩色矢量;
步骤4.3.5:根据位移更新后的划分子区域对待分割图像域进行聚类图像分割,更新划分子区域到当前聚类中心的距离及划分子区域所属聚类,得到位移更新后的各聚类的聚类中心;
步骤4.3.6:计算位移更新前的聚类方差和位移更新后的聚类方差;
步骤4.3.7:判断位移更新后的聚类方差是否小于位移更新前的聚类方差,若是,则将候选生成点集作为当前生成点集,将位移更新后的划分子区域作为当前划分子区域,将位移更新后的各聚类作为当前聚类,将位移更新后的各聚类中心作为当前各聚类中心,否则,保持当前生成点集及参数不变;
步骤4.3.8:更新位移次数;
步骤4.3.9:判断位移次数是否达到最大位移次数,若是,则执行下一步,否则,返回步骤4.3.2;
步骤4.4:通过对图像聚类的分裂和图像聚类的合并,改变当前图像聚类数,实现自动变类;
步骤4.4.1:设定预期聚类数、聚类内像素数阈值、聚类方差阈值和聚类间距离阈值;
步骤4.4.2:计算当前各聚类内像素数、当前聚类内平均距离、当前聚类总体平均距离、当前各聚类中心间距离和当前聚类方差;
步骤4.4.3:判断当前所有聚类是否存在聚类内像素数小于聚类内像素数阈值的聚类,若是,则删除像素数最小的聚类,更新聚类数,执行步骤4.4.4,否则,执行步骤4.4.5;
步骤4.4.4:按照步骤4.2、步骤4.3的过程更新各聚类的聚类中心;
步骤4.4.5:判断当前聚类数是否小于等于预期聚类数的二分之一,若是,则执行步骤4.4.9,否则,执行步骤4.4.6;
步骤4.4.6:判断当前聚类数是否大于等于预期聚类数的二倍,若是,则执行步骤4.4.11,否则,执行步骤4.4.7;
步骤4.4.7:若迭代次数为奇数,同时当前聚类内平均距离大于当前聚类总体平均距离、当前聚类方差大于聚类方差阈值、当前聚类内像素数大于聚类内像素数阈值的二倍,则执行步骤4.4.9,否则,执行步骤4.4.8;
步骤4.4.8:若迭代次数为偶数,同时当前聚类中心间距离小于聚类间距离阈值,则执行步骤4.4.11,否则,执行步骤4.5;
步骤4.4.9:将当前聚类内平均距离最大的聚类进行分裂,更新聚类数;
步骤4.4.10:按照步骤4.2、步骤4.3的过程更新各聚类的聚类中心,执行步骤4.5;
步骤4.4.11:将当前聚类中心间距离最小的两个聚类进行合并,更新聚类数;
步骤4.4.12:按照步骤4.2、步骤4.3的过程更新各聚类的聚类中心,执行步骤4.5;
步骤4.5:若当前聚类数收敛或者当前迭代次数达到最大迭代次数,则停止迭代,得到图像分割结果,否则,更新迭代次数,返回步骤4.4。
本发明的有益效果是:
本发明提出的一种区域化自动变类的图像分割方法,以划分子区域内像素的彩色矢量的均值作为划分子区域彩色矢量,并基于划分子区域进行聚类图像分割,可以很好克服几何噪声和像素异常值对分割结果的影响,提高分割精度;通过聚类分裂、合并操作实现自动改变聚类数,方法简单易懂,聚类数收敛速度快,可以得到准确图像聚类数。
附图说明
图1为本发明具体实施方式中区域化自动变类的图像分割方法的流程图;
图2为本发明具体实施方式中根据划分子区域到聚类中心的距离更新图像各聚类的聚类中心的流程图;
图3为本发明具体实施方式中位移当前生成点集中的生成点更新各聚类的聚类中心的流程图;
图4为本发明具体实施方式中迭代过程中图像聚类的自动变类的流程图;
图5为本发明具体实施方式中位移生成点(a2,b2)到(a2 *,b2 *)更新划分子区域的示意图;
其中,(a)为当前生成点集构建的Voronoi划分图(泰森多边形),(b)为候选生成点集构建的Voronoi划分图;
图6为本发明具体实施方式中的仿真图像;
其中,(a)为合成图像,(b)为自然图像,(c)为模板;
图7为K-均值聚类方法对合成图像和自然图像的分割结果;
其中,(a)为K-均值聚类方法对合成图像的分割结果,(b)为分割结果与合成图像的叠加图,(c)为K-均值聚类方法对自然图像的分割结果,(d)为分割结果与自然图像的叠加图;
图8为本发明方法对合成图像和自然图像的分割结果;
其中,(a)为本发明对合成图像分割结果的Voronoi图,(b)为本发明对合成图像的分割结果,(c)为分割区域轮廓线与合成图像的叠加图,(d)为本发明对自然图像分割结果的Voronoi图,(e)为本发明对自然图像的分割结果,(f)为分割区域轮廓线与自然图像的叠加图;
图9为本发明具体实施方式中的进行区域化自动变类的图像分割过程中各参数随迭代变化情况示意图;
其中,(a)为聚类数随迭代变化情况,(b)为聚类内像素数阈值上限随迭代变化情况,(c)为聚类内方差阈值随迭代变化情况,(d)为聚类间距离阈值随迭代变化情况。
具体实施方式
下面结合附图对本发明具体实施方式加以详细的说明。
本发明在CPU为Core(TM)i5-3470 3.20GHz、内存4GB、Windows 7旗舰版系统上使用MATLAB7.12.0软件编程实现仿真。
本发明一种区域化自动变类的图像分割方法,如图1所示,包括以下步骤:
步骤1:读取待分割图像域Ω。
本实施方式中,定义待分割图像域Ω:{zi(xi,yi):(xi,yi)∈Ω,i=1,...,n},其中,zi为第i个像素的彩色矢量,(xi,yi)为第i个像素的位置坐标,n为图像总像素数,待分割图像域Ω的图像大小为128×128,图像总像素数n=16384。
步骤2:将待分割图像域Ω进行子区域初步划分。
步骤2.1:在待分割图像域Ω中随机产生m个生成点,得到初始生成点集合。
本实施方式中,多边形个数,即生成点个数m=700,初始生成点集合为G={(aj,bj):(aj,bj)∈Ω,j=1,...,m},其中,(aj,bj)为第j个生成点的位置坐标。
步骤2.2:以初始生成点集合中的各生成点为中心,进行Voronoi划分,即采用距离最小化原则将待分割图像域Ω划分为m个子区域。
本实施方式中,用Pj表示第j个划分子区域。
步骤2.3:将各划分子区域内所有像素的彩色矢量的均值作为该划分子区域的彩色矢量。
本实施方式中,划分子区域的彩色矢量的计算公式如式(1)所示:
其中,Zj为当前第j个划分子区域的彩色矢量,Nj=#{zi(xi,yi)∈Pj}为第j个划分子区域中的像素数,符号#表示返回集合中元素的个数。
步骤3:设定待分割图像域Ω有c个聚类,从初始生成点集合中随机选取c个生成点,将其所在划分子区域的彩色矢量作为初始聚类中心。
本实施方式中,V(0)={vk (0),k=1,...,c},其中,vk (0)为第k个聚类的初始聚类中心,V(0)为初始聚类中心集合。
步骤4:对待分割图像域Ω进行区域化自动变类的图像分割,得到分割图像。
步骤4.1:设定最大迭代次数。
本实施方式中,设定的最大迭代次数T=100。
步骤4.2:根据划分子区域对待分割图像域Ω进行聚类图像分割,计算划分子区域到当前聚类中心的距离并根据其确定划分子区域所属聚类,同时更新图像各聚类的聚类中心,如图2所示。
步骤4.2.1:计算当前各划分子区域到当前各聚类中心的距离。
本实施方式中,利用二范数计算当前第j个划分子区域到当前第k个聚类的初始聚类中心的欧几里得距离djk如式(2)所示:
其中,vk为当前第k个聚类的聚类中心,若当前聚类中心为初始聚类中心,则vk为vk (0)
步骤4.2.2:比较各划分子区域到各聚类中心的距离的大小,将各划分子区域归类到其到聚类中心的距离最小的聚类中。
本实施方式中,将划分子区域的所在聚类进行标号L={Lj∈(1,...,c)},Lj为第j个划分子区域的聚类标号,划分子区域的标号表示该划分子区域所归属的聚类。
步骤4.2.3:更新聚类的聚类中心:以各聚类中所有划分子区域的彩色矢量的均值作为聚类的聚类中心。
本实施方式中,聚类的聚类中心V={vk,k=1,...,c}的更新公式如式(3)所示:
其中,N(k)=#{Zj,Lj=k}为当前第k个聚类中的划分子区域数。
步骤4.3:位移当前生成点集中的生成点,更新划分子区域、更新划分子区域到当前聚类中心的距离及划分子区域所属聚类、更新各聚类的聚类中心,如图3所示。
步骤4.3.1:设定最大位移次数。
本实施方式中,设定的最大位移次数为T′=80。
步骤4.3.2:从当前生成点集中以等概率随机选取一个待替换的生成点。
本实施方式中,当前生成点集即第t′次位移后的生成点集,从当前生成点集中以等概率(1/m)随机选取一个待替换的生成点,如(aj (t′),bj (t′))。
步骤4.3.3:在待替换的生成点所在的划分子区域内随机选取候选生成点,与其他生成点组成候选生成点集
本实施方式中,在待替换的生成点(aj (t′),bj (t′))所在的划分子区域Pj (t′)内随机选取候选生成点(aj *,bj *)∈Pj (t′),且(aj *,bj *)≠(aj (t′),bj (t′)),位移过程中保持其它生成点位置不变,与其他生成点组成候选生成点集。
步骤4.3.4:以候选生成点集中的各生成点为中心,采用距离最小化原则将待分割图像域划分为位移更新后的划分子区域,将位移更新后的划分子区域内所有像素的彩色矢量的均值作为位移更新后的划分子区域的彩色矢量。
步骤4.3.5:根据位移更新后的划分子区域对待分割图像域进行聚类图像分割,更新划分子区域到当前聚类中心的距离及划分子区域所属聚类,得到位移更新后的各聚类的聚类中心。
步骤4.3.6:计算位移更新前的聚类方差和位移更新后的聚类方差。
本实施方式中,位移更新前的聚类方差的计算公式如式(4)所示:
其中,vk (t′)为位移更新前的第k个聚类的聚类中心。
位移更新后的聚类方差的计算公式如式(5)所示:
其中,vk *为位移更新后的第k个聚类的聚类中心。
步骤4.3.7:判断位移更新后的聚类方差是否小于位移更新前的聚类方差,即是否若是,则将候选生成点集作为当前生成点集G(t′+1)=G*,将位移更新后的划分子区域作为当前划分子区域将位移更新后的各聚类作为当前聚类,将位移更新后的各聚类中心作为当前各聚类中心,即令djk (t′+1)=djk *、Lj (t′+1)=Lj *、vk (t′+1)=vk *否则,保持当前生成点集及参数不变。
如图5所示,为位移生成点到(a2 *,b2 *)更新划分子区域的示意图,其中,图5(a)为当前生成点集构建的Voronoi划分图,图5(b)为候选生成点集构建的Voronoi划分图。
步骤4.3.8:更新位移次数。
步骤4.3.9:判断位移次数是否达到最大位移次数,若是,则执行下一步,否则,返回步骤4.3.2。
步骤4.4:通过对图像聚类的分裂和图像聚类的合并,改变当前图像聚类数,实现自动变类,如图4所示。
步骤4.4.1:设定预期聚类数、聚类内像素数阈值、聚类方差阈值和聚类间距离阈值。
本实施方式中,设定预期聚类数C=3、聚类内像素数阈值初值TN=1000、聚类方差阈值初值Tσ=20、聚类间距离阈值初值Td=20。
设定的聚类内像素数阈值、聚类方差阈值和聚类间距离阈值随着迭代进行调整,令聚类内像素数阈值为当前聚类内像素数最小值、设定的聚类方差阈值为当前聚类方差最小值,设定的聚类间距离阈值为当前聚类间距离最小值。
步骤4.4.2:计算当前各聚类内像素数N(k)、当前聚类内平均距离、当前聚类总体平均距离、当前各聚类中心间距离和当前聚类方差。
本实施方式中,计算当前各聚类内像素数:N(k)=#{zi:li=k}为第k个聚类内的像素数,li为第i个像素的聚类标号。
当前聚类内平均距离Dk的计算公式如式(6)所示:
当前聚类总体平均距离的计算公式如式(7)所示:
当前各聚类中心间距离Dkk′的计算公式如式(8)所示:
Dkk′=||vk-vk′||2 (8)
其中,k=1,...,c,k′=k+1,...,c。
步骤4.4.3:判断当前所有聚类是否存在聚类内像素数小于聚类内像素数阈值的聚类,若是,则删除像素数最小的聚类,更新聚类数c,执行步骤4.4.4,否则,执行步骤4.4.5。
本实施方式中,判断是否存在N(k)<TN的聚类,若是,则删除像素数最小的聚类,更新聚类数c,即聚类数减一。
步骤4.4.4:按照步骤4.2、步骤4.3的过程更新各聚类的聚类中心。
步骤4.4.5:判断当前聚类数c是否小于等于C/2,若是,则执行步骤4.4.9,否则,执行步骤4.4.6。
步骤4.4.6:判断当前聚类数c是否大于等于2C,若是,则执行步骤4.4.11,否则,执行步骤4.4.7。
步骤4.4.7:若迭代次数t为奇数,同时当前聚类内平均距离大于当前聚类总体平均距离、当前聚类方差大于聚类方差阈值、当前聚类内像素数大于聚类内像素数阈值的二倍,则执行步骤4.4.9,否则,执行步骤4.4.8。
本实施方式中,若迭代次数t为奇数,聚类分裂条件如式(9)所示:
步骤4.4.8:若迭代次数t为偶数,同时当前聚类中心间距离小于聚类间距离阈值,则执行步骤4.4.11,否则,执行步骤4.5。
本实施方式中,若迭代次数t为偶数,聚类合并条件如式(10)所示:
Dkk′<Td (10)
步骤4.4.9:将当前聚类内平均距离最大的聚类进行分裂,更新聚类数。
本实施方式中,将当前聚类内平均距离最大的聚类k进行分裂,分裂成聚类k-和k+,如式(11)所示:
此时,
其中,为分裂后聚类的聚类中心,为当前经过t次迭代后的聚类中心,为当前经过t次迭代后的聚类标准差,δ的选取使得在聚类k的数据范围内,其中,为聚类k的第w个彩色矢量分量,w=1,...,3,更新聚类数,即聚类数加一。
步骤4.4.10:按照步骤4.2、步骤4.3的过程更新各聚类的聚类中心,执行步骤4.5。
步骤4.4.11:将当前聚类中心间距离最小的两个聚类进行合并,更新聚类数。
本实施方式中,将聚类中心间距离最小的两聚类k1、k2中所有像素的彩色矢量的均值作为聚类k1的聚类中心,并删除聚类k2,如式(12)所示,更新聚类数,即聚类数减一。
其中,为第k1个聚类内的像素数,为第k2个聚类内的像素数。
步骤4.4.12:按照步骤4.2、步骤4.3的过程更新各聚类的聚类中心,执行步骤4.5。
步骤4.5:若当前聚类数c收敛或者当前迭代次数t达到最大迭代次数T,则停止迭代,得到图像分割结果,否则,更新迭代次数t,返回步骤4.4。
本实施方式中设计一个含有5个同质区域仿真图像作为待分割图像,如图6所示,其中,(a)为合成图像,同质区域I~V分别为海洋、灌木、沙滩、草丛、裸地,(b)为自然图像,(c)为模板,应用本发明方法和现有K-均值聚类方法分别对合成图像和自然图像进行分割的仿真实验,并以模板为标准对两种方法的合成图像分割结果进行定量评价。
图7为K-均值聚类方法对合成图像和自然图像的分割结果,其中,(a)为K-均值聚类方法对合成图像的分割结果,(b)为分割结果与合成图像的叠加图,(c)为K-均值聚类方法对自然图像的分割结果,(d)为分割结果与自然图像的叠加图,可以看出,K-均值聚类方法不能克服几何噪声及像素异常值,对于方差较大的同质区域分割结果较差,导致分割结果中含有大量亮斑。
图8为本发明方法对合成图像和自然图像的分割结果,其中,其中,(a)为本发明对合成图像分割结果的Voronoi图,(b)为本发明对合成图像的分割结果(同质区域的像素彩色均值显示),(c)为分割区域轮廓线与合成图像的叠加图,(d)为本发明对自然图像分割结果的Voronoi图,(e)为本发明对自然图像的分割结果(同质区域的像素彩色均值显示),(f)为分割区域轮廓线与自然图像的叠加图。可以看出,本发明有效克服噪声,划分区域对于同质区域的拟合效果非常好,分割结果无亮斑。
图9为进行区域化自动变类的图像分割过程中各参数随迭代变化情况示意图,验证本发明可以实现自动确定聚类数,分别设置不同聚类数初值对图6(a)进行图像分割,其中,(a)为聚类数随迭代变化情况,(b)为聚类内像素数阈值随迭代变化情况,(c)为聚类内方差阈值随迭代变化情况,(d)为聚类间距离阈值随迭代变化情况。由图9可以看出聚类数随着迭代次数的增加不再波动,而是稳定在正确值,而对应聚类数下的其它参数也逐渐收敛到其稳态值。
本实施方式中,对K-均值聚类方法和本发明方法分割结果进行定量评价如表1所示,以模板中各同质区域为标准,生成混淆矩阵,并根据混淆矩阵计算产品精度、用户精度、总精度和kappa值。可以看出,本发明方法的总精度及kappa值均高于对比方法,明显提高了分割精度。
表1K-均值聚类方法和本发明方法分割结果进行定量评价
以上所述,仅为本发明中最基础的具体实施方式,但本发明的保护范围并不局限于此,任何本技术领域人士在本发明所揭露的技术范围内,可理解到的替换,都应涵盖在本发明的包含范围之内,例如基于规则划分的自动变类分割、基于不规则划分的自动变类分割、基于区域的服从参数自动变类分割、将区域化自动变类方法融入到其它方法等。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (2)

1.一种区域化自动变类的图像分割方法,其特征在于,包括以下步骤:
步骤1:读取待分割图像域;
步骤2:将待分割图像域进行子区域初步划分;
步骤2.1:在待分割图像域中随机产生m个生成点,得到初始生成点集合;
步骤2.2:以初始生成点集合中的各生成点为中心,进行Voronoi划分,即采用距离最小化原则将待分割图像域划分为m个子区域;
步骤2.3:将各划分子区域内所有像素的彩色矢量的均值作为该划分子区域的彩色矢量;
步骤3:设定待分割图像域有c个聚类,从初始生成点集合中随机选取c个生成点,将其所在划分子区域的彩色矢量作为初始聚类中心;
步骤4:对待分割图像域进行区域化自动变类的图像分割,得到分割图像;
步骤4.1:设定最大迭代次数;
步骤4.2:根据划分子区域对待分割图像域进行聚类图像分割,计算划分子区域到当前聚类中心的距离并根据其确定划分子区域所属聚类,同时更新图像各聚类的聚类中心;
步骤4.3:位移当前生成点集中的生成点,更新划分子区域、更新划分子区域到当前聚类中心的距离及划分子区域所属聚类、更新各聚类的聚类中心;
步骤4.3.1:设定最大位移次数;
步骤4.3.2:从当前生成点集中以等概率随机选取一个待替换的生成点;
步骤4.3.3:在待替换的生成点所在的划分子区域内随机选取候选生成点,与其他生成点组成候选生成点集;
步骤4.3.4:以候选生成点集中的各生成点为中心,采用距离最小化原则将待分割图像域划分为位移更新后的划分子区域,将位移更新后的划分子区域内所有像素的彩色矢量的均值作为位移更新后的划分子区域的彩色矢量;
步骤4.3.5:根据位移更新后的划分子区域对待分割图像域进行聚类图像分割,更新划分子区域到当前聚类中心的距离及划分子区域所属聚类,得到位移更新后的各聚类的聚类中心;
步骤4.3.6:计算位移更新前的聚类方差和位移更新后的聚类方差;
步骤4.3.7:判断位移更新后的聚类方差是否小于位移更新前的聚类方差,若是,则将候选生成点集作为当前生成点集,将位移更新后的划分子区域作为当前划分子区域,将位移更新后的各聚类作为当前聚类,将位移更新后的各聚类中心作为当前各聚类中心,否则,保持当前生成点集及参数不变;
步骤4.3.8:更新位移次数;
步骤4.3.9:判断位移次数是否达到最大位移次数,若是,则执行下一步,否则,返回步骤4.3.2;
步骤4.4:通过对图像聚类的分裂和图像聚类的合并,改变当前图像聚类数,实现自动变类;
步骤4.4.1:设定预期聚类数、聚类内像素数阈值、聚类方差阈值和聚类间距离阈值;
步骤4.4.2:计算当前各聚类内像素数、当前聚类内平均距离、当前聚类总体平均距离、当前各聚类中心间距离和当前聚类方差;
步骤4.4.3:判断当前所有聚类是否存在聚类内像素数小于聚类内像素数阈值的聚类,若是,则删除像素数最小的聚类,更新聚类数,执行步骤4.4.4,否则,执行步骤4.4.5;
步骤4.4.4:按照步骤4.2、步骤4.3的过程更新各聚类的聚类中心;
步骤4.4.5:判断当前聚类数是否小于等于预期聚类数的二分之一,若是,则执行步骤4.4.9,否则,执行步骤4.4.6;
步骤4.4.6:判断当前聚类数是否大于等于预期聚类数的二倍,若是,则执行步骤4.4.11,否则,执行步骤4.4.7;
步骤4.4.7:若迭代次数为奇数,同时当前聚类内平均距离大于当前聚类总体平均距离、当前聚类方差大于聚类方差阈值、当前聚类内像素数大于聚类内像素数阈值的二倍,则执行步骤4.4.9,否则,执行步骤4.4.8;
步骤4.4.8:若迭代次数为偶数,同时当前聚类中心间距离小于聚类间距离阈值,则执行步骤4.4.11,否则,执行步骤4.5;
步骤4.4.9:将当前聚类内平均距离最大的聚类进行分裂,更新聚类数;
步骤4.4.10:按照步骤4.2、步骤4.3的过程更新各聚类的聚类中心,执行步骤4.5;
步骤4.4.11:将当前聚类中心间距离最小的两个聚类进行合并,更新聚类数;
步骤4.4.12:按照步骤4.2、步骤4.3的过程更新各聚类的聚类中心,执行步骤4.5;
步骤4.5:若当前聚类数收敛或者当前迭代次数达到最大迭代次数,则停止迭代,得到图像分割结果,否则,更新迭代次数,返回步骤4.4。
2.根据权利要求1所述的区域化自动变类的图像分割方法,其特征在于,所述的步骤4.2包括以下步骤:
步骤4.2.1:计算当前各划分子区域到当前各聚类中心的距离;
步骤4.2.2:比较各划分子区域到各聚类中心的距离的大小,将各划分子区域归类到其到聚类中心的距离最小的聚类中;
步骤4.2.3:更新聚类的聚类中心:以各聚类中所有划分子区域的彩色矢量的均值作为聚类的聚类中心。
CN201510487600.XA 2015-08-11 2015-08-11 一种区域化自动变类的图像分割方法 Expired - Fee Related CN104992454B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510487600.XA CN104992454B (zh) 2015-08-11 2015-08-11 一种区域化自动变类的图像分割方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510487600.XA CN104992454B (zh) 2015-08-11 2015-08-11 一种区域化自动变类的图像分割方法

Publications (2)

Publication Number Publication Date
CN104992454A CN104992454A (zh) 2015-10-21
CN104992454B true CN104992454B (zh) 2017-07-04

Family

ID=54304261

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510487600.XA Expired - Fee Related CN104992454B (zh) 2015-08-11 2015-08-11 一种区域化自动变类的图像分割方法

Country Status (1)

Country Link
CN (1) CN104992454B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105704467B (zh) * 2016-01-22 2017-06-23 贵阳海信电子有限公司 一种用于大屏lcm图像的白平衡调整方法及装置
CN106204579B (zh) * 2016-07-08 2018-09-25 辽宁工程技术大学 一种遥感影像中地物类别数估计方法及系统
CN106485716B (zh) * 2016-09-09 2019-04-02 辽宁工程技术大学 一种基于区域划分与Gamma混合模型的多视SAR图像分割方法
CN106777826B (zh) * 2017-01-24 2020-06-19 中国机械工业集团有限公司 一种气浮式振动控制系统三支点气路平速优化分组技术
CN110017777A (zh) * 2019-04-15 2019-07-16 太原理工大学 一种钢丝绳捻距实时动态检测评估方法
CN111833353B (zh) * 2020-07-16 2022-04-12 四川九洲电器集团有限责任公司 一种基于图像分割的高光谱目标检测方法
CN112699922A (zh) * 2020-12-21 2021-04-23 中国电力科学研究院有限公司 一种基于区域内距离的自适应聚类方法及系统
CN112634290B (zh) * 2020-12-30 2023-09-19 广州南洋理工职业学院 一种基于聚类交互的图形分割方法
CN114283332B (zh) * 2021-12-15 2024-07-19 深圳先进技术研究院 一种模糊聚类遥感影像分割方法、系统、终端及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353987A (zh) * 2013-06-14 2013-10-16 山东大学 一种基于模糊理论的超像素分割方法
CN104657995A (zh) * 2015-02-12 2015-05-27 合肥工业大学 利用区域分裂技术的遥感影像分割方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009143651A1 (en) * 2008-05-29 2009-12-03 Carestream Health, Inc. Fast image segmentation using region merging with a k-nearest neighbor graph

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353987A (zh) * 2013-06-14 2013-10-16 山东大学 一种基于模糊理论的超像素分割方法
CN104657995A (zh) * 2015-02-12 2015-05-27 合肥工业大学 利用区域分裂技术的遥感影像分割方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Multi-look SAR image segmentation based on voronoi tessellation technique and EM/MPM algorithm;Zhao Quanhua等;《Journal of Remote Sensing》;20130430;第17卷(第4期);第841-854页 *
基于规则划分和RJMCMC的可变类图像分割;王玉 等;《仪器仪表学报》;20150630;第36卷(第6期);第1388-1396页 *

Also Published As

Publication number Publication date
CN104992454A (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
CN104992454B (zh) 一种区域化自动变类的图像分割方法
JP5916886B2 (ja) 画像特徴の類似性に基づく画像索引作成
US9607391B2 (en) Image object segmentation using examples
CN107330897B (zh) 图像分割方法及其系统
JP6188400B2 (ja) 画像処理装置、プログラム及び画像処理方法
US9363499B2 (en) Method, electronic device and medium for adjusting depth values
WO2017020723A1 (zh) 一种字符分割方法、装置及电子设备
CN113781402A (zh) 芯片表面划痕缺陷的检测方法、装置和计算机设备
US8590794B2 (en) Barcode recognion method and computer product thereof
Yang et al. Ranking 3D feature correspondences via consistency voting
CN105118049A (zh) 一种基于超像素聚类的图像分割方法
CN109871829B (zh) 一种基于深度学习的检测模型训练方法和装置
WO2017181892A1 (zh) 前景分割方法及装置
US9619729B2 (en) Density measuring device, density measuring method, and computer program product
CN109408562B (zh) 一种基于客户特征的分组推荐方法及其装置
Zhou et al. Multiscale superpixels and supervoxels based on hierarchical edge-weighted centroidal voronoi tessellation
CN109961437B (zh) 一种基于机器教学模式下的显著性织物疵点检测方法
CN114677565B (zh) 特征提取网络的训练方法和图像处理方法、装置
CN105912977B (zh) 基于点聚类的车道线检测方法
Wang et al. Interactive multilabel image segmentation via robust multilayer graph constraints
Cheng et al. Urban road extraction via graph cuts based probability propagation
TW202011266A (zh) 用於圖片匹配定位的神經網路系統、方法及裝置
US8867851B2 (en) Sparse coding based superpixel representation using hierarchical codebook constructing and indexing
Zhao et al. Saliency detection with spaces of background-based distribution
CN107194402B (zh) 一种并行细化骨架提取方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170704

CF01 Termination of patent right due to non-payment of annual fee